Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: A Persona-Based Neural Conversation Model
Search
Yumeto Inaoka
February 28, 2018
Science
0
350
文献紹介: A Persona-Based Neural Conversation Model
2018/02/28の文献紹介で発表
Yumeto Inaoka
February 28, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
190
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
240
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
160
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
350
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
Other Decks in Science
See All in Science
データベース08: 実体関連モデルとは?
trycycle
PRO
0
970
データから見る勝敗の法則 / The principle of victory discovered by science (open lecture in NSSU)
konakalab
1
210
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.4k
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.5k
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
430
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
500
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
970
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
1
200
ランサムウェア対策にも考慮したVMware、Hyper-V、Azure、AWS間のリアルタイムレプリケーション「Zerto」を徹底解説
climbteam
0
160
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
1
210
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
200
データベース04: SQL (1/3) 単純質問 & 集約演算
trycycle
PRO
0
1k
Featured
See All Featured
How to Think Like a Performance Engineer
csswizardry
28
2.3k
Testing 201, or: Great Expectations
jmmastey
46
7.7k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
37
2.6k
4 Signs Your Business is Dying
shpigford
186
22k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.5k
What's in a price? How to price your products and services
michaelherold
246
12k
How STYLIGHT went responsive
nonsquared
100
5.9k
Embracing the Ebb and Flow
colly
88
4.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
355
21k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Automating Front-end Workflow
addyosmani
1371
200k
Transcript
A Persona-Based Neural Conversation Model Jiwei Li, Michel Galley, Chris
Brockett, Georgios Spithourakis, Jianfeng Gao, and Bill Dolan. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 994 - 1003, 2016. จݙհ` Ԭٕज़ՊֶେֶɹࣗવݴޠॲཧݚڀࣨɹҴԬເਓ
"CTUSBDU wऀҰ؏ੑͷΛѻ͏ฦੜϞσϧ wܦྺελΠϧͷΑ͏ͳݸੑΛೖྗʹՃ wQFSQMFYJUZ #-&6ͷ྆ํͰੑೳ্͕ wਓखධՁͰҰ؏ੑʹ͓͍ͯੑೳ্͕ 2
*OUSPEVDUJPO wେྔͷਓؒରਓؒͷରʹΑΔࣗવͳରγεςϜͷ ߏங͕ΛूΊ͍ͯΔ w܇࿅σʔλͷදతͳฦΛฦ͕͋͢Δ ˠͦͷΑ͏ͳฦͷ͕ߴ͘ͳΓ͍ͨ͢Ί wໃ६ͨ͠ฦΛฦ͢͜ͱ͕͋Δ wຊจͰҰ؏ੑͱݸੑͷʹ͍ͭͯऔΓΉ 3
*OUSPEVDUJPO wେྔͷਓؒରਓؒͷରʹΑΔࣗવͳରγεςϜͷ ߏங͕ΛूΊ͍ͯΔ w܇࿅σʔλͷදతͳฦΛฦ͕͋͢Δ ˠͦͷΑ͏ͳฦͷ͕ߴ͘ͳΓ͍ͨ͢Ί wໃ६ͨ͠ฦΛฦ͢͜ͱ͕͋Δ wຊจͰҰ؏ੑͱݸੑͷʹ͍ͭͯऔΓΉ 4
*OUSPEVDUJPO wେྔͷਓؒରਓؒͷରʹΑΔࣗવͳରγεςϜͷ ߏங͕ΛूΊ͍ͯΔ w܇࿅σʔλͷදతͳฦΛฦ͕͋͢Δ ˠͦͷΑ͏ͳฦͷ͕ߴ͘ͳΓ͍ͨ͢Ί wໃ६ͨ͠ฦΛฦ͢͜ͱ͕͋Δ wຊจͰҰ؏ੑͱݸੑͷʹ͍ͭͯऔΓΉ 5
ؔ࿈ݚڀ w3JUUFSΒ ౷ܭతػց༁ͷͱͯ͠औΓΜͩ w4FSCBOΒ ରཤྺͷґଘؔΛิ͢Δ͜ͱΛ తͱͨ͠֊తFODPEFSEFDPEFSϞσϧΛఏҊ w-JΒ
యܕతԠͷׂ߹ΛݮΒͨ͢Ίʹ ࠷େ .-& Ͱͳ͘૬ޓใྔ ..* Λతؔͱ͢Δ TFRTFRγεςϜΛఏҊ 6
ఏҊϞσϧ 7
ఏҊϞσϧ wதؒϢχοτʹ-45.Λ༻͍ͨ3// w࠷ޙͷग़ྗΛ%FDPEFSʹ͢ 8 &ODPEFS
ఏҊϞσϧ wதؒϢχοτʹ-45.Λ༻͍ͨ3// w&ODPEFSͷग़ྗΛ%FDPEFSʹೖྗ w4QFBLFS&NCFEEJOHΛ֤ӅΕͰՃࢉ 9 %FDPEFS
ఏҊϞσϧ w4QFBLFS.PEFM ฦऀͷݸੑͷΈΛߟྀ 4QFBLFS&NCFEEJOHΛೖྗ w4QFBLFS"EESFTTFF.PEFM ฦऀͱฉ͖खͷ྆ํΛߟྀ ԼࣜͰ4QFBLFS&NCFEEJOHΛ߹ 10
%FDPEJOHBOE3FSBOLJOH ɹ.ೖྗจɹ3ฦจɹc3cฦจ ɹW4QFBLFS*%ɹЕ Ѝௐύϥϝʔλ w#FBN4FBSDI࣌ʹ্ࣜͷධՁؔͰ3FSBOLJOHΛߦ͏ wయܕతͰͳ͍͘จ͕༏ઌ͞ΕΔ wɹɹɹɹɹ3͔Β.Λग़ྗ͢ΔTFRTFRΛֶशͯ͠ܭࢉ 11
