Upgrade to Pro — share decks privately, control downloads, hide ads and more …

TransformerからMCPまで(現代AIを理解するための羅針盤)

Avatar for MIKIO KUBO MIKIO KUBO
October 22, 2025

 TransformerからMCPまで(現代AIを理解するための羅針盤)

Avatar for MIKIO KUBO

MIKIO KUBO

October 22, 2025
Tweet

More Decks by MIKIO KUBO

Other Decks in Programming

Transcript

  1. はじめに:現代AI を理解する旅 目的: 複雑なAI専門用語を解き明かし、6つの核心概念を一つの物語として理解 する。 旅のルート: i. Transformer: すべての始まり ii.

    LLM: 巨大なデジタル知性 iii. 生成AI: 無限の創造性 iv. RAG: 現実への接地 v. エージェントAI: 自律的な行動 vi. MCP: 協調する生態系 2
  2. AI が遂げる「三重の進化」 進化の潮流: i. 計算 (Computation) → 認知 (Cognition) ii.

    生成 (Generation) → 行動 (Action) iii. 孤立 (Siloed Systems) → 協調 (Collaborative Ecosystem) インターネットとの類似性: AIも階層的な技術スタックを形成している。 3
  3. 中核的革新:アテンション機構 発想: 文中の単語を「同時」に処理し、単語間の関連性を計算する。 仕組み: 重要な単語に「注意 (Attention)」を向け、文脈を正確に捉える。 比喩: ウェブ検索 (Query, Key,

    Value) Query (Q): 検索したい単語 (あなた) Key (K): 関連性を示す見出し (ウェブページのタイトル) Value (V): 意味そのもの (ウェブページの本文) 6
  4. 生成AI の位置づけ 生成AI とは: 学習したデータパターンに基づき、新しいオリジナルコンテンツ を生成するAIの総称。 LLM との関係: すべてのLLM は生成AI

    の一種 しかし、すべての生成AI がLLM ではない LLMは、生成AIの中で「テキスト生成」に特化したサブカテゴリー。 14
  5. テキストを超えた創造性の爆発 画像: DALL-E, Midjourney (プロンプトから画像を生成) 動画: Sora, Veo (テキストから動画を生成) 音声・音楽:

    特定の作曲家スタイルで新曲を作成 コード: 自然言語の指示からプログラムを生成 3D モデル: 建築プランやゲームキャラクターを自動生成 合成データ: プライバシーが重要な領域で訓練用データを生成 15
  6. 第4 章: RAG ( 検索拡張生成) AI を” 知ったかぶり” から” 専門家”

    へ LLMの実用化における2つの致命的な弱点を克服する技術。 i. 知識の陳腐化 (Knowledge Cutoff) ii. ハルシネーション (Hallucination) 17
  7. RAG による解決策:現実への接地 核心アイデア: LLMが回答を生成する前に、 外部の信頼できる知識ソースにア クセスさせる。 目的: LLMの回答を、リアルタイムかつ正確な情報に「 接地 (grounding)」さ

    せる。 比喩: オープンブック・テスト ( 開本試験) 通常のLLM: 記憶だけが頼りの「閉本試験」 RAG: 教科書や資料を参照できる「開本試験」 18
  8. RAG の3 ステップ・プロセス 1. 検索 (Retrieve) ユーザーの質問に基づき、外部の知識ベース(社内文書、DBなど)から関 連情報を探し出す。 2. 拡張

    (Augment) 取得した情報を、元の質問文に付け加え「拡張プロンプト」を作成する。 3. 生成 (Generate) 拡張プロンプトをLLMに渡し、提供された事実にのみ基づいて回答を生成 させる。 19
  9. エージェントの思考・行動サイクル 4つのステップを自律的に繰り返すことで、複雑なタスクを遂行する。 1. 知覚 (Perception): 環境から情報を収集する(メール、DB、Webなど)。 2. 推論と計画 (Reasoning &

    Planning): 目標をサブタスクに分解し、実行計画を 立てる。 3. 行動 (Action): 外部のツールやAPIを呼び出し、計画を実行する。 4. 省察 (Reflection): 結果を評価し、必要であれば計画を修正する。 22
  10. エージェントAI = 知性の司令塔 これまで議論してきたAI概念を統合し、指揮する「 オーケストレーター」。 脳: LLM 情報収集: RAG タスク実行:

    生成AIや外部ツール 比喩: プロジェクトマネージャー プロジェクト目標を理解し、計画を立て、専門家(他のAI)にタスクを割 り振り、進捗を管理して成功に導く。 23
  11. 第6 章: MCP (Model Context Protocol) AI エージェントを繋ぐ共通言語 新たなボトルネック: 連携したいツールごとにAPI仕様が異なり、接続が煩雑に

    なる「 ツールのバベルの塔」問題。 これを解決し、真のAIエコシステムを構築するための標準規格。 25
  12. 解決策:MCP = AI のためのUSB-C 役割: AIエージェントと外部ツールとの通信方法を標準化するオープンなプロ トコル。 比喩: AI のためのUSB-C

    ポート かつてデバイスごとに異なっていた充電ケーブルがUSB-Cで統一されたよ うに、MCPはAIとツールの接続を標準化する。 MCPに準拠していれば、どんなツールでもどんなエージェントにも「 プラ グアンドプレイ」で接続可能になる。 26
  13. MCP が拓く未来:「エージェント経済圏」 影響: MCPは、将来の「 エージェント経済圏 (Agent Economy)」の誕生を可能 にする。 HTTPがWebサイト市場を、App Storeがモバイルアプリ市場を創出したよう

    に、MCPはAIエージェントとツールの市場を創出する。 未来像: 特定タスクに特化した「専門家エージェント」が登場。 「元請けエージェント」が、市場から最適な専門家エージェントに業務を 委託し、協業して複雑な問題を解決する。 27