Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: A Persona-Based Neural Conversation Model
Search
Yumeto Inaoka
February 28, 2018
Science
0
360
文献紹介: A Persona-Based Neural Conversation Model
2018/02/28の文献紹介で発表
Yumeto Inaoka
February 28, 2018
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
yumeto
0
290
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
240
Other Decks in Science
See All in Science
学術講演会中央大学学員会府中支部
tagtag
0
340
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
160
イロレーティングを活用した関東大学サッカーの定量的実力評価 / A quantitative performance evaluation of Kanto University Football Association using Elo rating
konakalab
0
150
デジタルアーカイブの教育利用促進を目指したメタデータLOD基盤に関する研究 / Research on a Metadata LOD Platform for Promoting Educational Uses of Digital Archives
masao
0
130
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
1.2k
Collective Predictive Coding as a Unified Theory for the Socio-Cognitive Human Minds
tanichu
0
140
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.7k
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
170
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
400
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
130
データマイニング - ノードの中心性
trycycle
PRO
0
320
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
0
120
Featured
See All Featured
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
254
22k
Why Our Code Smells
bkeepers
PRO
340
57k
Designing for Performance
lara
610
69k
Leading Effective Engineering Teams in the AI Era
addyosmani
9
1.4k
Ethics towards AI in product and experience design
skipperchong
1
140
