Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介:What In-Context Learning “Learns” In-Conte...
Search
yuri
August 21, 2023
Research
0
550
論文紹介:What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task Learning
yuri
August 21, 2023
Tweet
Share
More Decks by yuri
See All by yuri
論文紹介:∞-former: Infinite Memory Transformer
yuri00
0
350
論文紹介:Learning Dependency-Based Compositional Semantics
yuri00
0
130
論文紹介:What Context Features Can Transformer Language Models Use?
yuri00
0
360
Other Decks in Research
See All in Research
Weekly AI Agents News! 11月号 プロダクト/ニュースのアーカイブ
masatoto
0
290
文化が形作る音楽推薦の消費と、その逆
kuri8ive
0
240
ナレッジプロデューサーとしてのミドルマネージャー支援 - MIMIGURI「知識創造室」の事例の考察 -
chiemitaki
0
210
Retrieval of Hurricane Rain Rate From SAR Images Based on Artificial Neural Network
satai
2
140
サーブレシーブ成功率は勝敗に影響するか?
vball_panda
0
530
The Economics of Platforms 輪読会 第1章
tomonatu8
0
140
Remote Sensing Vision-Language Foundation Models without Annotations via Ground Remote Alignment
satai
2
120
IM2024
mamoruk
0
220
Leveraging LLMs for Unsupervised Dense Retriever Ranking (SIGIR 2024)
kampersanda
2
300
移動ビッグデータに基づく地理情報の埋め込みベクトル化
tam1110
0
240
2024/10/30 産総研AIセミナー発表資料
keisuke198619
1
450
SpectralMamba: Efficient Mamba for Hyperspectral Image Classification
satai
2
150
Featured
See All Featured
Building Flexible Design Systems
yeseniaperezcruz
328
38k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
248
1.3M
Code Reviewing Like a Champion
maltzj
521
39k
VelocityConf: Rendering Performance Case Studies
addyosmani
328
24k
Bootstrapping a Software Product
garrettdimon
PRO
306
110k
Git: the NoSQL Database
bkeepers
PRO
427
64k
Reflections from 52 weeks, 52 projects
jeffersonlam
348
20k
The Cost Of JavaScript in 2023
addyosmani
47
7.3k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Navigating Team Friction
lara
183
15k
Transcript
What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task
Learning Jane Pan, Tianyu Gao, Howard Chen, Danqi Chen ACL2023 Findings 村山 友理 東大和泉研 2023/08/27 第15回最先端NLP勉強会
事前学習したものを思い出してい るだけ? In-context learning は何をしているのか? 2 デモ(正しい入出力ペア)から学習 している?
• 事前学習時にダウンストリームで必要なタスクを暗黙的に学習していて、in-context のデモはどのタスクを解くべきかモデルに認識させるための情報を与えるだけ (Xie+ 22) • ICL性能は正解ラベルの使用に対してinsensitive (Min+ 22) 事前学習したものを思い出しているだけ?
3
• Transformer-based モデルは「内部モデル」を更新するために暗黙的に勾配降下 法を行っている可能性 (Akyürek+ 23), (vonOswald+ 22) • 実データセットの指標を用いると、ICLとファインチューニングには類似点がある
(Dai+ 23) デモから学習している? 4
ICLの能力を「タスク認識」と「タスク学習」に分解 5 事前学習したものを思い出してい るだけ? タスク認識 デモ(正しい入出力ペア)から学習 している? タスク学習 • それぞれの能力を評価するために、プロンプトのラベルを操作
• いろいろなモデルサイズとデモ数で実験
Random (= タスク認識) • ラベルは一様にランダムにサンプリングされる ラベル操作 1. Random 6
Abstract (=タスク学習) • プロンプトからタスク指示文を取り除き、ラベルを抽象的な記号に置換 ◦ 数字 (0, 1, 2,...) /
文字 (A, B, C,...) / 記号 (@, #, $, %, *, ∧,...) • 抽象的なラベルであっても事前学習のバイアスがある可能性 ◦ 例えば、“0”は負例っぽい ◦ バイアスを避けるために、プロンプト毎にラベルから抽象記号にランダムに写像 ラベル操作 2. Abstract 7
Gold (= タスク認識 + タスク学習) • 正解の入力・ラベルペアが与えられる従来のプロンプト ラベル操作 3. Gold
8
• データセット ◦ 4タイプのタスクに関する16の分類データセットを使用: ▪ 感情分析 ▪ 毒性検出 ▪ 自然言語推論
/ 言い換え検出 ▪ トピック / スタンス分類 • モデル ◦ GPT-3 (Brown+ 20) ▪ ada (350M), babbage (1.3B), curie (6.7B), davinci (175B) (OpenAI API) ◦ LLaMA (Touvron+ 23) ▪ 7B, 13B, 33B, 65B ◦ OPT (Zhang+ 22) ▪ 350M, 2.7B, 6.7B, 13B, 30B, 66B (Transformers library) 実験設定 9
• タスク設定 ◦ テスト用に訓練セットからデモをサンプリング ▪ GPT-3: 150 対(予算の都合により) ▪ OPT,
LLaMA: 1,350 対 ◦ 分類タスクのタイプ毎に3種類のプロンプト雛形を用意 ◦ データセットとプロンプト全体の平均を報告 実験設定 10
• Gold (= タスク認識 + タスク学習) ◦ 全体的に一番良い • Random
(= タスク認識) ◦ 性能はスケールに依らずほぼ 横ばい • Abstract (= タスク学習) ◦ モデルサイズとデモ数に応じて 増加 ◦ 小さなモデル、少ないデモ数で はRandomより低いが、パラ メータ数・デモ数が増えると逆転 ◦ LLaMA-65B以外のOPT-66Bと davinciはGOLDに匹敵 結果 11 ※ Abstractについては数字ラベルの結果
• 数字、文字、記号ラベルごとの結果は主結果と同様 • 数字と文字ラベルは一貫して記号ラベルより高かった ◦ 数字と文字は事前学習コーパス中により頻繁に出現するからかもしれない タスク学習についてラベルの違いによる傾向の差は見られない 12
• 感情分析とNLIを比較 • NLIのAbstract曲線がより平らなので、プロンプトと事前学習の質が重要 タスク学習ではタスクが単純な方がサイズとデモ数にスケールする 13
タスクのタイプ別の結果 14 感情分析 トピック / スタンス分類 毒性検出 NLI / 言い換え検出
GPT-3 LLaMA OPT
• ICLを2つの能力「タスク認識」と「タスク学習」に分解し、それぞれ異なる条件下で 発現することを示した • 小さなモデルでもタスク認識の能力はあるが、スケールしない • タスク学習の能力は大きなモデルで現れる ◦ 小さなモデルではデモを増やしても性能が上がらない ◦
大きなモデルはデモが増えると性能も向上 • Limitations ◦ 「タスク認識」と「タスク学習」に分けたが、タスク学習がデモで示されたパター ンを事前学習で学習した概念に代替しているとすれば、タスク認識の進化形と 捉えることもできるかもしれない まとめ 15