20180512_キカガク_AI案件のよくある落とし穴と人材育成

62fa6ba3263de6f0f49019635e143039?s=47 Ryosuke Yoshizaki
May 12, 2018
1.5k

 20180512_キカガク_AI案件のよくある落とし穴と人材育成

62fa6ba3263de6f0f49019635e143039?s=128

Ryosuke Yoshizaki

May 12, 2018
Tweet

Transcript

  1. AI案件の よくある落とし穴と人材育成 株式会社キカガク

  2. 2018 Kikagaku, Inc. All Rights Reserved 2 会社概要 *機械学習とディープラーニングを含む 協力会社

    会社名 株式会社キカガク 設立日 2017年1月 代表 吉崎 亮介 所在地 東京都豊島区池袋 PLAN ACTION DO CHECK We provide education in the best style for you 人工知能(AI)*における教育と コンサルティングサービスを提供
  3. 2018 Kikagaku, Inc. All Rights Reserved 3 吉 崎 亮

    介 株式会社キカガク 代表取締役社長 代表者紹介 人と人とが教え合える 優しい世界をつくる ✓日経ビッグデータ -「機械学習のデータはそ もそも企業内にない、地道に整える企業が 優位に立てる」 (2017.10.20) ✓共同通信社 -AIどう使う? 教育で 社会への橋渡しを 26歳社長「好き なことで生きる」(2018.1.23) 掲載された 記事の紹介 1991年生まれ 京都出身 舞鶴高等専門学校 画像処理とロボット制御の 研究に従事 ITベンチャー 企業へ就職 京都大学大学院 機械学習による 製造業のプロセ ス改善に従事 株式会社 キカガク 設立 東京大学 客員研究員 へ就任 コンサルティング現場で 得た知見を教育へ 教育 コンサル ティング
  4. 2018 Kikagaku, Inc. All Rights Reserved 実績 (法人設立から1年) 4 日本マイクロソフトと

    Preferred Networksの 初の公認のデータサイ エンス人材養成企業 経済産業省認定 大手AI企業公認 共同プロジェクト多数 ディープラーニングハン ズオンセミナーが「第四 次産業革命スキル習得講 座認定制度」に採択 データサイエンス人材を 育成するプロジェクトに 参画 0 1000 2000 3000 2017.3 2017.6 2017.9 2017.12 #Students 受講生 3000人 5 4 3 2 1 満足度 1 0 0 %
  5. 2018 Kikagaku, Inc. All Rights Reserved AIとは? 5 引用:人工知能、機械学習、ディープラーニングの違いとは(Nvidia)

  6. 2018 Kikagaku, Inc. All Rights Reserved AI・機械学習・ディープラーニングの違い 6

  7. 2018 Kikagaku, Inc. All Rights Reserved 学習と推論 7 モデル 入力変数

    x 出力変数 t (教師データ) 名前:佐藤さん 学習 名前:鈴木さん ・ ・ ・ ・ ・ ・
  8. 2018 Kikagaku, Inc. All Rights Reserved 学習と推論 8 入力変数 x

    出力変数 y (予測値) 推論 学習済み モデル 名前:鈴木さん
  9. 2018 Kikagaku, Inc. All Rights Reserved 教師データ作成の例題 9 MRI画像から異常な箇所とその病名を予測する機械学習 のモデルを構築したい。依頼する前にどのようなデータを

    準備しておくべきか考えてください。
  10. 2018 Kikagaku, Inc. All Rights Reserved 教師データ作成の例題 10 MRI画像から異常な箇所とその病名を予測する機械学習 のモデルを構築したい。依頼する前にどのようなデータを

    準備しておくべきか考えてください。 (x1 ,y1 ) = (200, 250) (x2 ,y2 ) = (250, 300) ラベル:腫瘍 箇所と病名を予測したい場合は同じ形式の教師データが必要
  11. 2018 Kikagaku, Inc. All Rights Reserved 11 Step1. 画像の分類(CNN) Step2.

