Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Optimizing for GPUs
Search
Arnaud Bergeron
April 25, 2017
Programming
0
660
Optimizing for GPUs
A bag of tricks to improve performance on the GPU and avoid the most common pitfalls.
Arnaud Bergeron
April 25, 2017
Tweet
Share
Other Decks in Programming
See All in Programming
SourceGeneratorのススメ
htkym
0
190
Smart Handoff/Pickup ガイド - Claude Code セッション管理
yukiigarashi
0
130
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
590
AI & Enginnering
codelynx
0
110
dchart: charts from deck markup
ajstarks
3
990
CSC307 Lecture 02
javiergs
PRO
1
770
AI Agent Tool のためのバックエンドアーキテクチャを考える #encraft
izumin5210
6
1.8k
Amazon Bedrockを活用したRAGの品質管理パイプライン構築
tosuri13
4
250
MUSUBIXとは
nahisaho
0
130
AgentCoreとHuman in the Loop
har1101
5
220
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.8k
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
170
Featured
See All Featured
The World Runs on Bad Software
bkeepers
PRO
72
12k
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
110
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Measuring Dark Social's Impact On Conversion and Attribution
stephenakadiri
1
120
Balancing Empowerment & Direction
lara
5
880
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
180
How to make the Groovebox
asonas
2
1.9k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
How to train your dragon (web standard)
notwaldorf
97
6.5k
Are puppies a ranking factor?
jonoalderson
1
2.7k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
Producing Creativity
orderedlist
PRO
348
40k
Transcript
Optimizing for GPUs Arnaud Bergeron
Kernels __kernel void add(__global float *a, __global float *b, __global
float *c, size_t n) { size_t i = get_global_id(0); if (i < n) c[i] = a[i] + b[i]; } __global__ void add(float *a, float *b, float *c, size_t n) { size_t i = (blockIdx.x * blockDim.x) + threadIdx.x; if (i < n) c[i] = a[i] + b[i]; } OpenCL CUDA
Unified Kernel KERNEL void add(GLOBAL_MEM ga_float *a, GLOBAL_MEM ga_float *b,
GLOBAL_MEM ga_float *c, ga_size n) { ga_size i = GID_0 * LDIM_0 + LID_0; if (i < n) c[i] = a[i] + b[i]; }
Grid, Blocks, Threads Grid Block
Scheduling Time (s) 0E+00 2E-03 4E-03 6E-03 8E-03 Local Size
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Same work (TITAN X) Same total (TITAN X) Same work (GTX 750) Same total (GTX 750)
Scheduling (2) Time (s) 1E-04 1,3E-04 1,6E-04 1,9E-04 2,2E-04 2,5E-04
Local Size 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512 544 576 608 640 672 704 736 768 800 832 864 896 928 960 992 1024 GTX 750 TITAN X
Scheduling (3) Time (s) 0,005 0,009 0,012 0,016 0,019 Global
size divisor 1 2 4 8 16 32 64 128 ls 32 ls 64 ls 736 ls 1024 ls 32 ls 64 ls 704 ls 1024 GTX 750 TITAN X
A CPU Core T0 T1 ALU Cache
A GPU Core T0 T2 ALU T1 T5 T6 T3
T4 T9 T8 T7 Cache
Blocking Operations CPU Sync Sync Sync GPU Add kernel Add
kernel CPU Sync Sync GPU Add kernel Add kernel
Blocking operations Time 1E-05 s 1E-04 s 1E-03 s 1E-02
s 1E-01 s 1E+00 s Number of loops 1 10 100 500 1000 5000 10000 Non-Blocking Blocking
Warp Divergence if (x < 0.0) z = x -
2.0; else z = sqrt(x); Divergent code Straight-line code @p = (x < 0.0); p: z = x - 2.0; !p: z = sqrt(x);
Divergent Kernel KERNEL void add(GLOBAL_MEM ga_float *a, GLOBAL_MEM ga_float *b,
GLOBAL_MEM ga_float *c, ga_size n) { ga_size i = GID_0 * LDIM_0 + LID_0; if (i < n) { if (i % 2) c[i] = a[i] + b[i]; else c[i] = asinhf(a[i]) + erfinvf(b[i]); } }
Warp Divergence (2) Time (s) 0,000 0,005 0,010 0,015 0,020
0,025 0,030 0,035 0,040 0,045 0,050 Fast Kernel Slow Kernel Divergent Kernel Baseline Compute Time
Last Kernel (simple) KERNEL void add(GLOBAL_MEM ga_float *a, ga_ssize lda,
GLOBAL_MEM ga_float *b, ga_ssize ldb, GLOBAL_MEM ga_float *c, ga_ssize ldc, ga_size M, ga_size N) { for (ga_size row = GID_1 * LDIM_1 + LID_1; row < M; row += GDIM_1 * LDIM_1) { for (ga_size col = GID_0 * LDIM_0 + LID_0; col < N; col += GDIM_0 * LDIM_0) { c[row * ldc + col] = rdA(row, col) * rdB(row, col); } } }
Last Kernel (local) KERNEL void add(GLOBAL_MEM ga_float *a, ga_ssize lda,
GLOBAL_MEM ga_float *b, ga_ssize ldb, GLOBAL_MEM ga_float *c, ga_ssize ldc, ga_size M, ga_size N) { LOCAL_MEM ga_float bufA[32][32]; LOCAL_MEM ga_float bufB[32][32]; for (ga_size row = GID_1; row < 32; row += GDIM_1) { for (ga_size col = GID_0; row < 32; row += GDIM_0) { // kernel code } } }
Inner Code (local) for (int i = 0; i <
32; i++) bufA[i][LID_0] = rdA(row*32 + i, col*32 + LID_0); for (int i = 0; i < 32; i++) bufB[i][LID_0] = rdB(row*32 + i, col*32 + LID_0); local_barrier(); for (int i = 0; i < 32; i++) { for (int j = 0; j < 32; j++) { c[(row*32 + i)*ldc + (col*32 + j)] = bufA[i][j] * bufB[i][j]; } }
Final example Time (s) 0 0,001 0,002 0,003 0,004 0,005
0,006 C order F order F order (with scheduling) C order (shared memory) F order (shared memory)