Upgrade to Pro — share decks privately, control downloads, hide ads and more …

論理構造入門

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for ytakano ytakano
February 24, 2018

 論理構造入門

Avatar for ytakano

ytakano

February 24, 2018
Tweet

More Decks by ytakano

Other Decks in Science

Transcript

  1. ਅཧ஋ද 6 1 2 ™1 1㱹2 1㱸2 1ˠ2 5 5

    ' 5 5 5 5 ' ' 5 ' ' ' 5 5 5 ' 5 ' ' 5 ' ' 5
  2. ੔࿦ཧࣜ XFMMGPSNFEGPSNVMB w จ๏తʹਖ਼͍ࣜ͠ͷ͜ͱΛ੔࿦ཧࣜͱݴ͏ w ߏจ w ਅཧه߸ɿ5ʢ·ͨ͸5SVFʣɺ'ʢ·ͨ͸'BMTFʣ w ࿦ཧ݁߹ࢠɿ™ɺˠɺ㱹ɺ㱸

    w ໋୊ม਺ɿ1ɺ2ɺ3 w ໿෺ɿ   ɺΧοίͱ۟ಡ఺ w ੔࿦ཧࣜͷྫ w 5SVF 'BMTF 1 ™2 1㱸2ɺ1ˠ2ɺ 1㱹2 㱸3ɺ1㱸2ˠ3 w 㱹Λબݴɺ㱸Λ࿈ݴͱݺͿ 7
  3. ࿦ཧతಉ஋ੑ w ಉ͡ਅཧ஋දͱͳΔ౳Ձͳ੔࿦ཧࣜಉ࢜Λಉ஋ͳ੔࿦ཧࣜͱݴ͏ w 㲇Ͱಉ஋Λද͢ w ಉ஋ͳࣜͷྫ w ™™1㲇1ʢೋॏ൱ఆʣ w

    ™ 1㱹2 㲇™1㱸™2ʢυɾϞϧΨϯͷ๏ଇɺબݴͱ࿈ݴ͕ٯͷ৔߹΋ಉ͡ʣ w 1㱹 2㱸3 㲇 1㱹2 㱸 1㱹3 ʢ෼഑ଇɺબݴͱ࿈ݴ͕ٯͷ৔߹΋ಉ͡ʣ w 1㱹 1㱸2 㲇1ʢٵऩଇɺબݴͱ࿈ݴ͕ٯͷ৔߹΋ಉ͡ʣ 10
  4. ඪ४ܗ w બݴඪ४ܗʢEJTKVODUJWFOPSNBMGPSN%/'ʣ w جຊ࿈ݴͱ͸ɺϦςϥϧ·ͨ͸ͭҎ্ͷϦςϥϧͷ࿈ݴͰ͋Δ w ྫɿ1ɺ™1㱸2 w %/'ͱ͸ɺجຊ࿈ݴͰ͋Δ͔ɺͭҎ্ͷجຊ࿈ݴͷબݴͰ͋Δ w

    ྫɿ1㱹 ™1㱸2 ɺ 1㱸2 㱹 ™2㱸1  w ࿈ݴඪ४ܗʢDPOKVODUJWFOPSNBMGPSN$/'ʣ w جຊબݴͱ͸ɺϦςϥϧ·ͨ͸ͭҎ্ͷϦςϥϧͷબݴͰ͋Δ w $/'ͱ͸ɺجຊબݴͰ͋Δ͔ɺͭҎ্ͷجຊબݴͷ࿈ݴͰ͋Δ w ྫɿ1㱸 ™1㱹2 ɺ 1㱹2 㱸 ™2㱹1  w ఆཧ w ͢΂ͯͷ੔࿦ཧࣜ͸ɺಉ஋ͳ%/'ͱ$/'Λ࣋ͭ 12
  5. $/'ͷߏ੒ w $/'ͷߏ੒͸ҎԼͷΑ͏ʹͯ͠ߦ͏ w ࿦ཧ݁߹ࢠͷˠΛɺ1ˠ2㲇™1㱹2Λ༻͍ͯআڈ w υɾϞϧΨϯͷ๏ଇΛ༻͍ͯɺશͯͷ൱ఆΛΧοίͷ಺ଆʹҠ͢ w ෼഑ଇΛ༻͍Δ w

    ྫ 13 ¬((P ^ Q) ! R) _ S ⌘ ¬(¬(P ^ Q) _ R) _ S ⌘ ¬(¬P _ ¬Q _ R) _ S ⌘ (P ^ Q ^ ¬R) _ S ⌘ (P _ S) ^ (Q _ S) ^ (¬R _ S)
  6. ׬શඪ४ܕ w ੔࿦ཧࣜ8͕ɺOݸͷϦςϥϧΛ࣋ͭͱ͢Δɻ͜ͷͱ͖ɺ8ʹ౳͍͠$/'ͷ͢΂ ͯͷجຊબݴ͕ɺ8தʹग़ݱ͢ΔOݸͷม਺ʹରԠ͢ΔOݸͷϦςϥϧΛ࣋ͭͱ͖ɺ ׬શ࿈ݴඪ४ܗͱʢGVMMDPOKVODUJWFOPSNBMGPSN ׬શ$/'ʣͱݺͿɻ w ྫ w 1㱹2㱹3

    㱸 ™1㱹2㱹3  w 1㱹2 㱸 ™1㱹2㱹3 ͸ɺ׬શ$/'Ͱ͸ͳ͍ɻͳͥͳΒҰ൪ࠨͷجຊબݴʹ͢ ΂ͯͷม਺ؚ͕·Ε͍ͯͳ͍ͨΊɻ w ׬શબݴඪ४ܗʢGVMMEJTKVODUJWFOPSNBMGPSN ׬શ%/'ʣ΋ಉ͡ 15
  7. جຊ࿈ݴͱجຊબݴ΁ͷม਺௥Ճ w جຊ࿈ݴ$΁͸࣍ͷಉ஋ࣜΛར༻͢Δͱ೚ҙͷม਺3͕௥ՃՄೳ w $㲇$㱸5SVF㲇$㱸 3㱹™3 㲇 $㱸3 㱹 $㱸™3

     w جຊબݴ%΁͸࣍ͷಉ஋ࣜΛར༻͢Δͱ೚ҙͷม਺3͕௥ՃՄೳ w %㲇%㱹'BMTF㲇%㱹 3㱸™3 㲇 %㱹3 㱸 %㱹™3  w ্ಉ஋ࣜΛ༻͍Δͱɺ׬શඪ४ܕ͕ߏ੒Մೳ 16
  8. ׬શ$/'ͷߏ੒ྫ 17 P ^ (P ! Q) ⌘ P ^

    (¬P _ Q) ⌘ (P _ False) ^ (¬P _ Q) ⌘ (P _ (Q ^ ¬Q)) ^ (¬P _ Q) ⌘ (P _ Q) ^ (P _ ¬Q) ^ (¬P _ Q)
  9. ূ໌نଇʢ̍ʣ 23 A, B A ^ B A ^ B

