Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Core ML / Vision Frameworkを使ってできること / What can ...
Search
Shinichi Goto
June 30, 2017
Programming
3
4.3k
Core ML / Vision Frameworkを使ってできること / What can we achieve using Core ML and Vision framework
2017/06/30 WWDC - Developer's Living #lifull_wwdc
Shinichi Goto
June 30, 2017
Tweet
Share
More Decks by Shinichi Goto
See All by Shinichi Goto
WWDC18 ML Overview
_shingt
1
1.4k
Core ML 🏃 iOS Engineer
_shingt
1
590
Wantedly Peopleのスキャン画面の裏側 / Wantedly People Scanning Screen
_shingt
6
6.4k
Providing Better Feedback in Real-time Object Detection Apps
_shingt
2
1.5k
Value Types in WWDC16
_shingt
3
2.6k
debug-remote-local-notification-on-watchos
_shingt
0
10k
Server Side Swift question
_shingt
3
1.1k
Other Decks in Programming
See All in Programming
testingを眺める
matumoto
1
140
Oracle Database Technology Night 92 Database Connection control FAN-AC
oracle4engineer
PRO
1
470
Namespace and Its Future
tagomoris
6
710
🔨 小さなビルドシステムを作る
momeemt
4
690
楽して成果を出すためのセルフリソース管理
clipnote
0
190
MCPでVibe Working。そして、結局はContext Eng(略)/ Working with Vibe on MCP And Context Eng
rkaga
5
2.3k
2025 年のコーディングエージェントの現在地とエンジニアの仕事の変化について
azukiazusa1
24
12k
さようなら Date。 ようこそTemporal! 3年間先行利用して得られた知見の共有
8beeeaaat
3
1.5k
複雑なフォームに立ち向かう Next.js の技術選定
macchiitaka
2
240
Processing Gem ベースの、2D レトロゲームエンジンの開発
tokujiros
2
130
Updates on MLS on Ruby (and maybe more)
sylph01
1
180
CloudflareのChat Agent Starter Kitで簡単!AIチャットボット構築
syumai
2
510
Featured
See All Featured
Designing for Performance
lara
610
69k
GraphQLの誤解/rethinking-graphql
sonatard
72
11k
YesSQL, Process and Tooling at Scale
rocio
173
14k
KATA
mclloyd
32
14k
Building Applications with DynamoDB
mza
96
6.6k
The World Runs on Bad Software
bkeepers
PRO
70
11k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
30
9.7k
The Straight Up "How To Draw Better" Workshop
denniskardys
236
140k
Rails Girls Zürich Keynote
gr2m
95
14k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Gamification - CAS2011
davidbonilla
81
5.4k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Transcript
Core ML / Vision Framework ΛͬͯͰ͖Δ͜ͱ ɹ 2017/06/30 WWDC -
Developer's Living @ LIFULL shingt (Shinichi Goto)
shingt (Shinichi Goto) GitHub: @shingt Twi5er: @_shingt 2
Core ML Vision Framework 3
4
Outline • Core MLͷ֓ཁ • Vision Frameworkͷ֓ཁ • Ͱ͖Δ͜ͱ /
ࣄྫհ 5
Core ML 6
ML (Machine Learning) 7
8
9
10
Core ML • ֶशࡁͷModelΛར༻ͯ͠ͷਪʹಛԽ • Core ML model format (**.mlmodel)
• Xcode͕Swi6ͷΠϯλʔϑΣΠεΛࣗಈੜ • αϯϓϧϞσϧApple͕ެ։ • Accerelate / Metal্ʹࡌ͓ͬͯΓϋΠύϑΥʔϚϯε • coremltools 11
