Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
論文紹介:∞-former: Infinite Memory Transformer
Search
yuri
September 20, 2022
Research
0
340
論文紹介:∞-former: Infinite Memory Transformer
第14回最先端NLP勉強会(2022年9月26日、27日)@お茶大 発表用資料
yuri
September 20, 2022
Tweet
Share
More Decks by yuri
See All by yuri
論文紹介:What In-Context Learning “Learns” In-Context: Disentangling Task Recognition and Task Learning
yuri00
0
520
論文紹介:Learning Dependency-Based Compositional Semantics
yuri00
0
120
論文紹介:What Context Features Can Transformer Language Models Use?
yuri00
0
340
Other Decks in Research
See All in Research
20240820: Minimum Bayes Risk Decoding for High-Quality Text Generation Beyond High-Probability Text
de9uch1
0
140
Isotropy, Clusters, and Classifiers
hpprc
3
640
論文読み会 KDD2024 | Relevance meets Diversity: A User-Centric Framework for Knowledge Exploration through Recommendations
cocomoff
0
110
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
0
250
ミニ四駆AI用制御装置の事例紹介
aks3g
0
170
渋谷Well-beingアンケート調査結果
shibuyasmartcityassociation
0
300
MetricSifter:クラウドアプリケーションにおける故障箇所特定の効率化のための多変量時系列データの特徴量削減 / FIT 2024
yuukit
2
130
Tietovuoto Social Design Agency (SDA) -trollitehtaasta
hponka
0
2.9k
論文紹介: COSMO: A Large-Scale E-commerce Common Sense Knowledge Generation and Serving System at Amazon (SIGMOD 2024)
ynakano
1
160
EBPMにおける生成AI活用について
daimoriwaki
0
220
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
840
The many faces of AI and the role of mathematics
gpeyre
1
1.4k
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
26
1.8k
Testing 201, or: Great Expectations
jmmastey
40
7.1k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
365
25k
Statistics for Hackers
jakevdp
796
220k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
59k
Visualization
eitanlees
145
15k
A better future with KSS
kneath
238
17k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
32
2.7k
Making the Leap to Tech Lead
cromwellryan
133
9k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
Automating Front-end Workflow
addyosmani
1366
200k
GitHub's CSS Performance
jonrohan
1030
460k
Transcript
∞-former: Infinite Memory Transformer Pedro Henrique Martins, Zita Marinho, André
F. T. Martins ACL 2022 お茶大 村山友理
Prior Work • ⻑いcontext をどう扱えば良いか︖ 2 Transformer Layer 𝑋! STM
q k,v ... Transformer Layer 𝑋! STM CM q k,v ... Compressive Transformer [Rae+ 2019] Transformer-XL [Dai+ 2019]
Infinite Memory Transformer • 過去の⼊⼒系列を連続値にして扱う 3
Long-term Memory • ⼊⼒Xに畳み込み(stride=1, width=3)をし、スムージングを⾏う Lはinput size, eはembedding size •
Xを連続値 ! 𝑋(𝑡)に変換 𝑡 ∈ 0, 1 : 𝑡! = 𝑖/𝐿 𝜓 𝑡 ∈ ℝ"はN個のRBF (radial basis function) のベクトル B ∈ ℝ"×$は多変量リッジ回帰によって得られる係数⾏列 4
Long-term Memory 𝑄 = 𝑋𝑊" ∈ ℝ#×% 𝐾 = 𝐵𝑊&
∈ ℝ'×% 𝑉 = 𝐵𝑊( ∈ ℝ'×% • attention mechanism としてガウス分布を⽤いる 5
Long-term Memory • 𝑧),+ は𝑍#,-,) ∈ ℝ#×.の⾏を成す • Transformerのcontext vector
𝑍, と⾜し合わせて最終的なcontext vector 𝑍を得る 6 ← attention × value
Unbounded Memory 7 • ! 𝑋(𝑡)を圧縮 • ! 𝑋(𝑡)から𝑀個のベクトルを等間隔にサンプリング
Sticky Memories • 重要な部分のメモリを積極的に保存したほうが良いのでは︖ • 前ステップのattentionからヒストグラムを作成し、D個の等間隔なbinに分割 {𝑑/, … , 𝑑0}
• 各binについてattention probability 𝑝(𝑑1 )を計算 • 𝑝に従ってM個をサンプリング 8
Complexity • Key matrix 𝐾 は基底関数の数𝑁 だけに依存し、contextの⻑さとは無関係 • Complexityもcontextの⻑さとは独⽴ •
short-term memory も使う場合︓ • LTMのみの場合︓ • どちらもvanilla transformer より⼩さい 9
Sorting • 系列のトークンを頻度順に並べる • モデルが直近のトークンだけでなく⻑期記憶も⾒ているか調べるために、 トークンの確率分布を変化させていく • 系列が⻑くなるほど𝛼 ∈ [0,1]は0から1に徐々に増加
• vocabulary size 20 • 4,000, 8,000, 16,000トークンで実験 10
Sorting • Transformer • 3 layers • 6 attention heads
• input size L = 1,024 • memory size 2,048 • LTM (N = 1,024 basis functions) 11
Document Grounded Dialogue • CMU Document Grounded Conversation dataset (CMU-DoG)
[Zhou+ 2018] • より難しくするために、会話が始まる前にしかdocumentにアクセスできなくする • GPT-2 small + continuous LTM (N = 512 basis functions) 12
Document Grounded Dialogue 13
Document Grounded Dialogue 14
LTMのアテンションの層による違い 15
16
17
18
19
まとめ • Infinite Memory Transformer を提案 • Unbounded context •
計算量はcontextの⻑さと独⽴ • Sorting, Language modeling, Document grounded dialogue で実験 • ⻑期記憶の有⽤性を⽰した 20