    A A ^ B B A A _ B A B _ A A _ B, ¬A B A _ B, ¬B A A, A ! B B derive B from A A ! B ࿈ݴ $POKVODUJPO $POK ୯७Խʢ4JNQMJpDBUJPO 4JNQ ௥Ճ "EEJUJPO "EE બݴࡾஈ࿦๏ %JTKVODUJWF4ZMMPHJTN %4 Ϟʔμεɾϙωϯε .PEVT1POFOT .1 ৚݅ূ໌ $POEJUJPOBM1SPPG $1
  10. ূ໌نଇʢ̎ʣ 24 ¬¬A A A, ¬A False derive False from

    ¬A A ೋॏ൱ఆ %PVCMF/FHBUJPO %/ ໃ६ $POUSBEJDUJPO $POUS ؒ઀ূ໌ *OEJSFDU1SPPG *1 ϞʔμεɾτϨϯε .PEVT5PMMFOT .5 A ! B, ¬B ¬A ৔߹෼͚ʹΑΔূ໌ 1SPPGCZ$BTFT $BTFT A _ B, A ! C, B ! C C Ծݴࡾஈ࿦๏ )ZQPUIFUJDBM4ZMMPHJTN )4 A ! B, B ! C A ! C ߏ੒తδϨϯϚ $POTUSVDUJWF%JMFNNB $% A _ B, A ! C, B ! D C _ D
  11. $1نଇΛ༻͍ͨূ໌ྫ 26 (A B) ¬A (B C) (B C) ͷূ໌

    1. A B P 2. ¬A P 3. B C P 4. B 1, 2, DS 5. C 3, 4, MP 6. B C 4, 5, Conj QED 1-6, CP
  12. ෦෼ূ໌ w ຊূ໌ΛਐΊΔ্Ͱඞཁͳূ໌ w ඞͣ৽͍͠લఏ͔Β࢝·Γɺಋग़ʹ$1͋Δ͍͸*1Λద༻ͯ͠ऴྃ͢Δ w ෦෼ূ໌͸ಋग़ͷਖ਼࿦ཧࣜΛࣈԼ͛ͯࣔ͢͠ w ෦෼ূ໌தʹར༻ͨ͠੔࿦ཧࣜ͸ɺ֎ଆͷূ໌தʹར༻Ͱ͖ͳ͍ 27

    81 8ཧ༝ʢߦΛ࢖ͬͯྑ͍ʣ 81ʢ෦෼ূ໌ͷͨΊͷ৽͍͠ཧ༝ʣ 8ཧ༝ʢߦʙΛ࢖ͬͯྑ͍ʣ 8ߦʙ͔Β$1·ͨ͸*1 8ཧ༝ʢߦʙͱߦΛ࢖ͬͯྑ͍ʣ 2&%ߦʙͱߦʙ͔Β$1·ͨ͸*1
  13. ෦෼ূ໌Λ༻͍ͨূ໌ྫ 28 ((A B) (B C)) (B C) ͷূ໌ 1.

    (A B) (B C) P 2. B P [B C ͳͷͰ] 3. A B 2, Add 4. B C 1, 3, MP 5. C 4, Simp 6. B C 2-5, CP QED 1, 6, CP
  14. *1نଇΛ༻͍ͨূ໌ྫ 30 ҎԼͷٞ࿦ͷਖ਼͠͞Λূ໌ͤΑ զࢥ͏ͳΒ͹ɺզ͋Γɻ զࢥΘ͟Ε͹ɺզࢥ͏ɻ ނʹɺզ͋Γɻ զࢥ͏Λ"ɺզ͋ΓΛ#ͱ͢Δͱɺ લఏ"ˠ#ͱ™"ˠ"͔Β݁࿦#Λ ಋ͚Δ͜ͱΛূ໌͢Ε͹ྑ͍ɻ 1.

    A B P 2. ¬A A P 3. ¬B P [B ͳͷͰ] 4. ¬¬A P [¬A ͳͷͰ] 5. A DN 6. B 1, 5, MP 7. False 3, 6, Contr 8. ¬A 4-7, IP 9. A 2, 8, MP 10. False 8, 9, Contr 11. B 3, 8-10, IP QED
  15. ଘࡏݶྔࢠ FYJTUFOUJBMRVBOUJpFS w ͋Δड़ޠΛਅͱ͢Δͱ͢ΔΑ͏ͳ஋͕ଘࡏ͢Δͱ͍͏͜ͱΛهड़͢Δͱ͖ʹ༻͍Δ w 㱽Ͱද͢ w ྫ w ྖҬ%\

      ^ͱ͢Δͱ͖ɺQ Y Λਅͱ͢Δ஋Y㱨%͕ଘࡏ͢Δͱ͖ɺ
 㱽YQ Y ͱද͢ w ͢ͳΘͪɺ͜Ε͸બݴͰॻ͖ԼͤͯɺQ  㱹Q  㱹Q  㱹Q  ͕ਅʹͳΔͱ͍͏͜ͱΛ ද͢ w 㱽YQ Y ͸ɺӳޠͩͱɺ5IFSFFYJTUTYTVDIUIBUQ Y USVF 35
  16. શশݶྔࢠ VOJWFSTBMRVBOUJpFS w ͋Δड़ޠʹରͯ͠ɺ͢΂ͯͷऔΓ͏Δ஋ʹରͯ͠ਅͱͳΔ͜ͱΛهड़͢Δͱ͖ʹ ༻͍Δ w 㱼Ͱද͢ w ྖҬ%\ 

     ^ͱ͢Δͱ͖ɺ͢΂ͯͷ஋Y㱨%ʹରͯ͠Q Y ͕ਅͱͳΔͱ͖ɺ 㱼YQ Y ͱද͢ w ͜Ε͸ɺ࿈ݴͰॻ͖ԼͤͯɺQ  㱸Q  㱸Q  㱸Q  ͕ਅͱͳΔͱݴ͏͜ͱΛ ද͢ w 㱼YQ Y ͸ɺӳޠͩͱ'PSBMMY Q Y USVF 36
  17. ຊεϥΠυͰར༻͢Δه߸ w ม਺ɿY Z [ w ఆ਺ɿB C D w

    ؔ਺ɿG H I w ड़ޠɿQ R S w ࿈݁ه߸ɿ™ ˠ 㱸 㱹 w ݶྔه߸ɿ㱽 㱼 w ໿෺ه߸ɿ  l z 37
  18. ड़ޠ࿦ཧͷ੔࿦ཧࣜ w ߲ʢUFSNʣͱ͸ɺม਺·ͨ͸ఆ਺ɺ͋Δ͍͸߲Ͱ͋ΔҾ਺ʹؔ਺Λద༻ͨ͠΋ͷ w ྫɿY B G Y H C

     w ૉ࿦ཧࣜʢBUPNJDGPSNVMBʣͱ͸ɺ߲Ͱ͋ΔҾ਺ʹɺड़ޠΛద༻ͨ͠΋ͷ w ྫɿQ Y B R Z G D  w ੔࿦ཧࣜʢXFMMGPSNFEGPSNVMBʣͷఆٛ w ೚ҙͷૉ࿦ཧࣜ͸੔࿦ཧࣜͰ͋Δ w 8ͱ7͕੔࿦ཧࣜͰY͕ม਺Ͱ͋Ε͹ɺ࣍ͷࣜ͸੔࿦ཧࣜͰ͋Δ w 8 ɺ™8ɺ8㱹7ɺ8㱸7ɺ8ˠ7ɺ㱽Y8ɺ㱼Y8 39
  19. ݶྔࢠͷ༗ޮൣғ w 㱽Y8 தͷ㱽Yͷ༗ޮൣғ͸8Ͱ͋Δ w 㱽YQ Y Z ˠR Y