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
120
Practical Orchestrator
shlominoach
190
11k
Between Models and Reality
mayunak
0
150
Statistics for Hackers
jakevdp
799
230k
Mind Mapping
helmedeiros
PRO
0
35
Gemini Prompt Engineering: Practical Techniques for Tangible AI Outcomes
mfonobong
2
220
Transcript
A Persona-Based Neural Conversation Model Jiwei Li, Michel Galley, Chris
Brockett, Georgios Spithourakis, Jianfeng Gao, and Bill Dolan. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, pages 994 - 1003, 2016. จݙհ` Ԭٕज़ՊֶେֶɹࣗવݴޠॲཧݚڀࣨɹҴԬເਓ
"CTUSBDU wऀҰ؏ੑͷΛѻ͏ฦੜϞσϧ wܦྺελΠϧͷΑ͏ͳݸੑΛೖྗʹՃ wQFSQMFYJUZ #-&6ͷ྆ํͰੑೳ্͕ wਓखධՁͰҰ؏ੑʹ͓͍ͯੑೳ্͕ 2
*OUSPEVDUJPO wେྔͷਓؒରਓؒͷରʹΑΔࣗવͳରγεςϜͷ ߏங͕ΛूΊ͍ͯΔ w܇࿅σʔλͷදతͳฦΛฦ͕͋͢Δ ˠͦͷΑ͏ͳฦͷ͕ߴ͘ͳΓ͍ͨ͢Ί wໃ६ͨ͠ฦΛฦ͢͜ͱ͕͋Δ wຊจͰҰ؏ੑͱݸੑͷʹ͍ͭͯऔΓΉ 3
*OUSPEVDUJPO wେྔͷਓؒରਓؒͷରʹΑΔࣗવͳରγεςϜͷ ߏங͕ΛूΊ͍ͯΔ w܇࿅σʔλͷදతͳฦΛฦ͕͋͢Δ ˠͦͷΑ͏ͳฦͷ͕ߴ͘ͳΓ͍ͨ͢Ί wໃ६ͨ͠ฦΛฦ͢͜ͱ͕͋Δ wຊจͰҰ؏ੑͱݸੑͷʹ͍ͭͯऔΓΉ 4
*OUSPEVDUJPO wେྔͷਓؒରਓؒͷରʹΑΔࣗવͳରγεςϜͷ ߏங͕ΛूΊ͍ͯΔ w܇࿅σʔλͷදతͳฦΛฦ͕͋͢Δ ˠͦͷΑ͏ͳฦͷ͕ߴ͘ͳΓ͍ͨ͢Ί wໃ६ͨ͠ฦΛฦ͢͜ͱ͕͋Δ wຊจͰҰ؏ੑͱݸੑͷʹ͍ͭͯऔΓΉ 5
ؔ࿈ݚڀ w3JUUFSΒ ౷ܭతػց༁ͷͱͯ͠औΓΜͩ w4FSCBOΒ ରཤྺͷґଘؔΛิ͢Δ͜ͱΛ తͱͨ͠֊తFODPEFSEFDPEFSϞσϧΛఏҊ w-JΒ
యܕతԠͷׂ߹ΛݮΒͨ͢Ίʹ ࠷େ .-& Ͱͳ͘૬ޓใྔ ..* Λతؔͱ͢Δ TFRTFRγεςϜΛఏҊ 6
ఏҊϞσϧ 7
ఏҊϞσϧ wதؒϢχοτʹ-45.Λ༻͍ͨ3// w࠷ޙͷग़ྗΛ%FDPEFSʹ͢ 8 &ODPEFS
ఏҊϞσϧ wதؒϢχοτʹ-45.Λ༻͍ͨ3// w&ODPEFSͷग़ྗΛ%FDPEFSʹೖྗ w4QFBLFS&NCFEEJOHΛ֤ӅΕͰՃࢉ 9 %FDPEFS
ఏҊϞσϧ w4QFBLFS.PEFM ฦऀͷݸੑͷΈΛߟྀ 4QFBLFS&NCFEEJOHΛೖྗ w4QFBLFS"EESFTTFF.PEFM ฦऀͱฉ͖खͷ྆ํΛߟྀ ԼࣜͰ4QFBLFS&NCFEEJOHΛ߹ 10
%FDPEJOHBOE3FSBOLJOH ɹ.ೖྗจɹ3ฦจɹc3cฦจ ɹW4QFBLFS*%ɹЕ Ѝௐύϥϝʔλ w#FBN4FBSDI࣌ʹ্ࣜͷධՁؔͰ3FSBOLJOHΛߦ͏ wయܕతͰͳ͍͘จ͕༏ઌ͞ΕΔ wɹɹɹɹɹ3͔Β.Λग़ྗ͢ΔTFRTFRΛֶशͯ͠ܭࢉ 11
