Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: A Persona-Based Neural Conversation Model
Search
Yumeto Inaoka
February 28, 2018
Science
0
320
文献紹介: A Persona-Based Neural Conversation Model
2018/02/28の文献紹介で発表
Yumeto Inaoka
February 28, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
180
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
230
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
150
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
170
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
150
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
270
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
330
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
220
Other Decks in Science
See All in Science
機械学習 - SVM
trycycle
PRO
1
840
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
270
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
190
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
170
データベース01: データベースを使わない世界
trycycle
PRO
1
650
Factorized Diffusion: Perceptual Illusions by Noise Decomposition
tomoaki0705
0
390
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.2k
統計学入門講座 第2回スライド
techmathproject
0
130
データベース08: 実体関連モデルとは?
trycycle
PRO
0
680
トラブルがあったコンペに学ぶデータ分析
tereka114
2
1.6k
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
500
mathematics of indirect reciprocity
yohm
1
140
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
48
2.9k
The Cult of Friendly URLs
andyhume
79
6.5k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
17
950
The World Runs on Bad Software
bkeepers
PRO
69
11k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
Statistics for Hackers
jakevdp
799
220k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Transcript
A Persona-Based Neural Conversation Model Jiwei Li, Michel Galley, Chris
Brockett, Georgios Spithourakis, Jianfeng Gao, and Bill Dolan. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 994 - 1003, 2016. จݙհ` Ԭٕज़ՊֶେֶɹࣗવݴޠॲཧݚڀࣨɹҴԬເਓ
"CTUSBDU wऀҰ؏ੑͷΛѻ͏ฦੜϞσϧ wܦྺελΠϧͷΑ͏ͳݸੑΛೖྗʹՃ wQFSQMFYJUZ #-&6ͷ྆ํͰੑೳ্͕ wਓखධՁͰҰ؏ੑʹ͓͍ͯੑೳ্͕ 2
*OUSPEVDUJPO wେྔͷਓؒରਓؒͷରʹΑΔࣗવͳରγεςϜͷ ߏங͕ΛूΊ͍ͯΔ w܇࿅σʔλͷදతͳฦΛฦ͕͋͢Δ ˠͦͷΑ͏ͳฦͷ͕ߴ͘ͳΓ͍ͨ͢Ί wໃ६ͨ͠ฦΛฦ͢͜ͱ͕͋Δ wຊจͰҰ؏ੑͱݸੑͷʹ͍ͭͯऔΓΉ 3
*OUSPEVDUJPO wେྔͷਓؒରਓؒͷରʹΑΔࣗવͳରγεςϜͷ ߏங͕ΛूΊ͍ͯΔ w܇࿅σʔλͷදతͳฦΛฦ͕͋͢Δ ˠͦͷΑ͏ͳฦͷ͕ߴ͘ͳΓ͍ͨ͢Ί wໃ६ͨ͠ฦΛฦ͢͜ͱ͕͋Δ wຊจͰҰ؏ੑͱݸੑͷʹ͍ͭͯऔΓΉ 4
*OUSPEVDUJPO wେྔͷਓؒରਓؒͷରʹΑΔࣗવͳରγεςϜͷ ߏங͕ΛूΊ͍ͯΔ w܇࿅σʔλͷදతͳฦΛฦ͕͋͢Δ ˠͦͷΑ͏ͳฦͷ͕ߴ͘ͳΓ͍ͨ͢Ί wໃ६ͨ͠ฦΛฦ͢͜ͱ͕͋Δ wຊจͰҰ؏ੑͱݸੑͷʹ͍ͭͯऔΓΉ 5
ؔ࿈ݚڀ w3JUUFSΒ ౷ܭతػց༁ͷͱͯ͠औΓΜͩ w4FSCBOΒ ରཤྺͷґଘؔΛิ͢Δ͜ͱΛ తͱͨ͠֊తFODPEFSEFDPEFSϞσϧΛఏҊ w-JΒ
యܕతԠͷׂ߹ΛݮΒͨ͢Ίʹ ࠷େ .-& Ͱͳ͘૬ޓใྔ ..* Λతؔͱ͢Δ TFRTFRγεςϜΛఏҊ 6
ఏҊϞσϧ 7
ఏҊϞσϧ wதؒϢχοτʹ-45.Λ༻͍ͨ3// w࠷ޙͷग़ྗΛ%FDPEFSʹ͢ 8 &ODPEFS
ఏҊϞσϧ wதؒϢχοτʹ-45.Λ༻͍ͨ3// w&ODPEFSͷग़ྗΛ%FDPEFSʹೖྗ w4QFBLFS&NCFEEJOHΛ֤ӅΕͰՃࢉ 9 %FDPEFS
ఏҊϞσϧ w4QFBLFS.PEFM ฦऀͷݸੑͷΈΛߟྀ 4QFBLFS&NCFEEJOHΛೖྗ w4QFBLFS"EESFTTFF.PEFM ฦऀͱฉ͖खͷ྆ํΛߟྀ ԼࣜͰ4QFBLFS&NCFEEJOHΛ߹ 10
%FDPEJOHBOE3FSBOLJOH ɹ.ೖྗจɹ3ฦจɹc3cฦจ ɹW4QFBLFS*%ɹЕ Ѝௐύϥϝʔλ w#FBN4FBSDI࣌ʹ্ࣜͷධՁؔͰ3FSBOLJOHΛߦ͏ wయܕతͰͳ͍͘จ͕༏ઌ͞ΕΔ wɹɹɹɹɹ3͔Β.Λग़ྗ͢ΔTFRTFRΛֶशͯ͠ܭࢉ 11
σʔληοτ w5XJUUFS1FSTPOB%BUBTFU ݄͔Βϲ݄ͷ5XJUUFS'JSF)PTFΛ༻ ظؒʹճҎ্λʔϯͷձΛͨ͠Ϣʔβʹݶఆ ϢʔβʹΑΔ ͷձؚ͕·ΕΔ ಉϢʔβʹΑΔ݄͔Βϲ݄ͷձΛ ͣͭ։ൃ