    物体の検出(R-CNN) 今 西 吉 崎 顔 ロゴ その他、GANと呼ばれる技術で 画像の生成もできるが、後述す る検証の問題で導入までの障害 が高いため、今回は省略 ディープラーニングが成果を出している領域
  12. 2018 Kikagaku, Inc. All Rights Reserved 12 Step1. 文書の分類(NN) Step2.

    機械翻訳(RNN) 野球 サッカー ラグビー バッター イチロー スマホ 急速充電 電動 ホット コールド 自動車 お風呂 私 / は / 吉崎 / です /。 / よろしく / お願い / します / 。 / → 私 / は / キカガク / です /。 / こちらこそ / よろしく / お願い / します / 。 / ディープラーニングが成果を出している領域
  13. AIエンジニアになることは難しいのか? 学ぶ → 使う・導入するには、大きなハードルがある 当社調べ Webアンケート 回答人数 200名

  14. 開発フロー

  15. 開発フロー 1.企画・ヒアリング ポイント AIがすべてでないことを認識した上で、使うべき案件かを確認

  16. 開発フロー 2.環境構築 ポイント • 最初は解析環境を整備するのも一大プロジェクト • ディープラーニングでは事実上GPUが不可欠であるため、リモート のサーバー上で環境構築できる人材が必要 • AzureのData

    Science VM上にNvidia-dockerなどでライブラリをまとめた 環境を移植して構築すれば15分程度で環境構築が可能
  17. 開発フロー 3.教師データ作成 ポイント • 枚数が多い場合は時間をかけてでも、前処理アプリを作成 • 画像・動画系のラベル付けはMicrosoftが公開しているVOTTが便利 • 教師データ作成向けのアウトソーシングサービスも増加

  18. 開発フロー 4.前処理・構造化 ポイント • 前処理は「自然言語 前処理」のように調べると大体わかる • 前処理の時間はプログラミングスキルに大きく依存(初心者は結構厳しい) • 構造化は「自然言語

    特徴量」のように調べると大体わかるが、どれを 使うべきか選択が難しい(有識者に聞くのが早い) 私は吉崎です。 x = [ ???, ???, …, ??? ] 固定長のベクトル 株式会社キカガク (株)キカガク キカガク株式会社 キカガク 前処理 構造化
  19. 開発フロー 5.モデル構築(機械学習) ポイント • 万能な方法はないため、各アルゴリズムを適材適所で使う • 前処理や特徴量選択によっても性能が変わるため、アルゴリズム単体で 考えるだけでは不十分 • 各アルゴリズムのハイパーパラメータを抑えておく

    機械学習の代表的なアルゴリズム • ディープラーニング • Support Vector Machine(SVM) • 決定木 • ガウス過程 • K-means • 主成分分析
  20. 開発フロー 6.仮運用・検証 ポイント • 精度100%が出ないことを踏まえて人手でカバーできる運用フローが不可欠

  21. 開発フロー 7.システム統合 ポイント • Webアプリケーションの場合、 WebAPIで予測値のやり取 りを行うことが多い • 組み込みではエッジで処理する かクラウドで処理するか

    • 精度が出るが深すぎるNNは、 推論で思わぬネックとなる • DockerやKubernetesのような仮想 化技術は機械学習エンジニアに は不可欠
  22. 一緒に勉強しましょう! #キカガク #dllab 本日の感想をお願いします ディープラーニングハンズオンセミナー 『dllab.ai』で検索! 環境構築 ↓ 前処理・構造化 ↓

    モデル構築 画像・時系列・自然言語 福岡@Microsoft福岡 ・6/2(土), 6/9(土), 6/16(土) ・7/4(水)-7/6(金) Webページ:http://dllab.ai/academy/deep-learning-hands-on-seminar/ 申し込み・問い合わせ先 seminar@kikagaku.co.jp
  23. ご清聴ありがとうございました。