$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Core ML / Vision Frameworkを使ってできること / What can ...
Search
Shinichi Goto
June 30, 2017
Programming
3
4.4k
Core ML / Vision Frameworkを使ってできること / What can we achieve using Core ML and Vision framework
2017/06/30 WWDC - Developer's Living #lifull_wwdc
Shinichi Goto
June 30, 2017
Tweet
Share
More Decks by Shinichi Goto
See All by Shinichi Goto
WWDC18 ML Overview
_shingt
1
1.4k
Core ML 🏃 iOS Engineer
_shingt
1
610
Wantedly Peopleのスキャン画面の裏側 / Wantedly People Scanning Screen
_shingt
6
6.5k
Providing Better Feedback in Real-time Object Detection Apps
_shingt
2
1.5k
Value Types in WWDC16
_shingt
3
2.6k
debug-remote-local-notification-on-watchos
_shingt
0
11k
Server Side Swift question
_shingt
3
1.1k
Other Decks in Programming
See All in Programming
sbt 2
xuwei_k
0
300
Developing static sites with Ruby
okuramasafumi
0
310
TestingOsaka6_Ozono
o3
0
170
dotfiles 式年遷宮 令和最新版
masawada
1
790
S3 VectorsとStrands Agentsを利用したAgentic RAGシステムの構築
tosuri13
6
350
tsgolintはいかにしてtypescript-goの非公開APIを呼び出しているのか
syumai
7
2.2k
ViewファーストなRailsアプリ開発のたのしさ
sugiwe
0
500
ローカルLLMを⽤いてコード補完を⾏う VSCode拡張機能を作ってみた
nearme_tech
PRO
0
110
Cell-Based Architecture
larchanjo
0
130
FluorTracer / RayTracingCamp11
kugimasa
0
240
非同期処理の迷宮を抜ける: 初学者がつまづく構造的な原因
pd1xx
1
730
認証・認可の基本を学ぼう前編
kouyuume
0
260
Featured
See All Featured
Speed Design
sergeychernyshev
33
1.4k
Agile that works and the tools we love
rasmusluckow
331
21k
Designing Experiences People Love
moore
143
24k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
57
37k
Claude Code のすすめ
schroneko
65
200k
Design of three-dimensional binary manipulators for pick-and-place task avoiding obstacles (IECON2024)
konakalab
0
300
Making Projects Easy
brettharned
120
6.5k
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
390
Navigating Weather and Climate Data
rabernat
0
42
Transcript
Core ML / Vision Framework ΛͬͯͰ͖Δ͜ͱ ɹ 2017/06/30 WWDC -
Developer's Living @ LIFULL shingt (Shinichi Goto)
shingt (Shinichi Goto) GitHub: @shingt Twi5er: @_shingt 2
Core ML Vision Framework 3
4
Outline • Core MLͷ֓ཁ • Vision Frameworkͷ֓ཁ • Ͱ͖Δ͜ͱ /
ࣄྫհ 5
Core ML 6
ML (Machine Learning) 7
8
9
10
Core ML • ֶशࡁͷModelΛར༻ͯ͠ͷਪʹಛԽ • Core ML model format (**.mlmodel)
• Xcode͕Swi6ͷΠϯλʔϑΣΠεΛࣗಈੜ • αϯϓϧϞσϧApple͕ެ։ • Accerelate / Metal্ʹࡌ͓ͬͯΓϋΠύϑΥʔϚϯε • coremltools 11
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 12
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 13
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 14
ɹ let animalModel = AnimalModel() if let prediction = try?
