Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介:What In-Context Learning “Learns” In-Conte...
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
yuri
August 21, 2023
Research
0
620
論文紹介:What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task Learning
yuri
August 21, 2023
Tweet
Share
More Decks by yuri
See All by yuri
データ指向モデリング「テキストマイニングの基礎」
yuri00
0
15
論文紹介:∞-former: Infinite Memory Transformer
yuri00
0
420
論文紹介:Learning Dependency-Based Compositional Semantics
yuri00
0
160
論文紹介:What Context Features Can Transformer Language Models Use?
yuri00
0
430
Other Decks in Research
See All in Research
第66回コンピュータビジョン勉強会@関東 Epona: Autoregressive Diffusion World Model for Autonomous Driving
kentosasaki
0
350
さまざまなAgent FrameworkとAIエージェントの評価
ymd65536
1
420
Remote sensing × Multi-modal meta survey
satai
4
710
HU Berlin: Industrial-Strength Natural Language Processing with spaCy and Prodigy
inesmontani
PRO
0
230
LiDARセキュリティ最前線(2025年)
kentaroy47
0
140
Pythonでジオを使い倒そう! 〜それとFOSS4G Hiroshima 2026のご紹介を少し〜
wata909
0
1.3k
生成AI による論文執筆サポート・ワークショップ ─ サーベイ/リサーチクエスチョン編 / Workshop on AI-Assisted Paper Writing Support: Survey/Research Question Edition
ks91
PRO
0
140
LLM-Assisted Semantic Guidance for Sparsely Annotated Remote Sensing Object Detection
satai
3
470
Proposal of an Information Delivery Method for Electronic Paper Signage Using Human Mobility as the Communication Medium / ICCE-Asia 2025
yumulab
0
170
離散凸解析に基づく予測付き離散最適化手法 (IBIS '25)
taihei_oki
PRO
1
690
Earth AI: Unlocking Geospatial Insights with Foundation Models and Cross-Modal Reasoning
satai
3
490
社内データ分析AIエージェントを できるだけ使いやすくする工夫
fufufukakaka
1
900
Featured
See All Featured
Information Architects: The Missing Link in Design Systems
soysaucechin
0
780
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Skip the Path - Find Your Career Trail
mkilby
0
59
Making the Leap to Tech Lead
cromwellryan
135
9.7k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.7k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
120
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.6k
Code Review Best Practice
trishagee
74
20k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
141
34k
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3.1k
Transcript
What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task
Learning Jane Pan, Tianyu Gao, Howard Chen, Danqi Chen ACL2023 Findings 村山 友理 東大和泉研 2023/08/27 第15回最先端NLP勉強会
事前学習したものを思い出してい るだけ? In-context learning は何をしているのか? 2 デモ(正しい入出力ペア)から学習 している?
• 事前学習時にダウンストリームで必要なタスクを暗黙的に学習していて、in-context のデモはどのタスクを解くべきかモデルに認識させるための情報を与えるだけ (Xie+ 22) • ICL性能は正解ラベルの使用に対してinsensitive (Min+ 22) 事前学習したものを思い出しているだけ?
3
• Transformer-based モデルは「内部モデル」を更新するために暗黙的に勾配降下 法を行っている可能性 (Akyürek+ 23), (vonOswald+ 22) • 実データセットの指標を用いると、ICLとファインチューニングには類似点がある
(Dai+ 23) デモから学習している? 4
ICLの能力を「タスク認識」と「タスク学習」に分解 5 事前学習したものを思い出してい るだけ? タスク認識 デモ(正しい入出力ペア)から学習 している? タスク学習 • それぞれの能力を評価するために、プロンプトのラベルを操作
• いろいろなモデルサイズとデモ数で実験
Random (= タスク認識) • ラベルは一様にランダムにサンプリングされる ラベル操作 1. Random 6
Abstract (=タスク学習) • プロンプトからタスク指示文を取り除き、ラベルを抽象的な記号に置換 ◦ 数字 (0, 1, 2,...) /
文字 (A, B, C,...) / 記号 (@, #, $, %, *, ∧,...) • 抽象的なラベルであっても事前学習のバイアスがある可能性 ◦ 例えば、“0”は負例っぽい ◦ バイアスを避けるために、プロンプト毎にラベルから抽象記号にランダムに写像 ラベル操作 2. Abstract 7
Gold (= タスク認識 + タスク学習) • 正解の入力・ラベルペアが与えられる従来のプロンプト ラベル操作 3. Gold
8
• データセット ◦ 4タイプのタスクに関する16の分類データセットを使用: ▪ 感情分析 ▪ 毒性検出 ▪ 自然言語推論
/ 言い換え検出 ▪ トピック / スタンス分類 • モデル ◦ GPT-3 (Brown+ 20) ▪ ada (350M), babbage (1.3B), curie (6.7B), davinci (175B) (OpenAI API) ◦ LLaMA (Touvron+ 23) ▪ 7B, 13B, 33B, 65B ◦ OPT (Zhang+ 22) ▪ 350M, 2.7B, 6.7B, 13B, 30B, 66B (Transformers library) 実験設定 9
• タスク設定 ◦ テスト用に訓練セットからデモをサンプリング ▪ GPT-3: 150 対(予算の都合により) ▪ OPT,
LLaMA: 1,350 対 ◦ 分類タスクのタイプ毎に3種類のプロンプト雛形を用意 ◦ データセットとプロンプト全体の平均を報告 実験設定 10
• Gold (= タスク認識 + タスク学習) ◦ 全体的に一番良い • Random
(= タスク認識) ◦ 性能はスケールに依らずほぼ 横ばい • Abstract (= タスク学習) ◦ モデルサイズとデモ数に応じて 増加 ◦ 小さなモデル、少ないデモ数で はRandomより低いが、パラ メータ数・デモ数が増えると逆転 ◦ LLaMA-65B以外のOPT-66Bと davinciはGOLDに匹敵 結果 11 ※ Abstractについては数字ラベルの結果
• 数字、文字、記号ラベルごとの結果は主結果と同様 • 数字と文字ラベルは一貫して記号ラベルより高かった ◦ 数字と文字は事前学習コーパス中により頻繁に出現するからかもしれない タスク学習についてラベルの違いによる傾向の差は見られない 12
• 感情分析とNLIを比較 • NLIのAbstract曲線がより平らなので、プロンプトと事前学習の質が重要 タスク学習ではタスクが単純な方がサイズとデモ数にスケールする 13
タスクのタイプ別の結果 14 感情分析 トピック / スタンス分類 毒性検出 NLI / 言い換え検出
GPT-3 LLaMA OPT
• ICLを2つの能力「タスク認識」と「タスク学習」に分解し、それぞれ異なる条件下で 発現することを示した • 小さなモデルでもタスク認識の能力はあるが、スケールしない • タスク学習の能力は大きなモデルで現れる ◦ 小さなモデルではデモを増やしても性能が上がらない ◦
大きなモデルはデモが増えると性能も向上 • Limitations ◦ 「タスク認識」と「タスク学習」に分けたが、タスク学習がデモで示されたパター ンを事前学習で学習した概念に代替しているとすれば、タスク認識の進化形と 捉えることもできるかもしれない まとめ 15