    ͸ɺ 㱽YQ Y Z ˠR Y ͱ౳Ձ w 㱽YQ Y 㱸R Y ͸ɺ 㱽Q Y 㱸R Y ͱ౳Ձ w 㱼ʹ͍ͭͯ΋ಉ͡ 40
  20. ୅ೖ w 8Λ੔࿦ཧࣜɺYΛ8தͷࣗ༝ม਺ɺ߲ΛUͱ͢Δͱ͖ɺ8தͷશͯͷࣗ༝ม਺Y ʹ߲UΛ୅ೖͯ͠ಘΒΕΔࣜΛ
 8 YU 
 ͱද͢ w ྫ

    w 㱽YQ Y Z  ZB 㱽YQ Y B  w 㱼YQ Y 㱸R Y  YD 㱼YQ Y 㱸R D ʢଋറม਺ʹ͸୅ೖ͠ͳ͍ʂʣ w 㱽YQ Y Z  Z[  [U  㱽YQ Y [  [U 㱽YQ Y U 42
  21. ୅ೖͷੑ࣭ 43 (¬A)(x/t) = ¬A(x/t) (A B)(x/t) = A(x/t) B(x/t)

    (A B)(x/t) = A(x/t) B(x/t) (A B)(x/t) = A(x/t) B(x/t) ( yW)(x/t) = y(W(x/t)) ( yW)(x/t) = y(W(x/t)) ( xW)(x/t) = xW ( xW)(x/t) = xW ݁߹ࢠɺ™ɺ㱸ɺ㱹ɺˠ্Ͱͷ෼഑ Y㱠Zͷ৔߹ɺ㱼ͱ㱽্Ͱͷ෼഑ Y͕ଋറม਺ͷ৔߹
  22. ಉ஋ੑ 44 x(p(x) q(x)) xp(x) xq(x) ม਺໊ͷஔ͖׵͑ ʢZ͕8 Y தʹແ͍ม਺ͷͱ͖ʣ

    ಉ͡ݶྔࢠͷೖΕସ͑ ݶྔࢠͱ൱ఆ ݁߹ࢠˠ্ͷݶྔࢠ ݶྔࢠͷ෼഑ x(p(x) q(x)) x p(x) x q(x) x(p(x) q(x)) x p(x) x q(x) x yW y x W x yW y x W ¬( xW) x¬W ¬( xW) x¬W xW(x) yW(x/y) xW(x) yW(x/y)
  23. ݶྔࢠͱ൱ఆͷߟ͑ํ w ෮शɿྖҬ%\   ^ͱ͢Δͱ͖ɺ͢΂ͯͷ஋Y㱨%ʹରͯ͠Q Y ͕ਅ ͱͳΔͱ͖ɺ㱼YQ Y

    ͱදͤɺ͜Ε͸ɺQ  㱸Q  㱸Q  㱸Q  ͱಉ͡ w ͢Δͱɺͦͷ൱ఆɺ™㱼YQ Y ͸υɾϞϧΨϯͷ๏ଇΛ༻͍ͯ࣍ͷΑ͏ʹม ׵Ͱ͖Δ 45 ¬ x p(x) ¬(p(2) p(3) p(4) p(5)) ¬p(2) ¬p(3) ¬p(4) ¬p(5) x ¬p(x) ʢଘࡏݶྔࢠͷ൱ఆ΋ಉ͡Α͏ʹग़དྷΔʣ
  24. ੍໿෇͖ಉ஋ࣜ 46 ੍໿ɿ੔࿦ཧࣜ$தʹม਺Y͕ࣗ༝ʹग़ݱ͠ͳ͍ͱ͖ʹ੒Γཱͭ xC C xC C x(C A(x)) C

    xA(x) x(C A(x)) C xA(x) x(C A(x)) C xA(x) x(C A(x)) C xA(x) x(C A(x)) C xA(x) x(C A(x)) C xA(x) x(A(x) C) xA(c) C x(A(x) C) xA(c) C ؆໿ બݴ ࿈ݴ ؚҙ
  25. ྫɿף಄ඪ४ܗ΁ͷม׵ 49 ࣍ͷ੔࿦ཧࣜ8Λף಄ඪ४ܗ΁ม׵ͤΑ W A(x) x(B(x) yC(x, y) ¬ yA(y))

    ·ͣɺಉҰ໊ͷม਺Λஔ͖׵͑Δ W A(x) z(B(z) yC(z, y) ¬ wA(w)) z(A(x) (B(z) yC(z, y) ¬ wA(w))) ʢબݴͷಉ஋ࣜʣ z(A(x) (B(z) y(C(z, y) ¬ wA(w)))) ʢબݴͷಉ஋ࣜʣ z(A(x) y(B(z) C(z, y) ¬ wA(w))) ʢؚҙͷಉ஋ࣜʣ z y(A(x) (B(z) C(z, y) ¬ wA(w))) ʢ࿈ݴͷಉ஋ࣜʣ z y(A(x) (B(z) C(z, y) w¬A(w))) ʢ൱ఆͷಉ஋ࣜʣ z y(A(x) (B(z) w(C(z, y) ¬A(w)))) ʢબݴͷಉ஋ࣜʣ z y(A(x) w(B(z) C(z, y) ¬A(w))) ʢؚҙͷಉ஋ࣜʣ z y w(A(x) (B(z) C(z, y) ¬A(w))) ʢ࿈ݴͷಉ஋ࣜʣ ಉ஋ࣜΛ༻͍ͯݶྔࢠΛ಄ʹ͍࣋ͬͯ͘ A(x) z(B(z) yC(z, y) ¬ wA(w))
  26. ྫɿף಄ඪ४ܗ΁ͷม׵ 50 ࣍ͷ੔࿦ཧࣜ8Λף಄ඪ४ܗ΁ม׵ͤΑ W A(x) x(B(x) yC(x, y) ¬ yA(y))