σʔληοτ w5XJUUFS1FSTPOB%BUBTFU ݄͔Βϲ݄ͷ5XJUUFS'JSF)PTFΛ༻ ظؒʹճҎ্λʔϯͷձΛͨ͠Ϣʔβʹݶఆ ϢʔβʹΑΔ ͷձؚ͕·ΕΔ ಉϢʔβʹΑΔ݄͔Βϲ݄ͷձΛ ͣͭ։ൃ
ݕূ ςετηοτͱͯ͠ઃఆ ฦऀͷ4QFBLFS*%ͷΈ͕ೖ͍ͬͯΔͨΊ4QFBLFS.PEFM ͷΈʹར༻ 12
σʔληοτ w5XJUUFS4PSEPOJ%BUBTFU 4PSEPOJ ैདྷͷ405"ͱͷൺֱͷͨΊʹ༻ ςετηοτͷΈ༻ ͷձσʔλ ͭͷೖྗจʹରͯ͠࠷େݸͷฦ
ˠ5XJUUFS1FSTPOB%BUBTFUͱͷ#-&6ͷൺֱͰ͖ͳ͍ 13
σʔληοτ w5FMFWJTJPO4FSJFT5SBOTDSJQUT%BUB 57γϦʔζl'SJFOETz l5IF#JH#BOH5IFPSZzͷࣈນ ਓͷओཁਓʹΑΔ ͷձ ͏ͪ։ൃ ςετηοτͱͯͦ͠ΕͧΕ ༻ w0QFO4VCUJUMFT
ϊΠζΛؚΉ.ʙ.ͷࣈນσʔληοτ 5FMFWJTJPO4FSJFT5SBOTDSJQUT%BUBͷن͕খ͍ͨ͞Ί ຊσʔληοτͰυϝΠϯదԠΛߦ͏ 14
ֶशͷৄࡉ wMBZFS-45. w IJEEFODFMMTGPSFBDIMBZFS w#BUDITJ[F w-FBSOJOHSBUF w<>ͷҰ༷ͰύϥϝʔλΛॳظԽ w5ISFTIPMEGPSHSBEJFOUDMJQQJOH w7PDBCVMBSZTJ[F
w%SPQPVUSBUF w#FBNTJ[F 15
݁Ռ w5XJUUFS4PSEPOJEBUBTFUʹ͓͚ΔධՁ w.5CBTFMJOF4.5ʹΑΔख๏ wPVSTZTUFN5XJUUFS1FSTPOB%BUBTFUͰֶशͨ͠ͷ wֶशίʔύεͷن %SPQPVUͷ༻ ରϢʔβͷબผ͕ վળͷཧ༝ͱߟ͑ΒΕΔ 16
݁Ռ w5XJUUFS1FSTPOBEBUBTFUʹ͓͚ΔධՁ w.-&ͷ߹ ..*ͷ߹ ͷվળ wఏҊख๏..*ΑΓ.-&ʹΑΓ༗ӹ 17
݁Ռ w57TFSJFTσʔληοτʹ͓͚ΔධՁ w4QFBLFS.PEFM 4QFBLFS"EESFTTFF.PEFMͷ͍ͣΕ #-&6είΞΛ্ͤ͞Δ wఏҊ͢ΔͭͷϞσϧͷؒʹେ͖ͳҧ͍ͳ͍ ˠਓͷύλʔϯ͕ัଊͰ͖ΔఔσʔλαΠζ͕େ͖͘ͳ͍ 18
݁Ռ w5XJUUFS1FSTPOB%BUBTFUͷ։ൃσʔλͱ 57TFSJFTEBUBTFUͰͦΕͧΕQFSQMFYJUZΛൺֱ w5XJUUFSͷํ͕ߴ͘ͳΔͷϊΠζͷͨΊͱߟ͑ΒΕΔ 19
݁Ռ wϥϯμϜʹਓͷ4QFBLFS&NCFEEJOHΛ 4QFBLFS.PEFMʹೖྗ 20
݁Ռ w4QFBLFS"EESFTTFF.PEFM ͷධՁ wฦऀʹහײͰ͋Δ͜ͱ͕ ୯ޠ͔Β͔Δ wlIJNz͔ΒੑผΛਖ਼͘͠ ೝ͍ࣝͯ͠Δ͜ͱ͕͔Δ 21
ਓखධՁ wΫϥυιʔγϯάΛͬͯग़ྗΛධՁ w4QFBLFS*%ຖʹग़ྗ͕Ұ؏͍ͯ͠Δ͔Λ࣮ݧ wϕʔεϥΠϯͱ1FSTPOB.PEFMͷग़ྗΛൺֱͯ͠ ʮҰ؏͍ͯ͠Δʯ ʮҰ؏͍ͯ͠Δʯ ಉఔͰ͋Δ߹ͷείΞΛ͚Δ
wਓͷධՁऀͷείΞΛฏۉ͠ɺͷ࠶ׂΛߦ͏ 22
ਓखධՁ݁Ռ wಉఔͷ߹Λແࢹ͢Δͱɺͷࣄྫʹ͓͍ͯ 1FSTPOB.PEFM͕ʮҰ؏͍ͯ͠ΔʯʮҰ؏͍ͯ͠Δʯ ͱఆ͞Εͨ wʮҰ؏͍ͯ͠ΔʯΛແࢹ͢Δͱɺ1FSTPOB.PEFM͕ ࣄྫͷͰ༏ҐͱͳΓɺϕʔεϥΠϯʹཹ·Δ 23
࣮ࡍͷग़ྗࣄྫ 24
࣮ࡍͷग़ྗࣄྫ 25
݁ w1FSTPOBCBTFEͷԠੜϞσϧΛఏࣔ w#-&6 QFSQMFYJUZ Ұ؏ੑͷਓखධՁʹ͓͍ͯ ܶతͰͳ͍ͷͷϕʔεϥΠϯΛ্ճΔ݁Ռ wฦऀฉ͖खͷਓΛೖྗ͢Δ͜ͱʹϝϦοτ͕͋Δ͜ͱ ͕4QFBLFS"EESFTTFFϞσϧͷ݁ՌͰࣔ͞Εͨ 26