Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
文献紹介: Beyond BLEU: Training Neural Machine Tran...
Search
Yumeto Inaoka
September 27, 2019
Research
0
300
文献紹介: Beyond BLEU: Training Neural Machine Translation with Semantic Similarity
2019/09/27の文献紹介で発表
Yumeto Inaoka
September 27, 2019
Tweet
Share
More Decks by Yumeto Inaoka
See All by Yumeto Inaoka
文献紹介: Quantity doesn’t buy quality syntax with neural language models
yumeto
1
210
文献紹介: Open Domain Web Keyphrase Extraction Beyond Language Modeling
yumeto
0
260
文献紹介: Self-Supervised_Neural_Machine_Translation
yumeto
0
180
文献紹介: Comparing and Developing Tools to Measure the Readability of Domain-Specific Texts
yumeto
0
190
文献紹介: PAWS: Paraphrase Adversaries from Word Scrambling
yumeto
0
180
文献紹介: EditNTS: An Neural Programmer-Interpreter Model for Sentence Simplification through Explicit Editing
yumeto
0
380
文献紹介: Decomposable Neural Paraphrase Generation
yumeto
0
240
文献紹介: Analyzing the Limitations of Cross-lingual Word Embedding Mappings
yumeto
0
260
文献紹介: Similarity-Based Reconstruction Loss for Meaning Representation
yumeto
1
230
Other Decks in Research
See All in Research
ドメイン知識がない領域での自然言語処理の始め方
hargon24
1
240
生成AIとうまく付き合うためのプロンプトエンジニアリング
yuri_ohashi
0
140
SREはサイバネティクスの夢をみるか? / Do SREs Dream of Cybernetics?
yuukit
3
390
J-RAGBench: 日本語RAGにおける Generator評価ベンチマークの構築
koki_itai
0
1.3k
Sat2City:3D City Generation from A Single Satellite Image with Cascaded Latent Diffusion
satai
4
670
競合や要望に流されない─B2B SaaSでミニマム要件を決めるリアルな取り組み / Don't be swayed by competitors or requests - A real effort to determine minimum requirements for B2B SaaS
kaminashi
0
760
第66回コンピュータビジョン勉強会@関東 Epona: Autoregressive Diffusion World Model for Autonomous Driving
kentosasaki
0
360
世界モデルにおける分布外データ対応の方法論
koukyo1994
7
1.6k
Thirty Years of Progress in Speech Synthesis: A Personal Perspective on the Past, Present, and Future
ktokuda
0
170
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
310
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
290
姫路市 -都市OSの「再実装」-
hopin
0
1.6k
Featured
See All Featured
Design in an AI World
tapps
0
150
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
We Analyzed 250 Million AI Search Results: Here's What I Found
joshbly
1
750
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
AI Search: Implications for SEO and How to Move Forward - #ShenzhenSEOConference
aleyda
1
1.1k
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Leadership Guide Workshop - DevTernity 2021
reverentgeek
1
200
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
60
42k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
67
Transcript
Beyond BLEU: Training Neural Machine Translation with Semantic Similarity 文献紹介
2019/09/27 長岡技術科学大学 自然言語処理研究室 稲岡 夢人
Literature 2
Abstract • 近年の研究では を明示的に最大化させるように システムを最適化させている ← は部分点を与えず、意味類似性を考慮しない • システムを最適化するための報酬関数を提案 →
、意味的類似性、人手評価が向上 3
Introduction • では自動評価指標を明示的に最大化するよう 学習させるのが一般的(例えば ) • 学習基準に を用いるのには問題がある ◦ 意味が類似していても単語が違えばペナルティ
◦ 部分点がないため学習で山登りが出来ない 4
Proposed method • の報酬として意味的類似性の尺度 を導入 • 意味類似性、部分点の問題に対応 • より重要な意味を持つ単語を正確に翻訳できる 5
Semantic Textual Similarity • では文の意味的類似度を出す必要がある • 今回は の研究である を用いる ◦
逆翻訳で生成した言い換えペアのデータセット ◦ 言い換えモデルから文の分散表現を獲得 6
STS model • ベースは と同じ • 文埋め込みは の平均 • 文類似度は
つの文埋め込みのコサイン類似度 7
Length Penalty • 前述の方法では長い文の生成を妨げるものがない → 長い文にペナルティを与える必要がある • の を基にして、 長さが異なるときにペナルティが加わるようにする
8
SIMILE • と を用いて を定義 • の影響を小さくする α ことでわずかに改善 9
Motivation • 意味類似度タスクとして各指標を評価 • よりも高い 10
Motivation • と を機械翻訳指標として比較 • で人手評価との相関を計算 11
Motivation • 意味類似度タスクと翻訳評価で傾向が異なる や は流暢性も捕捉する指標であるため 12
Machine Translation model • 学習手順は と同じ • モデルは • 他パラメータは論文を参照
13
Objective Functions • 基本は と同じ • コストには または を用いる •
は全ての に を加えてスムージング 14
Experiments • チェコ語 ドイツ語 ロシア語 トルコ語 から英語 への翻訳で評価 • 以外は
を として学習 と の を使用 • は を として学習 には と の と の を使用 • は を使用 15
Automatic Evaluation • 以下の目的関数で実験 ◦ ◦ ◦ ◦ − •
と で評価 16
Results (AE) • の両方で が最高性能 • の評価においてもコストは のほうが高性能 17
Human Evaluation • コストに と を使った時を人手評価で比較 • コストを変化させた時に出力が変化するものの内、 ~ トークンのものからランダムに
文を抽出 • 参照文の持つ情報を出力文が伝えているかどうか、 ~ のスコアを付与 18
Results (HE) • が 以外で 最も高いスコア は も最低 • 翻訳品質が低すぎると
は効果的でない という仮説 19
Quantitative Analysis • が最も高い の で分析 ◦ 部分点 ◦ ◦
◦ • 今回は と の結果のみ紹介する 20
Partial Credit (cost dist.) • の分布は歪んでおり コストが大きい → 学習時の情報が少ない 21
Lexical F1 • 翻訳のどこが改善するか を頻度と品詞別に分析 22
Lexical F1 (Frequency) • 低頻度単語の生成をより助ける 23
Lexical F1 (POS) • 名詞、固有名詞、数字といった文の意味への影響が 大きな品詞でより貢献している 24
Conclusion • 報酬として に変わる を提案 • が自動評価で より優れており、 人手評価との相関も高い •
意味的に重要な単語への貢献が大きい 25