    ·ͣɺಉҰ໊ͷม਺Λஔ͖׵͑Δ W A(x) z(B(z) yC(z, y) ¬ wA(w)) z(A(x) (B(z) yC(z, y) ¬ wA(w))) ʢબݴͷಉ஋ࣜʣ z(A(x) (B(z) y(C(z, y) ¬ wA(w)))) ʢબݴͷಉ஋ࣜʣ z(A(x) y(B(z) C(z, y) ¬ wA(w))) ʢؚҙͷಉ஋ࣜʣ z y(A(x) (B(z) C(z, y) ¬ wA(w))) ʢ࿈ݴͷಉ஋ࣜʣ z y(A(x) (B(z) C(z, y) w¬A(w))) ʢ൱ఆͷಉ஋ࣜʣ z y(A(x) (B(z) w(C(z, y) ¬A(w)))) ʢબݴͷಉ஋ࣜʣ z y(A(x) w(B(z) C(z, y) ¬A(w))) ʢؚҙͷಉ஋ࣜʣ z y w(A(x) (B(z) C(z, y) ¬A(w))) ʢ࿈ݴͷಉ஋ࣜʣ ಉ஋ࣜΛ༻͍ͯݶྔࢠΛ಄ʹ͍࣋ͬͯ͘ A(x) z(B(z) yC(z, y) ¬ wA(w))
  27. ྫɿף಄࿈ݴඪ४ܗ 53 ࣍ͷ੔࿦ཧࣜ8Λף಄࿈ݴඪ४ܗ΁ม׵ͤΑ W A(x) x(B(x) yC(x, y) ¬ yA(y))

    W A(x) x(B(x) yC(x, y) ¬ yA(y)) A(x) z(B(z) yC(z, y) ¬ wA(w)) ʢม਺໊ͷஔ͖׵͑ʣ A(x) z(¬B(z) yC(z, y) ¬ wA(w)) ʢˠͷআڈʣ A(x) z(¬B(z) yC(z, y) w¬A(w)) ʢ൱ఆͷಉ஋ࣜʣ z(A(x) (¬B(z) yC(z, y) w¬A(w))) ʢ࿈ݴͷಉ஋ࣜʣ z(A(x) y(¬B(z) C(z, y) w¬A(w))) ʢબݴͷಉ஋ࣜʣ z y(A(x) (¬B(z) C(z, y) w¬A(w))) ʢ࿈ݴͷಉ஋ࣜʣ z y(A(x) w(¬B(z) C(z, y) ¬A(w))) ʢબݴͷಉ஋ࣜʣ z y w(A(x) (¬B(z) C(z, y) ¬A(w))) ʢ࿈ݴͷಉ஋ࣜʣ ף಄બݴඪ४ܗ͸ɺ㱸Λ㱹ͷ্ʹ෼഑͢Ε͹ಘΒΕΔ W z y w((A(x) ¬B(z)) (A(x) C(z, y)) (A(x) ¬A(w)))
  28. ྫɿף಄࿈ݴඪ४ܗ 54 ࣍ͷ੔࿦ཧࣜ8Λף಄࿈ݴඪ४ܗ΁ม׵ͤΑ W A(x) x(B(x) yC(x, y) ¬ yA(y))

    W A(x) x(B(x) yC(x, y) ¬ yA(y)) A(x) z(B(z) yC(z, y) ¬ wA(w)) ʢม਺໊ͷஔ͖׵͑ʣ A(x) z(¬B(z) yC(z, y) ¬ wA(w)) ʢˠͷআڈʣ A(x) z(¬B(z) yC(z, y) w¬A(w)) ʢ൱ఆͷಉ஋ࣜʣ z(A(x) (¬B(z) yC(z, y) w¬A(w))) ʢ࿈ݴͷಉ஋ࣜʣ z(A(x) y(¬B(z) C(z, y) w¬A(w))) ʢબݴͷಉ஋ࣜʣ z y(A(x) (¬B(z) C(z, y) w¬A(w))) ʢ࿈ݴͷಉ஋ࣜʣ z y(A(x) w(¬B(z) C(z, y) ¬A(w))) ʢબݴͷಉ஋ࣜʣ z y w(A(x) (¬B(z) C(z, y) ¬A(w))) ʢ࿈ݴͷಉ஋ࣜʣ ף಄બݴඪ४ܗ͸ɺ㱸Λ㱹ͷ্ʹ෼഑͢Ε͹ಘΒΕΔ W z y w((A(x) ¬B(z)) (A(x) C(z, y)) (A(x) ¬A(w)))
  29. ղऍ w ղऍͱ͸ɺͨͩͷ੔࿦ཧࣜʹҙຯΛ༩͑ΔߦҝɻྖҬɺड़ޠͷҙຯΛܾΊΔɻ w ྫ w 㱼YQ Y ΛɺQ Y

    ͕Y͸ͰׂΓ੾ΕΔͱ͠ɺYͷͱΔྖҬΛ੔਺ͱղऍ͢Δ ͱɺ㱼YQ Y ͸'BMTFͱͳΔ w 㱼Y㱽ZQ Y Z ΛQ Y Z ΛZ͸Yͷ฼਌Ͱ͋Δͱ͠ɺYɺZͷऔΔൣғΛਓؒͱ ͢Δͱɺ͜ͷࣜ͸5SVFͰ͋Δ 56
  30. ؒ઀๏ʹΑΔଥ౰ੑͷূ໌ྫ 62 xA(x) xA(x) ͷଥ౰ੑΛূ໌ͤΑ ¬( xA(x) xA(x)) ͱ͢Δͱ ¬(

    xA(x) xA(x)) ¬(¬ xA(x) xA(x)) ¬¬ xA(x) ¬ xA(x) xA(x) x¬A(x) False Αͬͯໃ६͕ಋ͔Ε xA(x) xA(x) ͸ଥ౰Ͱ͋Δ
  31. نଇ w ݶྔࢠͷআڈ w શশ࣮ମԽنଇ VOJWFSTBMJOTUBOUJBUJPOSVMF6*  w ଘࡏ࣮ମԽنଇ FYJTUFOUJBMJOTUBOUJBUJPOSVMF&*

     w ݶྔࢠͷ෮ݩ w શশ൚Խنଇ VOJWFSTBMHFOFSBMJ[BUJPOSVMF6(  w ଘࡏ൚Խنଇ FYJTUFOUJBMHFOFSBMJ[BUJPOSVMF&( 65
  32. ม਺ஔ׵ग़དྷͳ͍ྫ w 8 Y 㱽ZQ Y Z UZͱͯ͠ɺ8 Y 

    YU Λߟ͑ͯΈΔ w ߲Uதͷม਺Z͕8 Y தͰݶྔ͞Ε͓ͯΓɺͦͷݶྔൣғதʹ͋ΔY͸ࣗ ༝Ͱ͋ΔͨΊɺ8 Y தͷม਺YΛ߲UͰஔ͖׵͑Δ͜ͱ͸ग़དྷͳ͍ w ஔ͖׵͑Λڐ͢ͱ㱽ZQ Z Z ͱͳΔ w Q Y Z ΛZ͸Yͷ਌Ͱ͋Δͱ͢Δͱɺ㱽ZQ Z Z ͸Z͸Zͷ਌Ͱ͋Δͱ ͳͬͯ͠·͏ 67
  33. શশ࣮ମԽنଇʢ6*ʣ 68 xW(x) W(t) ͨͩ͠ɺ t ͸ W(x) தͷ x

    Λࣗ༝ʹஔ׵Մೳ ͨͩ͠ɺ xW(x) W(x) ͱ xW(x) W(c) ͸ৗʹ੒Γཱͭɻ͜͜Ͱ c ͸೚ҙͷఆ਺
  34. ଘࡏ൚Խنଇʢ&(ʣ 69 W(t) xW(x) ͨͩ͠ɺ t ͸ W(x) தͷ x

