Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Optimizing for GPUs
Search
Arnaud Bergeron
April 25, 2017
Programming
0
650
Optimizing for GPUs
A bag of tricks to improve performance on the GPU and avoid the most common pitfalls.
Arnaud Bergeron
April 25, 2017
Tweet
Share
Other Decks in Programming
See All in Programming
プロダクト志向ってなんなんだろうね
righttouch
PRO
0
160
エラーって何種類あるの?
kajitack
5
300
Team topologies and the microservice architecture: a synergistic relationship
cer
PRO
0
1k
What Spring Developers Should Know About Jakarta EE
ivargrimstad
0
220
生成AIで日々のエラー調査を進めたい
yuyaabo
0
640
『自分のデータだけ見せたい!』を叶える──Laravel × Casbin で複雑権限をスッキリ解きほぐす 25 分
akitotsukahara
1
510
PHPでWebSocketサーバーを実装しよう2025
kubotak
0
120
Haskell でアルゴリズムを抽象化する / 関数型言語で競技プログラミング
naoya
17
4.9k
Create a website using Spatial Web
akkeylab
0
300
GoのGenericsによるslice操作との付き合い方
syumai
3
680
Beyond Portability: Live Migration for Evolving WebAssembly Workloads
chikuwait
0
390
DroidKnights 2025 - 다양한 스크롤 뷰에서의 영상 재생
gaeun5744
3
320
Featured
See All Featured
Practical Orchestrator
shlominoach
188
11k
Measuring & Analyzing Core Web Vitals
bluesmoon
7
490
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
331
22k
Docker and Python
trallard
44
3.4k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Producing Creativity
orderedlist
PRO
346
40k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
281
13k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
15
1.5k
Reflections from 52 weeks, 52 projects
jeffersonlam
351
20k
GitHub's CSS Performance
jonrohan
1031
460k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
Transcript
Optimizing for GPUs Arnaud Bergeron
Kernels __kernel void add(__global float *a, __global float *b, __global
float *c, size_t n) { size_t i = get_global_id(0); if (i < n) c[i] = a[i] + b[i]; } __global__ void add(float *a, float *b, float *c, size_t n) { size_t i = (blockIdx.x * blockDim.x) + threadIdx.x; if (i < n) c[i] = a[i] + b[i]; } OpenCL CUDA
Unified Kernel KERNEL void add(GLOBAL_MEM ga_float *a, GLOBAL_MEM ga_float *b,
GLOBAL_MEM ga_float *c, ga_size n) { ga_size i = GID_0 * LDIM_0 + LID_0; if (i < n) c[i] = a[i] + b[i]; }
Grid, Blocks, Threads Grid Block
Scheduling Time (s) 0E+00 2E-03 4E-03 6E-03 8E-03 Local Size
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Same work (TITAN X) Same total (TITAN X) Same work (GTX 750) Same total (GTX 750)
Scheduling (2) Time (s) 1E-04 1,3E-04 1,6E-04 1,9E-04 2,2E-04 2,5E-04
Local Size 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512 544 576 608 640 672 704 736 768 800 832 864 896 928 960 992 1024 GTX 750 TITAN X
Scheduling (3) Time (s) 0,005 0,009 0,012 0,016 0,019 Global
size divisor 1 2 4 8 16 32 64 128 ls 32 ls 64 ls 736 ls 1024 ls 32 ls 64 ls 704 ls 1024 GTX 750 TITAN X
A CPU Core T0 T1 ALU Cache
A GPU Core T0 T2 ALU T1 T5 T6 T3
T4 T9 T8 T7 Cache
Blocking Operations CPU Sync Sync Sync GPU Add kernel Add
kernel CPU Sync Sync GPU Add kernel Add kernel
Blocking operations Time 1E-05 s 1E-04 s 1E-03 s 1E-02
s 1E-01 s 1E+00 s Number of loops 1 10 100 500 1000 5000 10000 Non-Blocking Blocking
Warp Divergence if (x < 0.0) z = x -
2.0; else z = sqrt(x); Divergent code Straight-line code @p = (x < 0.0); p: z = x - 2.0; !p: z = sqrt(x);
Divergent Kernel KERNEL void add(GLOBAL_MEM ga_float *a, GLOBAL_MEM ga_float *b,
GLOBAL_MEM ga_float *c, ga_size n) { ga_size i = GID_0 * LDIM_0 + LID_0; if (i < n) { if (i % 2) c[i] = a[i] + b[i]; else c[i] = asinhf(a[i]) + erfinvf(b[i]); } }
Warp Divergence (2) Time (s) 0,000 0,005 0,010 0,015 0,020
0,025 0,030 0,035 0,040 0,045 0,050 Fast Kernel Slow Kernel Divergent Kernel Baseline Compute Time
Last Kernel (simple) KERNEL void add(GLOBAL_MEM ga_float *a, ga_ssize lda,
GLOBAL_MEM ga_float *b, ga_ssize ldb, GLOBAL_MEM ga_float *c, ga_ssize ldc, ga_size M, ga_size N) { for (ga_size row = GID_1 * LDIM_1 + LID_1; row < M; row += GDIM_1 * LDIM_1) { for (ga_size col = GID_0 * LDIM_0 + LID_0; col < N; col += GDIM_0 * LDIM_0) { c[row * ldc + col] = rdA(row, col) * rdB(row, col); } } }
Last Kernel (local) KERNEL void add(GLOBAL_MEM ga_float *a, ga_ssize lda,
GLOBAL_MEM ga_float *b, ga_ssize ldb, GLOBAL_MEM ga_float *c, ga_ssize ldc, ga_size M, ga_size N) { LOCAL_MEM ga_float bufA[32][32]; LOCAL_MEM ga_float bufB[32][32]; for (ga_size row = GID_1; row < 32; row += GDIM_1) { for (ga_size col = GID_0; row < 32; row += GDIM_0) { // kernel code } } }
Inner Code (local) for (int i = 0; i <
32; i++) bufA[i][LID_0] = rdA(row*32 + i, col*32 + LID_0); for (int i = 0; i < 32; i++) bufB[i][LID_0] = rdB(row*32 + i, col*32 + LID_0); local_barrier(); for (int i = 0; i < 32; i++) { for (int j = 0; j < 32; j++) { c[(row*32 + i)*ldc + (col*32 + j)] = bufA[i][j] * bufB[i][j]; } }
Final example Time (s) 0 0,001 0,002 0,003 0,004 0,005
0,006 C order F order F order (with scheduling) C order (shared memory) F order (shared memory)