Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
5分ちょいでわかった気になるラムダアーキテクチャ
Search
Sponsored
·
SiteGround - Reliable hosting with speed, security, and support you can count on.
→
yubessy
August 28, 2017
Programming
0
2.3k
5分ちょいでわかった気になるラムダアーキテクチャ
社内勉強会用資料です
yubessy
August 28, 2017
Tweet
Share
More Decks by yubessy
See All by yubessy
DDIA (Designing Data-Intensive Applications) はいいぞ
yubessy
0
1.5k
Introduction to CircleCI
yubessy
1
120
Docker Hands-on
yubessy
0
110
Resource Polymorphism
yubessy
0
300
不動点コンビネータ?
yubessy
0
300
とりあえず機械学習したかった
yubessy
0
340
Scala Native
yubessy
0
220
Type Erasure と Reflection のはなし
yubessy
1
470
量子暗号
yubessy
0
230
Other Decks in Programming
See All in Programming
AIと一緒にレガシーに向き合ってみた
nyafunta9858
0
260
React 19でつくる「気持ちいいUI」- 楽観的UIのすすめ
himorishige
11
7.5k
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
230
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
150
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
440
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
20260127_試行錯誤の結晶を1冊に。著者が解説 先輩データサイエンティストからの指南書 / author's_commentary_ds_instructions_guide
nash_efp
1
1k
24時間止められないシステムを守る-医療ITにおけるランサムウェア対策の実際
koukimiura
1
130
CSC307 Lecture 08
javiergs
PRO
0
670
AI & Enginnering
codelynx
0
120
生成AIを活用したソフトウェア開発ライフサイクル変革の現在値
hiroyukimori
PRO
0
110
Featured
See All Featured
Accessibility Awareness
sabderemane
0
57
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
2.1k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
Self-Hosted WebAssembly Runtime for Runtime-Neutral Checkpoint/Restore in Edge–Cloud Continuum
chikuwait
0
340
Amusing Abliteration
ianozsvald
0
110
How to train your dragon (web standard)
notwaldorf
97
6.5k
Why Our Code Smells
bkeepers
PRO
340
58k
A Modern Web Designer's Workflow
chriscoyier
698
190k
Being A Developer After 40
akosma
91
590k
Balancing Empowerment & Direction
lara
5
900
Odyssey Design
rkendrick25
PRO
1
500
How STYLIGHT went responsive
nonsquared
100
6k
Transcript
5分ちょいでわかった気になる ラムダアー キテクチャ @yubessy 0x64 物語 Reboot #06 " システムアー
キテクチャ"
Lambda Architecture
Lambda Architecture ≠
ラムダアー キテクチャとは? = ビッグデー タ処理システムの設計指針 例えるなら: Web アプリの設計指針 -> MVC
ビッグデー タ処理システムの設計指針 -> ラムダアー キテクチャ 提唱者: Nathan Marz Apache Storm の開発者
ビッグデー タの例 ログ 最新の状態だけでなく過去の全事象を記録 -> 時間に対して線形にデー タ量が増加 ソー シャルネットワー ク
ユー ザ同士がサー ビス内でつながる -> ユー ザ数 n に対して O(n^2) の関係デー タ
ビッグデー タ処理システムの例 デー タ分析基盤 デー タドリブンな意思決定を支援する アドホックなクエリにも答えなければならない 機械学習基盤 デー タから直接サー
ビスや機能を創り出す 非常に大きな計算量が必要となる
ビッグデー タ処理の課題 スケー ラビリティ デー タ増に応じてリソー スを追加 RDB では処理能力が追いつかない 堅牢性
デー タ量が多いと耐障害性を保ちにくい 汎用性 どんな処理が実行されるか事前に予想しにくい
登場背景 従来の状況 個別の課題を対処療法的に解決 -> トレー ドオフによるいたちごっこ -> プロジェクト毎に同じ仕事の繰り返し ラムダアー キテクチャ
課題を整理・ 一般化し、 それらを包括的に解決 -> トレー ドオフを統制下に置く -> 一般的な枠組みに昇華
原理 全ての処理はデー タ集合に対するクエリである KPI 分析もレコメンド生成もデー タ集合から 価値を生み出す計算(= クエリ) とみなす クエリはデー
タに対する関数である 関数は必要に応じて分割・ 合成できる -> 計算フロー を垂直・ 水平に分割できる
全貌 https://dzone.com/articles/lambda-architecture-with-apache- spark
全貌 バッチ層 過去からの全デー タをマスタデー タ化して蓄積 マスタデー タからバッチビュー を生成 スピー ド層
生デー タを低レイテンシのストリー ムに流す ストリー ムからリアルタイムビュー を生成 サー ビス層 2つのビュー からクエリの結果を計算
マスタデー タ
マスタデー タ 永続性を必要とする唯一のデー タストア ビュー が失われてもマスタデー タから再生成可 純粋な事実デー タのみを追記方式で記録 他の値から導出できる値は保持しない
削除・ 更新を行わない(≠RDB のテー ブル) 分散ファイルシステム(HDFS, S3 等) を利用 スキー マを強制できるフォー マットを利用
バッチビュー・ リアルタイムビュー
バッチビュー・ リアルタイムビュー 計算量の多いクエリのために事前計算を行う e. g. アクセスログの時間毎・ 日毎の集計値 バッチビュー マスタデー タに定期的なバッチ処理を実行
MapReduce, Apache Spark などを利用 リアルタイムビュー 生デー タをストリー ム集計 Apache Storm, Amazon Kinesis などを利用
ラムダアー キテクチャの利点 クエリの計算フロー を2層に分けることで 様々 なトレー ドオフを回避 正確性 <-> レイテンシ
クエリの自由度 <-> 計算量 永続性をマスタデー タのみに求めることで 堅牢性とスケー ラビリティを両立 冗長化が容易 DB サー バ管理が不要
Livesense Analytics と Lambda Architecture アクセスログテー ブルの生成バッチで導入 マスタデー タ (S3)
( ユー ザID, タイムスタンプ, URL) のみを保持 バッチビュー (Spark on EMR) visit_id や page_type などはこちらで生成 リアルタイムビュー: 作ってない 詳しくは↓ で デー タ分析を支える「 便利カラム」 の問題点と その解決策 - LIVESENSE made*
Livesense Analytics と Lambda Architecture
まとめ だいたいこの本に書いてる
参考 Lambda Architecture » λ lambda-architecture.net Lambda Architecture with Apache
Spark - DZone Big Data O'Reilly Japan - スケー ラブルリアルタイムデー タ 分析入門