Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介:∞-former: Infinite Memory Transformer
Search
yuri
September 20, 2022
Research
0
360
論文紹介:∞-former: Infinite Memory Transformer
第14回最先端NLP勉強会(2022年9月26日、27日)@お茶大 発表用資料
yuri
September 20, 2022
Tweet
Share
More Decks by yuri
See All by yuri
論文紹介:What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task Learning
yuri00
0
560
論文紹介:Learning Dependency-Based Compositional Semantics
yuri00
0
140
論文紹介:What Context Features Can Transformer Language Models Use?
yuri00
0
370
Other Decks in Research
See All in Research
博士論文公聴会: Scaling Telemetry Workloads in Cloud Applications: Techniques for Instrumentation, Storage, and Mining / PhD Defence
yuukit
1
120
小ねぎ調製位置検出のためのインスタンスセグメンテーション
takuto_andtt
0
120
Weekly AI Agents News!
masatoto
33
62k
NLP2025参加報告会 LT資料
hargon24
1
280
定性データ、どう活かす? 〜定性データのための分析基盤、はじめました〜 / How to utilize qualitative data? ~We have launched an analysis platform for qualitative data~
kaminashi
6
840
Pix2Poly: A Sequence Prediction Method for End-to-end Polygonal Building Footprint Extraction from Remote Sensing Imagery
satai
3
270
プロシェアリング白書2025_PROSHARING_REPORT_2025
circulation
1
410
作業記憶の発達的特性が言語獲得の臨界期を形成する(NLP2025)
chemical_tree
2
450
Adaptive fusion of multi-modal remote sensing data for optimal sub-field crop yield prediction
satai
3
120
DPUを用いたマルチタスクDNN表情認識システムのFPGA実装
takuto_andtt
0
150
Ad-DS Paper Circle #1
ykaneko1992
0
4.1k
知識強化言語モデルLUKE @ LUKEミートアップ
ikuyamada
0
390
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
30
2k
Code Reviewing Like a Champion
maltzj
522
40k
How to Ace a Technical Interview
jacobian
276
23k
Speed Design
sergeychernyshev
29
900
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
129
19k
How to Think Like a Performance Engineer
csswizardry
23
1.5k
Six Lessons from altMBA
skipperchong
27
3.7k
Building Flexible Design Systems
yeseniaperezcruz
329
38k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Site-Speed That Sticks
csswizardry
5
500
Optimising Largest Contentful Paint
csswizardry
36
3.2k
Transcript
∞-former: Infinite Memory Transformer Pedro Henrique Martins, Zita Marinho, André
F. T. Martins ACL 2022 お茶大 村山友理
Prior Work • ⻑いcontext をどう扱えば良いか︖ 2 Transformer Layer 𝑋! STM
q k,v ... Transformer Layer 𝑋! STM CM q k,v ... Compressive Transformer [Rae+ 2019] Transformer-XL [Dai+ 2019]
Infinite Memory Transformer • 過去の⼊⼒系列を連続値にして扱う 3
Long-term Memory • ⼊⼒Xに畳み込み(stride=1, width=3)をし、スムージングを⾏う Lはinput size, eはembedding size •
Xを連続値 ! 𝑋(𝑡)に変換 𝑡 ∈ 0, 1 : 𝑡! = 𝑖/𝐿 𝜓 𝑡 ∈ ℝ"はN個のRBF (radial basis function) のベクトル B ∈ ℝ"×$は多変量リッジ回帰によって得られる係数⾏列 4
Long-term Memory 𝑄 = 𝑋𝑊" ∈ ℝ#×% 𝐾 = 𝐵𝑊&
∈ ℝ'×% 𝑉 = 𝐵𝑊( ∈ ℝ'×% • attention mechanism としてガウス分布を⽤いる 5
Long-term Memory • 𝑧),+ は𝑍#,-,) ∈ ℝ#×.の⾏を成す • Transformerのcontext vector
𝑍, と⾜し合わせて最終的なcontext vector 𝑍を得る 6 ← attention × value
Unbounded Memory 7 • ! 𝑋(𝑡)を圧縮 • ! 𝑋(𝑡)から𝑀個のベクトルを等間隔にサンプリング
Sticky Memories • 重要な部分のメモリを積極的に保存したほうが良いのでは︖ • 前ステップのattentionからヒストグラムを作成し、D個の等間隔なbinに分割 {𝑑/, … , 𝑑0}
• 各binについてattention probability 𝑝(𝑑1 )を計算 • 𝑝に従ってM個をサンプリング 8
Complexity • Key matrix 𝐾 は基底関数の数𝑁 だけに依存し、contextの⻑さとは無関係 • Complexityもcontextの⻑さとは独⽴ •
short-term memory も使う場合︓ • LTMのみの場合︓ • どちらもvanilla transformer より⼩さい 9
Sorting • 系列のトークンを頻度順に並べる • モデルが直近のトークンだけでなく⻑期記憶も⾒ているか調べるために、 トークンの確率分布を変化させていく • 系列が⻑くなるほど𝛼 ∈ [0,1]は0から1に徐々に増加
• vocabulary size 20 • 4,000, 8,000, 16,000トークンで実験 10
Sorting • Transformer • 3 layers • 6 attention heads
• input size L = 1,024 • memory size 2,048 • LTM (N = 1,024 basis functions) 11
Document Grounded Dialogue • CMU Document Grounded Conversation dataset (CMU-DoG)
[Zhou+ 2018] • より難しくするために、会話が始まる前にしかdocumentにアクセスできなくする • GPT-2 small + continuous LTM (N = 512 basis functions) 12
Document Grounded Dialogue 13
Document Grounded Dialogue 14
LTMのアテンションの層による違い 15
16
17
18
19
まとめ • Infinite Memory Transformer を提案 • Unbounded context •
計算量はcontextの⻑さと独⽴ • Sorting, Language modeling, Document grounded dialogue で実験 • ⻑期記憶の有⽤性を⽰した 20