    Λࣗ༝ʹஔ׵Մೳ ͨͩ͠ɺ W(x) xW(x) ͱ W(c) xW(x) ͸ৗʹ੒Γཱͭɻ͜͜Ͱ c ͸೚ҙͷఆ਺ɻ
  35. طଘఆ਺Ͱ&*Λ࢖͏ࣦഊ 72 ؒҧͬͨূ໌ ਖ਼͍͠ূ໌ 1. x p(x) P 2. y

    q(x) P 3. p(c) 1, EI 4. q(b) 2, EI ະग़ͷఆ਺ΛׂΓ౰ͯΔ . . . 1. x p(x) P 2. y q(x) P 3. p(c) 1, EI 4. q(c) 2, EI ಉ͡ఆ਺ c Λ࢖͍ͬͯΔɻ p(c) ͔ͭ q(c) ͱ͸ݶΒͳ͍ɻ . . . Z Z
  36. લఏதͷࣗ༝ม਺ʹ6(Λద༻͢Δࣦഊ 74 p(x) ¬(x mod 2 = 0) Y͕ࣗવ਺ͰɺQ Y

    ΛY͸ૉ਺Ͱ͋Δͱ͢Δ 1. p(x) P 2. x p(x) 1, UG ਪ࿦Ͱ͖ͳ͍ɻશͯͷࣗવ਺͸ૉ਺Ͱͳ͍ɻ . . .
  37. &*ͰಘΒΕͨ੔࿦ཧࣜதʹ͋Δࣗ༝ม਺ʹ 6(Λద༻͢Δࣦഊ 75 1. x y (x < y) P

    2. y (x < y) 1, UI 3. x < c 2, EI 4. x (x < c) 3, UG ਪ࿦Ͱ͖ͳ͍ લఏ͸ɺ೚ҙͷࣗવ਺YΑΓ΋େ͖ͳࣗવ਺Z͕ଘࡏ͢Δ શͯͷࣗવ਺͸ఆ਺DΑΓখ͍͞͸͓͔͍͠
  38. ܗࣜతূ໌ͷྫ 76 x(A(x) B(x)) x(B(x) C(x)) x(A(x) C(x)) Λূ໌ͤΑ 1.

    x(A(x) B(x)) P 2. x(B(x) C(x)) P 3. A(x) B(x) 1, UI 4. B(x) C(x) 2, UI 5. A(x) C(x) 3, 4, HS 6. x(A(x) B(x)) 5, UG QED 1-6, CP
  39. ดแ w 8Λࣗ༝ม਺Y ʜ YOΛ΋ͭ੔࿦ཧࣜͱ͢Δ w ͜ͷ࣌ɺ㱼Yʜ㱼YOΛ8ͷશশดแͱݺͿ w ·ͨɺ㱽Yʜ㱽YOΛ8ͷଘࡏดแͱݺͿ w

    ྫɿ8㱼YQ Y Z ͷͱ͖ w 㱼Z㱼YQ Y Z ͕8ͷશশดแ w 㱽Z㱼YQ Y Z ͕8ͷଘࡏดแ w ดแΛऔΔͱҙຯ͕มԽ͢Δʂ w Q Y 㱸™Q Z ͸ॆ଍ՄೳͰ͋Δ͕ɺ㱼Y㱼Z Q Y 㱸™Q Z ͸ॆ଍ෆೳ 86
  40. અͱઅܗࣜ w અͱ͸ɺθϩݸҎ্ͷϦςϥϧͷબݴͷ͜ͱ w ྫɿQ Y ɺ™R Y C ɺ™Q

    B 㱹Q C  w ۭઅͱ͸ɺθϩݸͷϦςϥϧͷબݴͷ͜ͱͰ˘Ͱද͢ w અܗࣜͱ͸ɺ͢΂ͯͷݶྔࢠ͕શশݶྔࢠͰɺࣗ༝ม਺ͷͳ͍ף಄࿈ݴඪ४ܗͷ͜ͱ w ྫ w Q Y ͷઅܗࣜ͸ɺ㱼YQ Y  w Q Y 㱸™R Z C ͷઅܗࣜ͸ɺ㱼Y㱼Z Q Y 㱸™R Z C  w અܗࣜͷू߹දݱ w ू߹දݱͰ͸ɺઅܗࣜΛɺ֤جຊબݴͷू߹Ͱද͢ w ྫɿ㱼Y㱼Z Q Y 㱸™R Z C ͸\Q Y ™R Z C ^ͱͳΔ 88
  41. είʔϨϜͷنଇ w ଘࡏݶྔࢠ͕͋Δ੔࿦ཧࣜΛɺઅܗࣜͰද͍ͨ͠ w είʔϨϜͷنଇ w 㱽Y͕શশݶྔࢠͷ༗ޮൣғʹͳ͚Ε͹ɺ৽͍͠ఆ਺DͰYΛஔ͖׵͑Δ w 㱽Y͕શশݶྔࢠ㱼Y ʜ

    㱼YOͷ༗ޮൣғʹ͋Ε͹ɺY ʜ YOΛҾ਺ʹऔΔ৽ ͍ؔ͠਺GͰஔ͖׵͑Δ w ͭ·Γɺ㱽Y8 Y Λɺ8 G Y ʜ YO ͱ͢Δ w ྫɿ㱼Y㱼Z㱽[Q Y Z [ ʹద༻͢Δͱɺ㱼Y㱼ZQ Y Z G Y Z ͱͳΔ 89
  42. είʔϨϜͷΞϧΰϦζϜͷྫ w 㱼Y™Q Y 㱸㱼Z㱽[R Z [ ʹείʔϨϜͷΞϧΰϦζϜΛద༻ͯ͠અܗࣜ ΛٻΊΑ w

    㱼Y㱼Z㱽[ ™Q Y 㱸R Z [ ͱף಄࿈ݴඪ४ܗΛߏ੒ w 㱼Y㱼Z ™Q Y 㱸R Z G Y Z ͱείʔϨϜͷنଇΛద༻ 93
  43. είʔϨϜͷΞϧΰϦζϜͷྫ w 㱼Y™Q Y 㱸㱼Z㱽[R Z [ ʹείʔϨϜͷΞϧΰϦζϜΛద༻ͯ͠અܗࣜ ΛٻΊΑ w

    㱼Y㱼Z㱽[ ™Q Y 㱸R Z [ ͱף಄࿈ݴඪ४ܗΛߏ੒ w 㱼Y㱼Z ™Q Y 㱸R Z G Y Z ͱείʔϨϜͷنଇΛద༻ 94 [͸Zʹ͔͠ґଘ͍ͯ͠ͳ͍ YͱZʹґଘ͢ΔΑ͏ʹͳͬͯ͠·͏
  44. είʔϨϜͷΞϧΰϦζϜͷྫ ઌʹείʔϨϜͷنଇΛద༻͢Δ w 㱼Y™Q Y 㱸㱼Z㱽[R Z [ ʹείʔϨϜͷΞϧΰϦζϜΛద༻ͯ͠અܗࣜ ΛٻΊΑ

    w 㱼Y™Q Y 㱸㱼ZR Z G Z ͱ֤جຊબݴʹείʔϨϜͷنଇΛద༻ w 㱼Y㱼Z ™Q Y 㱸R Z G Z ͱף಄࿈ݴඪ४ܗΛߏ੒ 95
  45. ໋୊ͷಋग़نଇ 97 p q, ¬p r q r ಋग़نଇ SFTPMVUJPOSVMF

