Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: A Persona-Based Neural Conversation Model
Search
Yumeto Inaoka
February 28, 2018
Science
0
340
文献紹介: A Persona-Based Neural Conversation Model
2018/02/28の文献紹介で発表
Yumeto Inaoka
February 28, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
190
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
240
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
160
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
170
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
160
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
280
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
340
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
Other Decks in Science
See All in Science
Ignite の1年間の軌跡
ktombow
0
150
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
610
データベース06: SQL (3/3) 副問い合わせ
trycycle
PRO
1
620
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
240
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
600
知能とはなにかーヒトとAIのあいだー
tagtag
0
120
Accelerated Computing for Climate forecast
inureyes
PRO
0
120
Symfony Console Facelift
chalasr
2
470
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1k
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
1.5k
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
320
Explanatory material
yuki1986
0
400
Featured
See All Featured
Speed Design
sergeychernyshev
32
1.1k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
3.1k
Git: the NoSQL Database
bkeepers
PRO
431
66k
How to Ace a Technical Interview
jacobian
279
23k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
How to train your dragon (web standard)
notwaldorf
96
6.2k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
GraphQLとの向き合い方2022年版
quramy
49
14k
Making the Leap to Tech Lead
cromwellryan
135
9.5k
Writing Fast Ruby
sferik
628
62k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
Transcript
A Persona-Based Neural Conversation Model Jiwei Li, Michel Galley, Chris
Brockett, Georgios Spithourakis, Jianfeng Gao, and Bill Dolan. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 994 - 1003, 2016. จݙհ` Ԭٕज़ՊֶେֶɹࣗવݴޠॲཧݚڀࣨɹҴԬເਓ
"CTUSBDU wऀҰ؏ੑͷΛѻ͏ฦੜϞσϧ wܦྺελΠϧͷΑ͏ͳݸੑΛೖྗʹՃ wQFSQMFYJUZ #-&6ͷ྆ํͰੑೳ্͕ wਓखධՁͰҰ؏ੑʹ͓͍ͯੑೳ্͕ 2
*OUSPEVDUJPO wେྔͷਓؒରਓؒͷରʹΑΔࣗવͳରγεςϜͷ ߏங͕ΛूΊ͍ͯΔ w܇࿅σʔλͷදతͳฦΛฦ͕͋͢Δ ˠͦͷΑ͏ͳฦͷ͕ߴ͘ͳΓ͍ͨ͢Ί wໃ६ͨ͠ฦΛฦ͢͜ͱ͕͋Δ wຊจͰҰ؏ੑͱݸੑͷʹ͍ͭͯऔΓΉ 3
*OUSPEVDUJPO wେྔͷਓؒରਓؒͷରʹΑΔࣗવͳରγεςϜͷ ߏங͕ΛूΊ͍ͯΔ w܇࿅σʔλͷදతͳฦΛฦ͕͋͢Δ ˠͦͷΑ͏ͳฦͷ͕ߴ͘ͳΓ͍ͨ͢Ί wໃ६ͨ͠ฦΛฦ͢͜ͱ͕͋Δ wຊจͰҰ؏ੑͱݸੑͷʹ͍ͭͯऔΓΉ 4
*OUSPEVDUJPO wେྔͷਓؒରਓؒͷରʹΑΔࣗવͳରγεςϜͷ ߏங͕ΛूΊ͍ͯΔ w܇࿅σʔλͷදతͳฦΛฦ͕͋͢Δ ˠͦͷΑ͏ͳฦͷ͕ߴ͘ͳΓ͍ͨ͢Ί wໃ६ͨ͠ฦΛฦ͢͜ͱ͕͋Δ wຊจͰҰ؏ੑͱݸੑͷʹ͍ͭͯऔΓΉ 5
ؔ࿈ݚڀ w3JUUFSΒ ౷ܭతػց༁ͷͱͯ͠औΓΜͩ w4FSCBOΒ ରཤྺͷґଘؔΛิ͢Δ͜ͱΛ తͱͨ͠֊తFODPEFSEFDPEFSϞσϧΛఏҊ w-JΒ
యܕతԠͷׂ߹ΛݮΒͨ͢Ίʹ ࠷େ .-& Ͱͳ͘૬ޓใྔ ..* Λతؔͱ͢Δ TFRTFRγεςϜΛఏҊ 6
ఏҊϞσϧ 7
ఏҊϞσϧ wதؒϢχοτʹ-45.Λ༻͍ͨ3// w࠷ޙͷग़ྗΛ%FDPEFSʹ͢ 8 &ODPEFS
ఏҊϞσϧ wதؒϢχοτʹ-45.Λ༻͍ͨ3// w&ODPEFSͷग़ྗΛ%FDPEFSʹೖྗ w4QFBLFS&NCFEEJOHΛ֤ӅΕͰՃࢉ 9 %FDPEFS
ఏҊϞσϧ w4QFBLFS.PEFM ฦऀͷݸੑͷΈΛߟྀ 4QFBLFS&NCFEEJOHΛೖྗ w4QFBLFS"EESFTTFF.PEFM ฦऀͱฉ͖खͷ྆ํΛߟྀ ԼࣜͰ4QFBLFS&NCFEEJOHΛ߹ 10
%FDPEJOHBOE3FSBOLJOH ɹ.ೖྗจɹ3ฦจɹc3cฦจ ɹW4QFBLFS*%ɹЕ Ѝௐύϥϝʔλ w#FBN4FBSDI࣌ʹ্ࣜͷධՁؔͰ3FSBOLJOHΛߦ͏ wయܕతͰͳ͍͘จ͕༏ઌ͞ΕΔ wɹɹɹɹɹ3͔Β.Λग़ྗ͢ΔTFRTFRΛֶशͯ͠ܭࢉ 11
