CG1 If P = Q then ¯ au.P = ¯ au.Q .P = .Q P + R = Q + R P|R = Q|R ( x)P = ( x)Q CG2 If P{x/y} = Q{x/y} for all y fn(P, Q, x) then a(x).P = a(x).Q S P + P = P M1 (if x = x then P) = P M2 (if x = y then P) = 0 if x = y MM1 (if x = x then P) = 0 MM2 (if x = y then P) = P if x = y R1 ( x) .P = .( x)P if x / R2 ( x) .P = 0 if = ¯ xy or = x(y) R3 ( x)(P + Q) = ( x)P + ( x)Q Parrow, J. (2001). An Introduction of the π calculus. In Bergs, Poise, Smolka (Eds.), Handbook of Process Algebra. Elsevier.