    3 p A, ¬p B (A p) (B ¬p) ͜͜Ͱɺ"ɺ#Λબݴඪ४ܗͷ੔࿦ཧࣜͱ͠ɺ"ʔQΛ"͔ΒQͷग़ݱΛऔΓ আ͍ͨ੔࿦ཧࣜɺ#ʔ™QΛ#͔Β™Qͷग़ݱΛऔΓআ͍ͨ੔࿦ཧࣜͱ͢Δ
  46. ಋग़نଇͷূ໌ 98 1. p q P 2. ¬p r P

    3. ¬q p 1, T (ط஌ͷఆཧ͸ T (Theorem) ͱදه) 4. p r 2, T 5. ¬q r 3, 4, HS 6. q r 5, T QED 1-6, CP p q, ¬p r q r
  47. ॆ଍ෆೳͰ͋Δ͜ͱͷূ໌ྫ 100 (¬p q) (p q) (¬q p) (¬p ¬q)

    ͕ॆ଍ෆೳ͋Δ͜ͱΛূ໌ͤΑ 1. ¬p q P 2. p q P 3. ¬q p P 4. ¬p ¬q P 5. q q 1, 2, R 6. q 5, T 7. ¬q ¬q 3, 4, R 8. ¬q 7, T 9. 6, 8, R QED
  48. ड़ޠ࿦ཧͷಋग़ w 㱼Y Q Y 㱸™Q C ͸ॆ଍ෆೳ͔ʁ w Q

    C 㱸™Q C Ͱ͋ΔͷͰॆ଍ෆೳ w ͭ·ΓɺઅܗࣜͰද͢ͱ\Q Y ™Q C ^ͱͳΓɺҰͭ໨ͷϦςϥϧͷม ਺Yʹྑ͍ײ͡Ͱ஋Λ୅ೖ͢Δͱɺಋग़نଇΛ༻͍Δ͜ͱ͕ग़དྷΔ w ม਺ʹྑ͍ײ͡ʹ஋ɺ·ͨ͸ผͷม਺Λ୅ೖ͢ΔͨΊͷํ๏ͱͯ͠ɺ୅ೖ ͱ୯ҰԽͱ͍͏ख๏͕͋Γɺͦͷख๏ʹ͍ͭͯઆ໌͢Δ 101
  49. ߹੒ͷܭࢉ w ͭͷ୅ೖВ\YU ʜ YOUO^ͱМ\ZT ʜ ZNTN^ͷ߹੒ВМ͸ɺҎ ԼͷΑ͏ʹͯ͠ߏ੒Մೳ  ВͷԼࣜʹМΛద༻ͯ͠ɺ\YUМ

    ʜ YOUOМ^Λܭࢉ  Ͱಘͨ߹੒͔ΒɺYJYJͱͳ͍ͬͯΔଋറΛ࡟আ  ZJ͕\Y ʜ YO^தͷม਺Ͱ͋Ε͹ɺМ͔Β͢΂ͯͷZJTJΛ࡟আ  ВМ͸ͱͰಘΒΕΔू߹ͷ࿨ͱͳΔ 104
  50. ߹੒ͷܭࢉྫ w В\YG Z Z[^ɺМ\YB ZC [Z^ͱ͢Δͱ͖ͷВМ  \YG Z

    МɺZ[М^\YG C ZZ^ΛಘΔ  ͷ݁Ռ͔ΒZZΛ࡟আͯ͠\YG C ^ΛಘΔ  М͔ΒYBͱZCΛ࡟আͯ͠ɺ\[Z^ΛಘΔ  ͱͷू߹ͷ࿨ΛऔΓɺВМ\YG C [Z^ΛಘΔ 105
  51. ୯ҰԽͷྫ w \Q Y R Z ^͸୯ҰԽࢠΛ΋ͨͳ͍ w \Q Y

    ™Q Y ^͸୯ҰԽࢠΛ΋ͨͳ͍ w \Q Y Q B ^ͷ୯ҰԽࢠ͸\YB^Ͱ͋Δ w \Q Y Q Z ^ͷ୯ҰԽࢠ͸ແݶʹଘࡏ͢Δ Q͕Ҿ਺ʹ੔਺ΛͱΔ৔߹  w \Y Z^ɺ\Y Z^ɺʜ 108
  52. ࠷൚୯ҰԽࢠ NPTUHFOFSBMVOJpFS NHV w ߲ͷू߹4ͷશͯͷ୯ҰԽࢠЋʹ͍ͭͯɺЋВМͱͳΔ୅ೖМ͕ଘࡏ͢Δ ͳΒɺВΛ4ͷ࠷൚୯ҰԽࢠͱΑͿ 110 ߲ͷू߹4 ࠷൚୯ҰԽࢠͷ ద༻݁Ռ

    ͦͷଞͷ୯ҰԽ ͷద༻݁Ռ ͦͷଞͷ୯ҰԽ ͷద༻݁Ռ ͦͷଞͷ୯ҰԽ ͷద༻݁Ռ 4В 4ВМ 4ВМ 4ВМO 4Ћ 4Ћ 4ЋO 4Ћ 4ВМ
  53. ࠷൚୯ҰԽࢠͷྫ w \Q Y Q Z ^ͷ࠷൚୯ҰԽࢠ͸ɺВ\YZ^Ͱ͋Δ w \Q Y

    Q Z ^\Y Z^\Q  ^͸ɺ\Q Y Q Z ^\YZ^\Z^\Q  ^ͱग़དྷΔ w \Q Y Q Z ^\Y Z^\Q  ^͸ɺ\Q Y Q Z ^\YZ^\Z^\Q  ^ͱग़དྷΔ 111
  54. ෆҰகू߹ͷྫ w 4\Q Y G Y Z Q Y Z

    [ Q Y G B C ^ͷෆҰகू߹ΛٻΊΑ w 4தͷ࠷௕ڞ௨෦෼จࣈྻ͸ɺlQ Y zͰ͋Δ w lQ Y zͷӈଆͷ߲͸ɺG Y ɺZɺG B Ͱ͋ΔͷͰɺෆҰகू߹͸
 \G Y Z G B ^ͱͳΔ 113
  55. ϩϏϯιϯͷ୯ҰԽΞϧΰϦζϜ w ࠷൚୯ҰԽࢠ͸ҎԼͷΑ͏ʹͯ͠ߏ੒Մೳ w ೖྗɿૉ࿦ཧࣜͷ༗ݶू߹4 w ग़ྗɿ4ͷ࠷൚୯ҰԽࢠɺ΋͘͠͸4୯ҰԽෆೳͰ͋Δͱͷએݴ w ΞϧΰϦζϜ 