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 12
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 13
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 14
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 15
coremltools • "iOS্Ͱѻ͏ͨΊͷModelΛͲ͏༻ҙ͢Δ͔" ͷղܾࡦ • ओཁͳػցֶशπʔϧͷֶशࡁModelΛCore ML༻ͷModelม • Keras,
Caffe, scikit-learn, etc. 16
17
6/28ʹKeras 2.0αϙʔτʢൃද࣌1.2.2ͷΈͩͬͨʣ h"ps:/ /forums.developer.apple.com/thread/81196 18
Vision Framework 19
Vision Framework • Core ML্ʹࡌͬͨը૾ೝࣝɾମݕग़ͳͲͷը૾ղੳ༻ͷϑϨʔϜϫʔΫ • Detec,on • Face, Face
landmarks, Rectangle, Barcode, Text, Horizon • طଘͷͷਫ਼্ʢDeep Learningͷ׆༻ʣ • Tracking • Image Registra,on • Core MLͱͷΈ߹Θͤ 20
21
Tracking • ը૾ʢಈըʣதͷମͷ • إͷTrackingCIDetectorͰՄೳͩͬͨ • ҙͷରʹରͯ͠ͷTracking͕Մೳʹ • VisionͰͷݕग़݁Ռ •
ҙͷྖҬࢦఆ 22
23
Demo (Rectangle Detec,on + Tracking) h"ps:/ /github.com/shingt/VisionTrackerSample 24
զʑCV/MLͷΤΩεύʔτͰ͋Δඞཁͳ͍ ʢͱɺAppleηογϣϯதʹݴ͍ͬͯΔʣ 25
Կ͕Ͱ͖Δͷ͔ʁ ʢΞϓϦέʔγϣϯΤϯδχΞͱͯ͠ͷࢹ͔Βʣ 26
27
28
ࣄྫհ 29
ମݕग़ 30
31
YOLO • YOLO (You only look once) • ߴͳ͜ͱ͕ಛͷମݕग़༻ͷ χϡʔϥϧωοτϫʔΫ
• h1ps:/ /www.youtube.com/watch? v=VOC3huqHrss • ͜ΕҰൠతͳYOLO 32
• iOSࣄྫ • YOLO: Core ML versus MPSNNGraph • Core
MLΛ༻͍ͯiOS্ͰYOLOΛಈ࡞ • Tiny YOLOʢެ։͞Ε͍ͯΔModelʣΛར༻ 33
34
ը૾ੜ 35
Goodfellow, Ian J.; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley,
David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua. GeneraIve Adversarial Networks. arXiv:1406.2661, 2014. 36
Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa>on learning
with deep convolu>onal genera>ve adversarial networks. arXiv preprint arXiv:1511.06434, 2015. 37
• GAN (Genera+ve Adversarial Nets) • ֶशσʔλͱࣅͨσʔλΛੜ͢ΔϞσϧͷҰछ • iOSࣄྫ •
Crea+ve AI on the iPhone: Genera+ve Adversarial Networks (GAN) with Apple's CoreML Tools • MNISTΛσʔληοτͱͯ͠ɺCore MLΛ༻͍ͯiOS্Ͱࣈ ʢʹࣅͨʣը૾Λੜ 38
39
Summary • Core ML / Vision Framework • iOS্Ͱͷը૾ղੳٕज़ͷར༻ϋʔυϧ͕Լ •
ͱ͍͑ࣝ͋Δఔඞཁʢͱײͨ͡ʣ • Ͱ͖Δ͜ͱ • ը૾ೝࣝ / τϥοΩϯά / ମݕग़ / ը૾ੜ / etc. • Follow @mhollemans 40
ࢀߟηογϣϯ • Introducing Core ML • Core ML in depth
• Vision Framework: Building on Core ML 41
ࢀߟࢿྉ • iOS 11: Machine Learning for everyone • Google’s
MobileNets on the iPhone • YOLO: Core ML versus MPSNNGraph • CreaAve AI on the iPhone: GeneraAve Adversarial Networks (GAN) with Apple's CoreML Tools - Zedge • Why Core ML will not work for your app (most likely) • θϩ͔Β࡞ΔDeep Learning 42
Thanks! 43
ʢิʣͰ͖ͳ͍͜ͱ / ੍ͳͲ • ֶशෆՄ • αϙʔτ͍ͯ͠ΔػցֶशϑϨʔϜϫʔΫʹ͍ͭͯɺಛఆͷόʔδϣϯʹറΒΕΔʢগͳ͘ͱ ݱঢ়ʣ • Kerasͷ2.0αϙʔτೖͬͨ͠ɺࠓޙ͍͛ͯ͘ͷ͔
• ModelͷαΠζ͕େ͖͗͢Δ • RegressionͱClassifica5onͷΈʢ☓ ΫϥελϦϯάɺϥϯΩϯάֶशɺetc.ʣ • ϥϯλΠϜͰϢʔβͷೖྗɾߦಈΛModelʹөͤ͞Δ͜ͱͰ͖ͳ͍ • etc. 44