Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Optimizing for GPUs
Search
Arnaud Bergeron
April 25, 2017
Programming
0
650
Optimizing for GPUs
A bag of tricks to improve performance on the GPU and avoid the most common pitfalls.
Arnaud Bergeron
April 25, 2017
Tweet
Share
Other Decks in Programming
See All in Programming
Rancher と Terraform
fufuhu
2
550
ProxyによるWindow間RPC機構の構築
syumai
3
1.2k
プロパティベーステストによるUIテスト: LLMによるプロパティ定義生成でエッジケースを捉える
tetta_pdnt
0
3.3k
今だからこそ入門する Server-Sent Events (SSE)
nearme_tech
PRO
3
240
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
400
ぬるぬる動かせ! Riveでアニメーション実装🐾
kno3a87
1
230
CJK and Unicode From a PHP Committer
youkidearitai
PRO
0
110
奥深くて厄介な「改行」と仲良くなる20分
oguemon
1
560
MCPとデザインシステムに立脚したデザインと実装の融合
yukukotani
4
1.4k
Kiroで始めるAI-DLC
kaonash
2
610
パッケージ設計の黒魔術/Kyoto.go#63
lufia
3
440
Amazon RDS 向けに提供されている MCP Server と仕組みを調べてみた/jawsug-okayama-2025-aurora-mcp
takahashiikki
1
110
Featured
See All Featured
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
131
19k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
358
30k
How GitHub (no longer) Works
holman
315
140k
Rails Girls Zürich Keynote
gr2m
95
14k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Site-Speed That Sticks
csswizardry
10
820
Rebuilding a faster, lazier Slack
samanthasiow
83
9.2k
GraphQLの誤解/rethinking-graphql
sonatard
72
11k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Speed Design
sergeychernyshev
32
1.1k
Gamification - CAS2011
davidbonilla
81
5.4k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
Transcript
Optimizing for GPUs Arnaud Bergeron
Kernels __kernel void add(__global float *a, __global float *b, __global
float *c, size_t n) { size_t i = get_global_id(0); if (i < n) c[i] = a[i] + b[i]; } __global__ void add(float *a, float *b, float *c, size_t n) { size_t i = (blockIdx.x * blockDim.x) + threadIdx.x; if (i < n) c[i] = a[i] + b[i]; } OpenCL CUDA
Unified Kernel KERNEL void add(GLOBAL_MEM ga_float *a, GLOBAL_MEM ga_float *b,
GLOBAL_MEM ga_float *c, ga_size n) { ga_size i = GID_0 * LDIM_0 + LID_0; if (i < n) c[i] = a[i] + b[i]; }
Grid, Blocks, Threads Grid Block
Scheduling Time (s) 0E+00 2E-03 4E-03 6E-03 8E-03 Local Size
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Same work (TITAN X) Same total (TITAN X) Same work (GTX 750) Same total (GTX 750)
Scheduling (2) Time (s) 1E-04 1,3E-04 1,6E-04 1,9E-04 2,2E-04 2,5E-04
Local Size 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512 544 576 608 640 672 704 736 768 800 832 864 896 928 960 992 1024 GTX 750 TITAN X
Scheduling (3) Time (s) 0,005 0,009 0,012 0,016 0,019 Global
size divisor 1 2 4 8 16 32 64 128 ls 32 ls 64 ls 736 ls 1024 ls 32 ls 64 ls 704 ls 1024 GTX 750 TITAN X
A CPU Core T0 T1 ALU Cache
A GPU Core T0 T2 ALU T1 T5 T6 T3
T4 T9 T8 T7 Cache
Blocking Operations CPU Sync Sync Sync GPU Add kernel Add
kernel CPU Sync Sync GPU Add kernel Add kernel
Blocking operations Time 1E-05 s 1E-04 s 1E-03 s 1E-02
s 1E-01 s 1E+00 s Number of loops 1 10 100 500 1000 5000 10000 Non-Blocking Blocking
Warp Divergence if (x < 0.0) z = x -
2.0; else z = sqrt(x); Divergent code Straight-line code @p = (x < 0.0); p: z = x - 2.0; !p: z = sqrt(x);
Divergent Kernel KERNEL void add(GLOBAL_MEM ga_float *a, GLOBAL_MEM ga_float *b,
GLOBAL_MEM ga_float *c, ga_size n) { ga_size i = GID_0 * LDIM_0 + LID_0; if (i < n) { if (i % 2) c[i] = a[i] + b[i]; else c[i] = asinhf(a[i]) + erfinvf(b[i]); } }
Warp Divergence (2) Time (s) 0,000 0,005 0,010 0,015 0,020
0,025 0,030 0,035 0,040 0,045 0,050 Fast Kernel Slow Kernel Divergent Kernel Baseline Compute Time
Last Kernel (simple) KERNEL void add(GLOBAL_MEM ga_float *a, ga_ssize lda,
GLOBAL_MEM ga_float *b, ga_ssize ldb, GLOBAL_MEM ga_float *c, ga_ssize ldc, ga_size M, ga_size N) { for (ga_size row = GID_1 * LDIM_1 + LID_1; row < M; row += GDIM_1 * LDIM_1) { for (ga_size col = GID_0 * LDIM_0 + LID_0; col < N; col += GDIM_0 * LDIM_0) { c[row * ldc + col] = rdA(row, col) * rdB(row, col); } } }
Last Kernel (local) KERNEL void add(GLOBAL_MEM ga_float *a, ga_ssize lda,
GLOBAL_MEM ga_float *b, ga_ssize ldb, GLOBAL_MEM ga_float *c, ga_ssize ldc, ga_size M, ga_size N) { LOCAL_MEM ga_float bufA[32][32]; LOCAL_MEM ga_float bufB[32][32]; for (ga_size row = GID_1; row < 32; row += GDIM_1) { for (ga_size col = GID_0; row < 32; row += GDIM_0) { // kernel code } } }
Inner Code (local) for (int i = 0; i <
32; i++) bufA[i][LID_0] = rdA(row*32 + i, col*32 + LID_0); for (int i = 0; i < 32; i++) bufB[i][LID_0] = rdB(row*32 + i, col*32 + LID_0); local_barrier(); for (int i = 0; i < 32; i++) { for (int j = 0; j < 32; j++) { c[(row*32 + i)*ldc + (col*32 + j)] = bufA[i][j] * bufB[i][j]; } }
Final example Time (s) 0 0,001 0,002 0,003 0,004 0,005
0,006 C order F order F order (with scheduling) C order (shared memory) F order (shared memory)