Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Core ML / Vision Frameworkを使ってできること / What can ...
Search
Shinichi Goto
June 30, 2017
Programming
3
4k
Core ML / Vision Frameworkを使ってできること / What can we achieve using Core ML and Vision framework
2017/06/30 WWDC - Developer's Living #lifull_wwdc
Shinichi Goto
June 30, 2017
Tweet
Share
More Decks by Shinichi Goto
See All by Shinichi Goto
WWDC18 ML Overview
_shingt
1
1.2k
Core ML 🏃 iOS Engineer
_shingt
1
470
Wantedly Peopleのスキャン画面の裏側 / Wantedly People Scanning Screen
_shingt
6
6.2k
Providing Better Feedback in Real-time Object Detection Apps
_shingt
2
1.4k
Value Types in WWDC16
_shingt
3
2.5k
debug-remote-local-notification-on-watchos
_shingt
0
10k
Server Side Swift question
_shingt
3
940
Other Decks in Programming
See All in Programming
弊社の「意識チョット低いアーキテクチャ」10選
texmeijin
4
13k
Vertical Architectures for Scalable Angular Applications
manfredsteyer
PRO
0
290
Tuning GraphQL on Rails
pyama86
2
780
生成 AI を活用した toitta 切片分類機能の裏側 / Inside toitta's AI-Based Factoid Clustering
pokutuna
0
530
『ドメイン駆動設計をはじめよう』のモデリングアプローチ
masuda220
PRO
4
150
Why Spring Matters to Jakarta EE - and Vice Versa
ivargrimstad
0
610
Generative AI Use Cases JP (略称:GenU)奮闘記
hideg
0
120
Universal Linksの実装方法と陥りがちな罠
kaitokudou
1
220
Go言語でターミナルフレンドリーなAIコマンド、afaを作った/fukuokago20_afa
monochromegane
2
140
ピラミッド、アイスクリームコーン、SMURF: 自動テストの最適バランスを求めて / Pyramid Ice-Cream-Cone and SMURF
twada
PRO
8
730
Kubernetes for Data Engineers: Building Scalable, Reliable Data Pipelines
sucitw
1
180
Workflow automationによるインシデント原因調査の自動化
showwin
1
120
Featured
See All Featured
Rebuilding a faster, lazier Slack
samanthasiow
79
8.6k
Visualization
eitanlees
143
15k
Navigating Team Friction
lara
183
14k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Writing Fast Ruby
sferik
626
60k
Building Better People: How to give real-time feedback that sticks.
wjessup
363
19k
Intergalactic Javascript Robots from Outer Space
tanoku
268
27k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
41
2.1k
Art, The Web, and Tiny UX
lynnandtonic
296
20k
Building an army of robots
kneath
302
42k
Being A Developer After 40
akosma
86
590k
Transcript
Core ML / Vision Framework ΛͬͯͰ͖Δ͜ͱ ɹ 2017/06/30 WWDC -
Developer's Living @ LIFULL shingt (Shinichi Goto)
shingt (Shinichi Goto) GitHub: @shingt Twi5er: @_shingt 2
Core ML Vision Framework 3
4
Outline • Core MLͷ֓ཁ • Vision Frameworkͷ֓ཁ • Ͱ͖Δ͜ͱ /
ࣄྫհ 5
Core ML 6
ML (Machine Learning) 7
8
9
10
Core ML • ֶशࡁͷModelΛར༻ͯ͠ͷਪʹಛԽ • Core ML model format (**.mlmodel)
• Xcode͕Swi6ͷΠϯλʔϑΣΠεΛࣗಈੜ • αϯϓϧϞσϧApple͕ެ։ • Accerelate / Metal্ʹࡌ͓ͬͯΓϋΠύϑΥʔϚϯε • coremltools 11