    L ВЏ\^ͱઃఆͯ͠ɺεςοϓ΁  4ВLΛܭࢉ͠ɺ݁Ռ͕୯߲ू߹Ͱ͋Ε͹ВLΛ4ͷ࠷൚୯ҰԽࢠͰ͋Δͱͯ͠ܭࢉΛऴྃɻͦ ͏Ͱͳ͚Ε͹ɺ%LΛ4ВLͷෆҰகू߹ͱͯ͠εςοϓ΁  %L͕ม਺Wͱ߲UΛؚΈɺW͕Uதʹग़ݱ͠ͳ͍ͳΒ͹ɺ߹੒ВL ВL\WU^Λܭࢉ͠ɺ
 LL ͱઃఆͯ͠εςοϓ΁ɻͦ͏Ͱͳ͚Ε͹ɺ4͸୯ҰԽෆೳͰ͋Δͱͯ͠ܭࢉΛऴྃ 114
  56. ࠷൚୯ҰԽࢠΛٻΊΔྫ w 4\Q Y G Z Q H Z [

    ^ͷ࠷൚୯ҰԽࢠΛٻΊΑ  ВЏ  4В4Џ4Ͱ4͸୯߲ू߹Ͱͳ͍ͷͰܭࢉଓߦɻ%\Y H Z ^ͱܭࢉ  ม਺Y͸ɺ%ͷ߲H Z தʹग़ݱ͠ͳ͍ͷͰܭࢉଓߦ
 ВВ\YH Z ^\YH Z ^ͱܭࢉ  4В\Q H Z G Z Q H Z [ ^͸୯߲ू߹Ͱͳ͍ͷͰܭࢉଓߦ
 %\G Z [^ͱܭࢉ  ม਺[͸ɺ%ͷ߲G Z தʹग़ݱ͠ͳ͍ͷͰܭࢉଓߦ
 ВВ\[G Z ^\YH Z [G Z ^ͱܭࢉ  4В\Q H Z G Z ^͸୯߲ू߹ͳͷͰɺ࠷൚୯ҰԽࢠΛВ\YH Z [G Z ^ͱͯ͠ܭࢉऴྃ 115
  57. ୯ҰԽͰ͖ͳ͍৔߹ͷྫ w 4\Q Y Q H Y ^ͷ࠷൚୯ҰԽࢠٻΊΑ  ВЏ

     4В4Џ4Ͱ୯߲ू߹Ͱͳ͍ͨΊଓߦɻ%\Y H Y ^ͱ͢Δ  %தͷ߲H Y தʹม਺Y͕͋ΔͨΊ୯ҰԽෆೳͱͯ͠ܭࢉऴྃ w ͭ·Γɺ4В\Q H Y Q H H Y ^ɺ4В\Q H H Y Q H H H Y ^ʜ ͱͳΓܭࢉ͕ऴΘΒͣɺ୯ҰԽ͸Ͳ͏΍ͬͯ΋ग़དྷͳ͍ 116
  58. અͷಋग़نଇͷద༻Մೳ৚݅ w ಋग़نଇ͕ద༻Մೳͳͱ͖ w ͭͷઅ͸ม਺Λڞ༗͠ͳ͍ w ૉ࿦ཧࣜͷू߹\- ʜ -L .

    ʜ .O^͕୯ҰԽՄೳͰɺ
 - ʜ -L͕Ұํͷઅʹ͋Γɺ™. ʜ ™.O͕΋͏Ұํͷઅʹ͋Δ 118
  59. અͷಋग़نଇ w ू߹\- ʜ -L . ʜ .O^͕୯ҰԽՄೳͰɺВΛ͜ͷू߹ͷ࠷൚୯ҰԽࢠͱ͢Δͱɺ
 ੔࿦ཧࣜ-㱹ʜ㱹-L㱹$ͱɺ™.㱹ʜ㱹™.O㱹%͔Β
 $Вʔ/

    㱹 %Вʔ/ ͕ಋ͚Δɻ
 ͨͩ͠ɺ͜͜Ͱ/-JВ.KВͰɺ$Вʔ/ͱ%Вʔ/͸ɺ$В·ͨ͸%В͔Β/ͷग़ݱΛ औΓআ͍ͨ੔࿦ཧࣜͱͳΔ
 ͢ͳΘͪɺ 119 L1 · · · Lk C, ¬M1 · · · ¬Mn D (C N) (D N)
  60. અͷಋग़نଇͷྫ w R C Y 㱹Q Y 㱹R C B

    ͱɺ™R Z B 㱹Q Z ͷͭͷઅͷಋग़نଇΛٻΊΑ w ͭ໨ͷࣜR C Y ɺR C B ͱɺͭΊͷࣜͷR Z B ͕୯ҰԽՄೳͰ࠷൚ ୯ҰԽࢠ͸В\YB ZC^ͱͳΓɺ୯ҰԽ݁Ռ͸R C B ͱͳΔ w ͭ໨ͷ͔ࣜΒR C B ͱͳΔૉ࿦ཧࣜΛ࡟আͯ͠୯ҰԽͨ݁͠Ռ͕ɺ Q Y ВQ B ͱͳΔ w ಉ༷ʹɺͭΊͷ͔ࣜΒ͸Q Z ВQ C ͱͳΔ w ಋग़نଇΑΓQ B 㱹Q C ͱ͍͏৽ͨͳઅ͕ಘΒΕΔ 120
  61. ಋग़Λ༻͍ͨఆཧূ໌ͷྫ ͷલʹ༻ޠͷઆ໌ w 㱼B C D㱨9ʹؔ͢Δೋ߲ؔ܎3ʹ͍ͭͯ w ൓ࣹؔ܎ w B3B͕੒ΓཱͭͳΒ͹൓ࣹతɺ੒Γཱͨͳ͍ͳΒඇ൓ࣹత

    w ྫɿBB͸൓ࣹతɺBB͸ඇ൓ࣹత w ਪҠؔ܎ w B3CɺC3Dͷͱ͖ʹB3D͕੒ΓཱͭͳΒਪҠతɺͦ͏Ͱͳ͍ͳΒඇਪҠత w ྫɿBC CD͸BDͱ੒ΓཱͭͷͰ͸ਪҠతɺB㱠CɺC㱠D͸ඇਪҠత w ରশؔ܎ w B3Cͷͱ͖ʹɺC3B͕੒ΓཱͭͳΒରশతɺͦ͏Ͱͳ͍ͳΒඇରশత w ྫɿBC͸ରশతɺBC͸ඇରশత 123
  62. ಋग़Λ༻͍ͨఆཧূ໌ͷྫ w ඇ൓ࣹతɿ㱼Y™Q Y Y  w ਪҠతɿ㱼Y㱼Z㱼[ Q Y