animalModel.prediction(animalImage: image) { return prediction.animalType } 15
coremltools • "iOS্Ͱѻ͏ͨΊͷModelΛͲ͏༻ҙ͢Δ͔" ͷղܾࡦ • ओཁͳػցֶशπʔϧͷֶशࡁModelΛCore ML༻ͷModelม • Keras,
Caffe, scikit-learn, etc. 16
17
6/28ʹKeras 2.0αϙʔτʢൃද࣌1.2.2ͷΈͩͬͨʣ h"ps:/ /forums.developer.apple.com/thread/81196 18
Vision Framework 19
Vision Framework • Core ML্ʹࡌͬͨը૾ೝࣝɾମݕग़ͳͲͷը૾ղੳ༻ͷϑϨʔϜϫʔΫ • Detec,on • Face, Face
landmarks, Rectangle, Barcode, Text, Horizon • طଘͷͷਫ਼্ʢDeep Learningͷ׆༻ʣ • Tracking • Image Registra,on • Core MLͱͷΈ߹Θͤ 20
21
Tracking • ը૾ʢಈըʣதͷମͷ • إͷTrackingCIDetectorͰՄೳͩͬͨ • ҙͷରʹରͯ͠ͷTracking͕Մೳʹ • VisionͰͷݕग़݁Ռ •
ҙͷྖҬࢦఆ 22
23
Demo (Rectangle Detec,on + Tracking) h"ps:/ /github.com/shingt/VisionTrackerSample 24
զʑCV/MLͷΤΩεύʔτͰ͋Δඞཁͳ͍ ʢͱɺAppleηογϣϯதʹݴ͍ͬͯΔʣ 25
Կ͕Ͱ͖Δͷ͔ʁ ʢΞϓϦέʔγϣϯΤϯδχΞͱͯ͠ͷࢹ͔Βʣ 26
27
28
ࣄྫհ 29
ମݕग़ 30
31
YOLO • YOLO (You only look once) • ߴͳ͜ͱ͕ಛͷମݕग़༻ͷ χϡʔϥϧωοτϫʔΫ
• h1ps:/ /www.youtube.com/watch? v=VOC3huqHrss • ͜ΕҰൠతͳYOLO 32
• iOSࣄྫ • YOLO: Core ML versus MPSNNGraph • Core
MLΛ༻͍ͯiOS্ͰYOLOΛಈ࡞ • Tiny YOLOʢެ։͞Ε͍ͯΔModelʣΛར༻ 33
34
ը૾ੜ 35
Goodfellow, Ian J.; Pouget-Abadie, Jean; Mirza, Mehdi; Xu, Bing; Warde-Farley,
David; Ozair, Sherjil; Courville, Aaron; Bengio, Yoshua. GeneraIve Adversarial Networks. arXiv:1406.2661, 2014. 36
Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representa>on learning
with deep convolu>onal genera>ve adversarial networks. arXiv preprint arXiv:1511.06434, 2015. 37
• GAN (Genera+ve Adversarial Nets) • ֶशσʔλͱࣅͨσʔλΛੜ͢ΔϞσϧͷҰछ • iOSࣄྫ •
Crea+ve AI on the iPhone: Genera+ve Adversarial Networks (GAN) with Apple's CoreML Tools • MNISTΛσʔληοτͱͯ͠ɺCore MLΛ༻͍ͯiOS্Ͱࣈ ʢʹࣅͨʣը૾Λੜ 38
39
Summary • Core ML / Vision Framework • iOS্Ͱͷը૾ղੳٕज़ͷར༻ϋʔυϧ͕Լ •
ͱ͍͑ࣝ͋Δఔඞཁʢͱײͨ͡ʣ • Ͱ͖Δ͜ͱ • ը૾ೝࣝ / τϥοΩϯά / ମݕग़ / ը૾ੜ / etc. • Follow @mhollemans 40
ࢀߟηογϣϯ • Introducing Core ML • Core ML in depth
• Vision Framework: Building on Core ML 41
ࢀߟࢿྉ • iOS 11: Machine Learning for everyone • Google’s
MobileNets on the iPhone • YOLO: Core ML versus MPSNNGraph • CreaAve AI on the iPhone: GeneraAve Adversarial Networks (GAN) with Apple's CoreML Tools - Zedge • Why Core ML will not work for your app (most likely) • θϩ͔Β࡞ΔDeep Learning 42
Thanks! 43
ʢิʣͰ͖ͳ͍͜ͱ / ੍ͳͲ • ֶशෆՄ • αϙʔτ͍ͯ͠ΔػցֶशϑϨʔϜϫʔΫʹ͍ͭͯɺಛఆͷόʔδϣϯʹറΒΕΔʢগͳ͘ͱ ݱঢ়ʣ • Kerasͷ2.0αϙʔτೖͬͨ͠ɺࠓޙ͍͛ͯ͘ͷ͔
• ModelͷαΠζ͕େ͖͗͢Δ • RegressionͱClassifica5onͷΈʢ☓ ΫϥελϦϯάɺϥϯΩϯάֶशɺetc.ʣ • ϥϯλΠϜͰϢʔβͷೖྗɾߦಈΛModelʹөͤ͞Δ͜ͱͰ͖ͳ͍ • etc. 44