σʔληοτ w5XJUUFS1FSTPOB%BUBTFU ݄͔Βϲ݄ͷ5XJUUFS'JSF)PTFΛ༻ ظؒʹճҎ্λʔϯͷձΛͨ͠Ϣʔβʹݶఆ ϢʔβʹΑΔ ͷձؚ͕·ΕΔ ಉϢʔβʹΑΔ݄͔Βϲ݄ͷձΛ ͣͭ։ൃ
ݕূ ςετηοτͱͯ͠ઃఆ ฦऀͷ4QFBLFS*%ͷΈ͕ೖ͍ͬͯΔͨΊ4QFBLFS.PEFM ͷΈʹར༻ 12
σʔληοτ w5XJUUFS4PSEPOJ%BUBTFU 4PSEPOJ ैདྷͷ405"ͱͷൺֱͷͨΊʹ༻ ςετηοτͷΈ༻ ͷձσʔλ ͭͷೖྗจʹରͯ͠࠷େݸͷฦ
ˠ5XJUUFS1FSTPOB%BUBTFUͱͷ#-&6ͷൺֱͰ͖ͳ͍ 13
σʔληοτ w5FMFWJTJPO4FSJFT5SBOTDSJQUT%BUB 57γϦʔζl'SJFOETz l5IF#JH#BOH5IFPSZzͷࣈນ ਓͷओཁਓʹΑΔ ͷձ ͏ͪ։ൃ ςετηοτͱͯͦ͠ΕͧΕ ༻ w0QFO4VCUJUMFT
ϊΠζΛؚΉ.ʙ.ͷࣈນσʔληοτ 5FMFWJTJPO4FSJFT5SBOTDSJQUT%BUBͷن͕খ͍ͨ͞Ί ຊσʔληοτͰυϝΠϯదԠΛߦ͏ 14
ֶशͷৄࡉ wMBZFS-45. w IJEEFODFMMTGPSFBDIMBZFS w#BUDITJ[F w-FBSOJOHSBUF w<>ͷҰ༷ͰύϥϝʔλΛॳظԽ w5ISFTIPMEGPSHSBEJFOUDMJQQJOH w7PDBCVMBSZTJ[F
w%SPQPVUSBUF w#FBNTJ[F 15
݁Ռ w5XJUUFS4PSEPOJEBUBTFUʹ͓͚ΔධՁ w.5CBTFMJOF4.5ʹΑΔख๏ wPVSTZTUFN5XJUUFS1FSTPOB%BUBTFUͰֶशͨ͠ͷ wֶशίʔύεͷن %SPQPVUͷ༻ ରϢʔβͷબผ͕ վળͷཧ༝ͱߟ͑ΒΕΔ 16
݁Ռ w5XJUUFS1FSTPOBEBUBTFUʹ͓͚ΔධՁ w.-&ͷ߹ ..*ͷ߹ ͷվળ wఏҊख๏..*ΑΓ.-&ʹΑΓ༗ӹ 17
݁Ռ w57TFSJFTσʔληοτʹ͓͚ΔධՁ w4QFBLFS.PEFM 4QFBLFS"EESFTTFF.PEFMͷ͍ͣΕ #-&6είΞΛ্ͤ͞Δ wఏҊ͢ΔͭͷϞσϧͷؒʹେ͖ͳҧ͍ͳ͍ ˠਓͷύλʔϯ͕ัଊͰ͖ΔఔσʔλαΠζ͕େ͖͘ͳ͍ 18
݁Ռ w5XJUUFS1FSTPOB%BUBTFUͷ։ൃσʔλͱ 57TFSJFTEBUBTFUͰͦΕͧΕQFSQMFYJUZΛൺֱ w5XJUUFSͷํ͕ߴ͘ͳΔͷϊΠζͷͨΊͱߟ͑ΒΕΔ 19
݁Ռ wϥϯμϜʹਓͷ4QFBLFS&NCFEEJOHΛ 4QFBLFS.PEFMʹೖྗ 20
݁Ռ w4QFBLFS"EESFTTFF.PEFM ͷධՁ wฦऀʹහײͰ͋Δ͜ͱ͕ ୯ޠ͔Β͔Δ wlIJNz͔ΒੑผΛਖ਼͘͠ ೝ͍ࣝͯ͠Δ͜ͱ͕͔Δ 21
ਓखධՁ wΫϥυιʔγϯάΛͬͯग़ྗΛධՁ w4QFBLFS*%ຖʹग़ྗ͕Ұ؏͍ͯ͠Δ͔Λ࣮ݧ wϕʔεϥΠϯͱ1FSTPOB.PEFMͷग़ྗΛൺֱͯ͠ ʮҰ؏͍ͯ͠Δʯ ʮҰ؏͍ͯ͠Δʯ ಉఔͰ͋Δ߹ͷείΞΛ͚Δ
wਓͷධՁऀͷείΞΛฏۉ͠ɺͷ࠶ׂΛߦ͏ 22
ਓखධՁ݁Ռ wಉఔͷ߹Λແࢹ͢Δͱɺͷࣄྫʹ͓͍ͯ 1FSTPOB.PEFM͕ʮҰ؏͍ͯ͠ΔʯʮҰ؏͍ͯ͠Δʯ ͱఆ͞Εͨ wʮҰ؏͍ͯ͠ΔʯΛແࢹ͢Δͱɺ1FSTPOB.PEFM͕ ࣄྫͷͰ༏ҐͱͳΓɺϕʔεϥΠϯʹཹ·Δ 23
࣮ࡍͷग़ྗࣄྫ 24
࣮ࡍͷग़ྗࣄྫ 25
݁ w1FSTPOBCBTFEͷԠੜϞσϧΛఏࣔ w#-&6 QFSQMFYJUZ Ұ؏ੑͷਓखධՁʹ͓͍ͯ ܶతͰͳ͍ͷͷϕʔεϥΠϯΛ্ճΔ݁Ռ wฦऀฉ͖खͷਓΛೖྗ͢Δ͜ͱʹϝϦοτ͕͋Δ͜ͱ ͕4QFBLFS"EESFTTFFϞσϧͷ݁ՌͰࣔ͞Εͨ 26