    Z 㱸Q Z [ ˠQ Y [  w ඇରশతɿ㱼Y㱼Z Q Y Z ˠ™Q Z Y  w ೋ߲ؔ܎͕ඇ൓ࣹత͔ͭਪҠతͳΒ͹ɺඇରশతͰ͋Δ͜ͱΛূ໌ͤΑ 124 W = ඇ൓ࣹత ਪҠత ඇରশతɹͳͷͰ ¬W = ඇ൓ࣹత ਪҠత ¬ඇରশతɹͱͳΔ ͜͜Ͱɺ¬ඇରশత = ¬ x y(p(x, y) ¬p(y, x)) = x y¬(p(x, y) ¬p(y, x)) = x y(p(x, y) p(y, x)) ؔ܎ ੔࿦ཧࣜ અܗࣜ ඇ൓ࣹత x¬p(x, x) ¬p(x, x) ਪҠత x y z(p(x, y) p(y, z) p(x, y)) ¬p(u, v) ¬p(v, w) p(u, w) ¬ඇରশత x y(p(x, y) p(y, x)) p(a, b) ͱ p(b, a) ͳͷͰɺઅܗࣜ͸ҎԼͷΑ͏ʹͳΔ [
  63. ೋ߲ؔ܎͕ඇ൓ࣹత͔ͭਪҠతͳΒ͹ ඇରশతͰ͋Δ͜ͱͷূ໌ 125 1. ¬p(x, x) P 2. ¬p(u, v)

    ¬p(v, w) p(u, w) P 3. p(a, b) P 4. p(b, a) P 5. ¬p(x, v) ¬p(v, x) 1, 2, R, {u/x, w/x} 6, ¬p(b, a) 3, 5, R, {x/a, v/b} 7. 4, 6, R, {} QED
  64. 5JOZ.-ͷߏจ w આ໌Λ؆୯ʹ͢ΔͨΊɺ.-෩ͷߏจΛ࣋ͭ5JOZ.-Λར༻ͯ͠આ໌ 130 EXPR := VAR | NUM |

    BOOL | FUN | CALL | LET | FIX | IF VAR := alphabet (alphabet | num)* NUM := number BOOL := true | false FUN := fun VAR = EXPR . CALL := EXPR EXPR LET := let VAR = EXPR in EXPR . FIX := fix VAR = EXPR . IF := if EXPR then EXPR else EXPR .
  65. pYࣜʢෆಈ఺ίϯϏωʔλʣ w ࠶ؼΛදͨ͢Ίʹ༻͍Δ w ఆٛɿpYGG pYG  w ྫɿ֊৐ܭࢉ 131

    fix factorial = fun n = if n == 0 then 1 else n * factorial(n - 1). . .
  66. ܕม਺ͷܕ w ܕม਺΋ܕΛ࣋ͭ w ܕม਺ͷܕ w ੔਺ܕɿJOUͱදهɻ੔࿦ཧࣜͰݴ͏ఆ਺஋ʹ૬౰ w ਅِ஋ܕɿCPPMͱදهɻ੔࿦ཧࣜͰݴ͏ఆ਺஋ʹ૬౰ w

    ؔ਺ܕɿABˠACͱදهɻABͱ͍͏ܕΛҾ਺ʹͱΓɺACͱ͍͏ܕͷ஋Λฦ͢ ؔ਺ͱ͍͏ҙຯɻ੔࿦ཧࣜͰॻ͘ͱɺQ AB AC ͱॻ͚Δ w JOUˠCPPMͳΒɺ੔਺஋ΛͱΓɺਅཧ஋Λฦؔ͢਺ 133
  67. ܕ؀ڥ 134 if flag then let var1 = func1 a

    in mul var1. else let var2 = func2 b in pow var2. . { flag: `flag, var1: `var1, func1: `func1, a: `a, mul: `mul, var2: `var2, func2: `func2, b: `b, pow: `pow } wϓϩάϥϜதͷม਺ͱܕͷϚοϐϯάΛߦ͏ܕ ؀ڥΛܕਪ࿦தʹར༻ wܕ؀ڥதͷܕม਺Λɺܕਪ࿦தʹߋ৽͍ͯ͘͠ ϓϩάϥϜ ܕ؀ڥ
  68. ม਺ͷUZQJOHؔ਺ w UZQJOHม਺ͷ৔߹ w طʹͦͷม਺͕ܕ؀ڥʹ͋Δͱ͖ɺܕ؀ڥதͷ஋Λฦ͢ w ܕ؀ڥதʹແ͍ม਺ͷͱ͖ɺ৽ͨͳܕม਺AUΛܕ؀ڥʹ௥Ճͯ͠ɺAU Λฦ͢ w ྫɿܕ؀ڥ͕ӈਤͷ৔߹ʢ্͕ॳظ஋ʣ

    w UZQJOHWBS͸ɺJOUΛฦ͢ w UZQJOHWBS͸ɺAUΛฦ͢ w UZQJOHWBS͸ɺ৽ͨͳܕม਺AUΛܕ؀ڥதʹ௥Ճͯ͠ɺAUΛฦ͢ 137 { var1: int, var2: `t } ܕ؀ڥ { var1: int, var2: `t, var3: `t1 } UZQJOHWBS
  69. JGࣜͷUZQJOHؔ਺ w UZQJOHJGࣜUIFOࣜFMTFࣜͷ৔߹  ࣜʹରͯ͠UZQJOHࣜΛٻΊΔ  UZQJOHࣜͷฦΓ஋ͱɺ੔਺஋CPPMͰ୯ҰԽ͠ɺͦͷ࠷൚୯ҰԽࢠͰܕ؀ڥʹ୅ ೖΛߦ͏ɻ୯ҰԽͰ͖ͳ͍৔߹͸Τϥʔ  UZQJOHࣜͱUZQJOHࣜΛٻΊΔ

     UZQJOHࣜͱUZQJOHࣜͷ݁Ռʹରͯ͠୯ҰԽ͠ɺͦͷ࠷൚୯ҰԽࢠͰܕ؀ڥʹ୅ ೖΛߦ͏ɻ୯ҰԽͰ͖ͳ͍৔߹͸Τϥʔ  UZQJOHࣜʹͷ࠷൚୯ҰԽࢠΛ୅ೖͨ͠ܕΛฦ͢ 138
  70. ྫɿJGࣜͷUZQJOHؔ਺ w JGWBSUIFOYFMTFZͷ৔߹  UZQJOHWBSͷ݁Ռɺܕ؀ڥ͕\WBSAU^ͱͳΓɺܕม਺AU͕ฦͬͯ͘Δ  AUͱCPPMͰ୯ҰԽ͠ɺ࠷൚୯ҰԽࢠ͕\AUCPPM^ͱͳΔɻ
 ·ͨɺܕ؀ڥ͸\WBSAU\AUCPPM^^\WBSCPPM^ͱͳΔɻ  UZQJOHYͱUZQJOHZͷ݁Ռɺܕม਺AYͱܕม਺AZ͕ฦͬͯ͘Δɻ


    ·ͨɺܕ؀ڥ͸\WBSCPPM YAY ZAZ^ͱͳΔɻ  AYͱAZͰ୯ҰԽ͢Δͱ࠷൚୯ҰԽࢠ͕\AYAZ^ͱͳΔɻ
 ܕ؀ڥ͸ɺ\WBSCPPM\AYAZ^ YAY\AYAZ^ ZAZ\AYAZ^^\WBSCPPM YAZ ZAZ^  AY\AYAZ^AZΛ݁Ռͱͯ͠ฦ͢ 139