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 12
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 13
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 14
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 15
coremltools • "iOS্Ͱѻ͏ͨΊͷModelΛͲ͏༻ҙ͢Δ͔" ͷղܾࡦ • ओཁͳػցֶशπʔϧͷֶशࡁModelΛCore ML༻ͷModelม • Keras,
Caffe, scikit-learn, etc. 16
17
6/28ʹKeras 2.0αϙʔτʢൃද࣌1.2.2ͷΈͩͬͨʣ h"ps:/ /forums.developer.apple.com/thread/81196 18
Vision Framework 19
Vision Framework • Core ML্ʹࡌͬͨը૾ೝࣝɾମݕग़ͳͲͷը૾ղੳ༻ͷϑϨʔϜϫʔΫ • Detec,on • Face, Face
landmarks, Rectangle, Barcode, Text, Horizon • طଘͷͷਫ਼্ʢDeep Learningͷ׆༻ʣ • Tracking • Image Registra,on • Core MLͱͷΈ߹Θͤ 20
21
Tracking • ը૾ʢಈըʣதͷମͷ • إͷTrackingCIDetectorͰՄೳͩͬͨ • ҙͷରʹରͯ͠ͷTracking͕Մೳʹ • VisionͰͷݕग़݁Ռ •
ҙͷྖҬࢦఆ 22
23
Demo (Rectangle Detec,on + Tracking) h"ps:/ /github.com/shingt/VisionTrackerSample 24
զʑCV/MLͷΤΩεύʔτͰ͋Δඞཁͳ͍ ʢͱɺAppleηογϣϯதʹݴ͍ͬͯΔʣ 25
Կ͕Ͱ͖Δͷ͔ʁ ʢΞϓϦέʔγϣϯΤϯδχΞͱͯ͠ͷࢹ͔Βʣ 26
27
28
ࣄྫհ 29
ମݕग़ 30
31
YOLO • YOLO (You only look once) • ߴͳ͜ͱ͕ಛͷମݕग़༻ͷ χϡʔϥϧωοτϫʔΫ
• h1ps:/ /www.youtube.com/watch? v=VOC3huqHrss • ͜ΕҰൠతͳYOLO 32
• iOSࣄྫ • YOLO: Core ML versus MPSNNGraph • Core
MLΛ༻͍ͯiOS্ͰYOLOΛಈ࡞ • Tiny YOLOʢެ։͞Ε͍ͯΔModelʣΛར༻ 33
34
ը૾ੜ 35
Goodfellow, Ian J.; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley,
David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua. GeneraIve Adversarial Networks. arXiv:1406.2661, 2014. 36
Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa>on learning
with deep convolu>onal genera>ve adversarial networks. arXiv preprint arXiv:1511.06434, 2015. 37
• GAN (Genera+ve Adversarial Nets) • ֶशσʔλͱࣅͨσʔλΛੜ͢ΔϞσϧͷҰछ • iOSࣄྫ •
Crea+ve AI on the iPhone: Genera+ve Adversarial Networks (GAN) with Apple's CoreML Tools • MNISTΛσʔληοτͱͯ͠ɺCore MLΛ༻͍ͯiOS্Ͱࣈ ʢʹࣅͨʣը૾Λੜ 38
39
Summary • Core ML / Vision Framework • iOS্Ͱͷը૾ղੳٕज़ͷར༻ϋʔυϧ͕Լ •
ͱ͍͑ࣝ͋Δఔඞཁʢͱײͨ͡ʣ • Ͱ͖Δ͜ͱ • ը૾ೝࣝ / τϥοΩϯά / ମݕग़ / ը૾ੜ / etc. • Follow @mhollemans 40
ࢀߟηογϣϯ • Introducing Core ML • Core ML in depth
• Vision Framework: Building on Core ML 41
ࢀߟࢿྉ • iOS 11: Machine Learning for everyone • Google’s
MobileNets on the iPhone • YOLO: Core ML versus MPSNNGraph • CreaAve AI on the iPhone: GeneraAve Adversarial Networks (GAN) with Apple's CoreML Tools - Zedge • Why Core ML will not work for your app (most likely) • θϩ͔Β࡞ΔDeep Learning 42
Thanks! 43
ʢิʣͰ͖ͳ͍͜ͱ / ੍ͳͲ • ֶशෆՄ • αϙʔτ͍ͯ͠ΔػցֶशϑϨʔϜϫʔΫʹ͍ͭͯɺಛఆͷόʔδϣϯʹറΒΕΔʢগͳ͘ͱ ݱঢ়ʣ • Kerasͷ2.0αϙʔτೖͬͨ͠ɺࠓޙ͍͛ͯ͘ͷ͔
• ModelͷαΠζ͕େ͖͗͢Δ • RegressionͱClassifica5onͷΈʢ☓ ΫϥελϦϯάɺϥϯΩϯάֶशɺetc.ʣ • ϥϯλΠϜͰϢʔβͷೖྗɾߦಈΛModelʹөͤ͞Δ͜ͱͰ͖ͳ͍ • etc. 44