ݕূ ςετηοτͱͯ͠ઃఆ ฦऀͷ4QFBLFS*%ͷΈ͕ೖ͍ͬͯΔͨΊ4QFBLFS.PEFM ͷΈʹར༻ 12
σʔληοτ w5XJUUFS4PSEPOJ%BUBTFU 4PSEPOJ ैདྷͷ405"ͱͷൺֱͷͨΊʹ༻ ςετηοτͷΈ༻ ͷձσʔλ ͭͷೖྗจʹରͯ͠࠷େݸͷฦ
ˠ5XJUUFS1FSTPOB%BUBTFUͱͷ#-&6ͷൺֱͰ͖ͳ͍ 13
σʔληοτ w5FMFWJTJPO4FSJFT5SBOTDSJQUT%BUB 57γϦʔζl'SJFOETz l5IF#JH#BOH5IFPSZzͷࣈນ ਓͷओཁਓʹΑΔ ͷձ ͏ͪ։ൃ ςετηοτͱͯͦ͠ΕͧΕ ༻ w0QFO4VCUJUMFT
ϊΠζΛؚΉ.ʙ.ͷࣈນσʔληοτ 5FMFWJTJPO4FSJFT5SBOTDSJQUT%BUBͷن͕খ͍ͨ͞Ί ຊσʔληοτͰυϝΠϯదԠΛߦ͏ 14
ֶशͷৄࡉ wMBZFS-45. w IJEEFODFMMTGPSFBDIMBZFS w#BUDITJ[F w-FBSOJOHSBUF w<>ͷҰ༷ͰύϥϝʔλΛॳظԽ w5ISFTIPMEGPSHSBEJFOUDMJQQJOH w7PDBCVMBSZTJ[F
w%SPQPVUSBUF w#FBNTJ[F 15
݁Ռ w5XJUUFS4PSEPOJEBUBTFUʹ͓͚ΔධՁ w.5CBTFMJOF4.5ʹΑΔख๏ wPVSTZTUFN5XJUUFS1FSTPOB%BUBTFUͰֶशͨ͠ͷ wֶशίʔύεͷن %SPQPVUͷ༻ ରϢʔβͷબผ͕ վળͷཧ༝ͱߟ͑ΒΕΔ 16
݁Ռ w5XJUUFS1FSTPOBEBUBTFUʹ͓͚ΔධՁ w.-&ͷ߹ ..*ͷ߹ ͷվળ wఏҊख๏..*ΑΓ.-&ʹΑΓ༗ӹ 17
݁Ռ w57TFSJFTσʔληοτʹ͓͚ΔධՁ w4QFBLFS.PEFM 4QFBLFS"EESFTTFF.PEFMͷ͍ͣΕ #-&6είΞΛ্ͤ͞Δ wఏҊ͢ΔͭͷϞσϧͷؒʹେ͖ͳҧ͍ͳ͍ ˠਓͷύλʔϯ͕ัଊͰ͖ΔఔσʔλαΠζ͕େ͖͘ͳ͍ 18
݁Ռ w5XJUUFS1FSTPOB%BUBTFUͷ։ൃσʔλͱ 57TFSJFTEBUBTFUͰͦΕͧΕQFSQMFYJUZΛൺֱ w5XJUUFSͷํ͕ߴ͘ͳΔͷϊΠζͷͨΊͱߟ͑ΒΕΔ 19
݁Ռ wϥϯμϜʹਓͷ4QFBLFS&NCFEEJOHΛ 4QFBLFS.PEFMʹೖྗ 20
݁Ռ w4QFBLFS"EESFTTFF.PEFM ͷධՁ wฦऀʹහײͰ͋Δ͜ͱ͕ ୯ޠ͔Β͔Δ wlIJNz͔ΒੑผΛਖ਼͘͠ ೝ͍ࣝͯ͠Δ͜ͱ͕͔Δ 21
ਓखධՁ wΫϥυιʔγϯάΛͬͯग़ྗΛධՁ w4QFBLFS*%ຖʹग़ྗ͕Ұ؏͍ͯ͠Δ͔Λ࣮ݧ wϕʔεϥΠϯͱ1FSTPOB.PEFMͷग़ྗΛൺֱͯ͠ ʮҰ؏͍ͯ͠Δʯ ʮҰ؏͍ͯ͠Δʯ ಉఔͰ͋Δ߹ͷείΞΛ͚Δ
wਓͷධՁऀͷείΞΛฏۉ͠ɺͷ࠶ׂΛߦ͏ 22
ਓखධՁ݁Ռ wಉఔͷ߹Λແࢹ͢Δͱɺͷࣄྫʹ͓͍ͯ 1FSTPOB.PEFM͕ʮҰ؏͍ͯ͠ΔʯʮҰ؏͍ͯ͠Δʯ ͱఆ͞Εͨ wʮҰ؏͍ͯ͠ΔʯΛແࢹ͢Δͱɺ1FSTPOB.PEFM͕ ࣄྫͷͰ༏ҐͱͳΓɺϕʔεϥΠϯʹཹ·Δ 23
࣮ࡍͷग़ྗࣄྫ 24
࣮ࡍͷग़ྗࣄྫ 25
݁ w1FSTPOBCBTFEͷԠੜϞσϧΛఏࣔ w#-&6 QFSQMFYJUZ Ұ؏ੑͷਓखධՁʹ͓͍ͯ ܶతͰͳ͍ͷͷϕʔεϥΠϯΛ্ճΔ݁Ռ wฦऀฉ͖खͷਓΛೖྗ͢Δ͜ͱʹϝϦοτ͕͋Δ͜ͱ ͕4QFBLFS"EESFTTFFϞσϧͷ݁ՌͰࣔ͞Εͨ 26