σʔληοτ w5XJUUFS1FSTPOB%BUBTFU ݄͔Βϲ݄ͷ5XJUUFS'JSF)PTFΛ༻ ظؒʹճҎ্λʔϯͷձΛͨ͠Ϣʔβʹݶఆ ϢʔβʹΑΔ ͷձؚ͕·ΕΔ ಉϢʔβʹΑΔ݄͔Βϲ݄ͷձΛ ͣͭ։ൃ
ݕূ ςετηοτͱͯ͠ઃఆ ฦऀͷ4QFBLFS*%ͷΈ͕ೖ͍ͬͯΔͨΊ4QFBLFS.PEFM ͷΈʹར༻ 12
σʔληοτ w5XJUUFS4PSEPOJ%BUBTFU 4PSEPOJ ैདྷͷ405"ͱͷൺֱͷͨΊʹ༻ ςετηοτͷΈ༻ ͷձσʔλ ͭͷೖྗจʹରͯ͠࠷େݸͷฦ
ˠ5XJUUFS1FSTPOB%BUBTFUͱͷ#-&6ͷൺֱͰ͖ͳ͍ 13
σʔληοτ w5FMFWJTJPO4FSJFT5SBOTDSJQUT%BUB 57γϦʔζl'SJFOETz l5IF#JH#BOH5IFPSZzͷࣈນ ਓͷओཁਓʹΑΔ ͷձ ͏ͪ։ൃ ςετηοτͱͯͦ͠ΕͧΕ ༻ w0QFO4VCUJUMFT
ϊΠζΛؚΉ.ʙ.ͷࣈນσʔληοτ 5FMFWJTJPO4FSJFT5SBOTDSJQUT%BUBͷن͕খ͍ͨ͞Ί ຊσʔληοτͰυϝΠϯదԠΛߦ͏ 14
ֶशͷৄࡉ wMBZFS-45. w IJEEFODFMMTGPSFBDIMBZFS w#BUDITJ[F w-FBSOJOHSBUF w<>ͷҰ༷ͰύϥϝʔλΛॳظԽ w5ISFTIPMEGPSHSBEJFOUDMJQQJOH w7PDBCVMBSZTJ[F
w%SPQPVUSBUF w#FBNTJ[F 15
݁Ռ w5XJUUFS4PSEPOJEBUBTFUʹ͓͚ΔධՁ w.5CBTFMJOF4.5ʹΑΔख๏ wPVSTZTUFN5XJUUFS1FSTPOB%BUBTFUͰֶशͨ͠ͷ wֶशίʔύεͷن %SPQPVUͷ༻ ରϢʔβͷબผ͕ վળͷཧ༝ͱߟ͑ΒΕΔ 16
݁Ռ w5XJUUFS1FSTPOBEBUBTFUʹ͓͚ΔධՁ w.-&ͷ߹ ..*ͷ߹ ͷվળ wఏҊख๏..*ΑΓ.-&ʹΑΓ༗ӹ 17
݁Ռ w57TFSJFTσʔληοτʹ͓͚ΔධՁ w4QFBLFS.PEFM 4QFBLFS"EESFTTFF.PEFMͷ͍ͣΕ #-&6είΞΛ্ͤ͞Δ wఏҊ͢ΔͭͷϞσϧͷؒʹେ͖ͳҧ͍ͳ͍ ˠਓͷύλʔϯ͕ัଊͰ͖ΔఔσʔλαΠζ͕େ͖͘ͳ͍ 18
݁Ռ w5XJUUFS1FSTPOB%BUBTFUͷ։ൃσʔλͱ 57TFSJFTEBUBTFUͰͦΕͧΕQFSQMFYJUZΛൺֱ w5XJUUFSͷํ͕ߴ͘ͳΔͷϊΠζͷͨΊͱߟ͑ΒΕΔ 19
݁Ռ wϥϯμϜʹਓͷ4QFBLFS&NCFEEJOHΛ 4QFBLFS.PEFMʹೖྗ 20
݁Ռ w4QFBLFS"EESFTTFF.PEFM ͷධՁ wฦऀʹහײͰ͋Δ͜ͱ͕ ୯ޠ͔Β͔Δ wlIJNz͔ΒੑผΛਖ਼͘͠ ೝ͍ࣝͯ͠Δ͜ͱ͕͔Δ 21
ਓखධՁ wΫϥυιʔγϯάΛͬͯग़ྗΛධՁ w4QFBLFS*%ຖʹग़ྗ͕Ұ؏͍ͯ͠Δ͔Λ࣮ݧ wϕʔεϥΠϯͱ1FSTPOB.PEFMͷग़ྗΛൺֱͯ͠ ʮҰ؏͍ͯ͠Δʯ ʮҰ؏͍ͯ͠Δʯ ಉఔͰ͋Δ߹ͷείΞΛ͚Δ
wਓͷධՁऀͷείΞΛฏۉ͠ɺͷ࠶ׂΛߦ͏ 22
ਓखධՁ݁Ռ wಉఔͷ߹Λແࢹ͢Δͱɺͷࣄྫʹ͓͍ͯ 1FSTPOB.PEFM͕ʮҰ؏͍ͯ͠ΔʯʮҰ؏͍ͯ͠Δʯ ͱఆ͞Εͨ wʮҰ؏͍ͯ͠ΔʯΛແࢹ͢Δͱɺ1FSTPOB.PEFM͕ ࣄྫͷͰ༏ҐͱͳΓɺϕʔεϥΠϯʹཹ·Δ 23
࣮ࡍͷग़ྗࣄྫ 24
࣮ࡍͷग़ྗࣄྫ 25
݁ w1FSTPOBCBTFEͷԠੜϞσϧΛఏࣔ w#-&6 QFSQMFYJUZ Ұ؏ੑͷਓखධՁʹ͓͍ͯ ܶతͰͳ͍ͷͷϕʔεϥΠϯΛ্ճΔ݁Ռ wฦऀฉ͖खͷਓΛೖྗ͢Δ͜ͱʹϝϦοτ͕͋Δ͜ͱ ͕4QFBLFS"EESFTTFFϞσϧͷ݁ՌͰࣔ͞Εͨ 26