Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Beyond BLEU: Training Neural Machine Tran...
Search
Yumeto Inaoka
September 27, 2019
Research
0
290
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
2019/09/27の文献紹介で発表
Yumeto Inaoka
September 27, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
200
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
250
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
170
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
180
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
170
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
360
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
230
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
230
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
yumeto
1
230
Other Decks in Research
See All in Research
「どう育てるか」より「どう働きたいか」〜スクラムマスターの最初の一歩〜
hirakawa51
0
1k
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
63
34k
MetaEarth: A Generative Foundation Model for Global-Scale Remote Sensing Image Generation
satai
4
440
Panopticon: Advancing Any-Sensor Foundation Models for Earth Observation
satai
3
360
cvpaper.challenge 10年の軌跡 / cvpaper.challenge a decade-long journey
gatheluck
3
370
Nullspace MPC
mizuhoaoki
1
420
AIスパコン「さくらONE」のLLM学習ベンチマークによる性能評価 / SAKURAONE LLM Training Benchmarking
yuukit
2
860
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
110
Minimax and Bayes Optimal Best-arm Identification: Adaptive Experimental Design for Treatment Choice
masakat0
0
190
IMC の細かすぎる話 2025
smly
2
760
能動適応的実験計画
masakat0
2
1k
国際論文を出そう!ICRA / IROS / RA-L への論文投稿の心構えとノウハウ / RSJ2025 Luncheon Seminar
koide3
10
6.1k
Featured
See All Featured
Git: the NoSQL Database
bkeepers
PRO
432
66k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Scaling GitHub
holman
464
140k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Done Done
chrislema
186
16k
How to Think Like a Performance Engineer
csswizardry
28
2.3k
RailsConf 2023
tenderlove
30
1.3k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
A better future with KSS
kneath
240
18k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.1k
Speed Design
sergeychernyshev
33
1.3k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Transcript
Beyond BLEU: Training Neural Machine Translation with Semantic Similarity 文献紹介
2019/09/27 長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Literature 2
Abstract • 近年の研究では を明示的に最大化させるように システムを最適化させている ← は部分点を与えず、意味類似性を考慮しない • システムを最適化するための報酬関数を提案 →
、意味的類似性、人手評価が向上 3
Introduction • では自動評価指標を明示的に最大化するよう 学習させるのが一般的(例えば ) • 学習基準に を用いるのには問題がある ◦ 意味が類似していても単語が違えばペナルティ
◦ 部分点がないため学習で山登りが出来ない 4
Proposed method • の報酬として意味的類似性の尺度 を導入 • 意味類似性、部分点の問題に対応 • より重要な意味を持つ単語を正確に翻訳できる 5
Semantic Textual Similarity • では文の意味的類似度を出す必要がある • 今回は の研究である を用いる ◦
逆翻訳で生成した言い換えペアのデータセット ◦ 言い換えモデルから文の分散表現を獲得 6
STS model • ベースは と同じ • 文埋め込みは の平均 • 文類似度は
つの文埋め込みのコサイン類似度 7
Length Penalty • 前述の方法では長い文の生成を妨げるものがない → 長い文にペナルティを与える必要がある • の を基にして、 長さが異なるときにペナルティが加わるようにする
8
SIMILE • と を用いて を定義 • の影響を小さくする α ことでわずかに改善 9
Motivation • 意味類似度タスクとして各指標を評価 • よりも高い 10
Motivation • と を機械翻訳指標として比較 • で人手評価との相関を計算 11
Motivation • 意味類似度タスクと翻訳評価で傾向が異なる や は流暢性も捕捉する指標であるため 12
Machine Translation model • 学習手順は と同じ • モデルは • 他パラメータは論文を参照
13
Objective Functions • 基本は と同じ • コストには または を用いる •
は全ての に を加えてスムージング 14
Experiments • チェコ語 ドイツ語 ロシア語 トルコ語 から英語 への翻訳で評価 • 以外は
を として学習 と の を使用 • は を として学習 には と の と の を使用 • は を使用 15
Automatic Evaluation • 以下の目的関数で実験 ◦ ◦ ◦ ◦ − •
と で評価 16
Results (AE) • の両方で が最高性能 • の評価においてもコストは のほうが高性能 17
Human Evaluation • コストに と を使った時を人手評価で比較 • コストを変化させた時に出力が変化するものの内、 ~ トークンのものからランダムに
文を抽出 • 参照文の持つ情報を出力文が伝えているかどうか、 ~ のスコアを付与 18
Results (HE) • が 以外で 最も高いスコア は も最低 • 翻訳品質が低すぎると
は効果的でない という仮説 19
Quantitative Analysis • が最も高い の で分析 ◦ 部分点 ◦ ◦
◦ • 今回は と の結果のみ紹介する 20
Partial Credit (cost dist.) • の分布は歪んでおり コストが大きい → 学習時の情報が少ない 21
Lexical F1 • 翻訳のどこが改善するか を頻度と品詞別に分析 22
Lexical F1 (Frequency) • 低頻度単語の生成をより助ける 23
Lexical F1 (POS) • 名詞、固有名詞、数字といった文の意味への影響が 大きな品詞でより貢献している 24
Conclusion • 報酬として に変わる を提案 • が自動評価で より優れており、 人手評価との相関も高い •
意味的に重要な単語への貢献が大きい 25