Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Optimizing for GPUs
Search
Arnaud Bergeron
April 25, 2017
Programming
0
660
Optimizing for GPUs
A bag of tricks to improve performance on the GPU and avoid the most common pitfalls.
Arnaud Bergeron
April 25, 2017
Tweet
Share
Other Decks in Programming
See All in Programming
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
600
Package Management Learnings from Homebrew
mikemcquaid
0
210
AIエージェント、”どう作るか”で差は出るか? / AI Agents: Does the "How" Make a Difference?
rkaga
4
2k
AI時代のキャリアプラン「技術の引力」からの脱出と「問い」へのいざない / tech-gravity
minodriven
20
6.9k
コマンドとリード間の連携に対する脅威分析フレームワーク
pandayumi
1
450
Fluid Templating in TYPO3 14
s2b
0
130
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
190
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.5k
CSC307 Lecture 01
javiergs
PRO
0
690
インターン生でもAuth0で認証基盤刷新が出来るのか
taku271
0
190
AI によるインシデント初動調査の自動化を行う AI インシデントコマンダーを作った話
azukiazusa1
1
700
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
370
Featured
See All Featured
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
AI Search: Where Are We & What Can We Do About It?
aleyda
0
6.9k
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
63
Are puppies a ranking factor?
jonoalderson
1
2.7k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
110
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Primal Persuasion: How to Engage the Brain for Learning That Lasts
tmiket
0
250
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Believing is Seeing
oripsolob
1
53
Amusing Abliteration
ianozsvald
0
96
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
133
19k
Transcript
Optimizing for GPUs Arnaud Bergeron
Kernels __kernel void add(__global float *a, __global float *b, __global
float *c, size_t n) { size_t i = get_global_id(0); if (i < n) c[i] = a[i] + b[i]; } __global__ void add(float *a, float *b, float *c, size_t n) { size_t i = (blockIdx.x * blockDim.x) + threadIdx.x; if (i < n) c[i] = a[i] + b[i]; } OpenCL CUDA
Unified Kernel KERNEL void add(GLOBAL_MEM ga_float *a, GLOBAL_MEM ga_float *b,
GLOBAL_MEM ga_float *c, ga_size n) { ga_size i = GID_0 * LDIM_0 + LID_0; if (i < n) c[i] = a[i] + b[i]; }
Grid, Blocks, Threads Grid Block
Scheduling Time (s) 0E+00 2E-03 4E-03 6E-03 8E-03 Local Size
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 Same work (TITAN X) Same total (TITAN X) Same work (GTX 750) Same total (GTX 750)
Scheduling (2) Time (s) 1E-04 1,3E-04 1,6E-04 1,9E-04 2,2E-04 2,5E-04
Local Size 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512 544 576 608 640 672 704 736 768 800 832 864 896 928 960 992 1024 GTX 750 TITAN X
Scheduling (3) Time (s) 0,005 0,009 0,012 0,016 0,019 Global
size divisor 1 2 4 8 16 32 64 128 ls 32 ls 64 ls 736 ls 1024 ls 32 ls 64 ls 704 ls 1024 GTX 750 TITAN X
A CPU Core T0 T1 ALU Cache
A GPU Core T0 T2 ALU T1 T5 T6 T3
T4 T9 T8 T7 Cache
Blocking Operations CPU Sync Sync Sync GPU Add kernel Add
kernel CPU Sync Sync GPU Add kernel Add kernel
Blocking operations Time 1E-05 s 1E-04 s 1E-03 s 1E-02
s 1E-01 s 1E+00 s Number of loops 1 10 100 500 1000 5000 10000 Non-Blocking Blocking
Warp Divergence if (x < 0.0) z = x -
2.0; else z = sqrt(x); Divergent code Straight-line code @p = (x < 0.0); p: z = x - 2.0; !p: z = sqrt(x);
Divergent Kernel KERNEL void add(GLOBAL_MEM ga_float *a, GLOBAL_MEM ga_float *b,
GLOBAL_MEM ga_float *c, ga_size n) { ga_size i = GID_0 * LDIM_0 + LID_0; if (i < n) { if (i % 2) c[i] = a[i] + b[i]; else c[i] = asinhf(a[i]) + erfinvf(b[i]); } }
Warp Divergence (2) Time (s) 0,000 0,005 0,010 0,015 0,020
0,025 0,030 0,035 0,040 0,045 0,050 Fast Kernel Slow Kernel Divergent Kernel Baseline Compute Time
Last Kernel (simple) KERNEL void add(GLOBAL_MEM ga_float *a, ga_ssize lda,
GLOBAL_MEM ga_float *b, ga_ssize ldb, GLOBAL_MEM ga_float *c, ga_ssize ldc, ga_size M, ga_size N) { for (ga_size row = GID_1 * LDIM_1 + LID_1; row < M; row += GDIM_1 * LDIM_1) { for (ga_size col = GID_0 * LDIM_0 + LID_0; col < N; col += GDIM_0 * LDIM_0) { c[row * ldc + col] = rdA(row, col) * rdB(row, col); } } }
Last Kernel (local) KERNEL void add(GLOBAL_MEM ga_float *a, ga_ssize lda,
GLOBAL_MEM ga_float *b, ga_ssize ldb, GLOBAL_MEM ga_float *c, ga_ssize ldc, ga_size M, ga_size N) { LOCAL_MEM ga_float bufA[32][32]; LOCAL_MEM ga_float bufB[32][32]; for (ga_size row = GID_1; row < 32; row += GDIM_1) { for (ga_size col = GID_0; row < 32; row += GDIM_0) { // kernel code } } }
Inner Code (local) for (int i = 0; i <
32; i++) bufA[i][LID_0] = rdA(row*32 + i, col*32 + LID_0); for (int i = 0; i < 32; i++) bufB[i][LID_0] = rdB(row*32 + i, col*32 + LID_0); local_barrier(); for (int i = 0; i < 32; i++) { for (int j = 0; j < 32; j++) { c[(row*32 + i)*ldc + (col*32 + j)] = bufA[i][j] * bufB[i][j]; } }
Final example Time (s) 0 0,001 0,002 0,003 0,004 0,005
0,006 C order F order F order (with scheduling) C order (shared memory) F order (shared memory)