Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ウェブ最適化からはじめる機械学習 3章
Search
Masafumi Abeta
April 01, 2021
Science
1
90
ウェブ最適化からはじめる機械学習 3章
「ウェブ最適化からはじめる機械学習」輪講会で発表した資料です。
Masafumi Abeta
April 01, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
65
GPTモデルでキャラクター設定する際の課題
abeta
0
220
GPTをLINEで使えるようにして布教した
abeta
0
120
【Nishika】プリント基板の電子部品検出
abeta
0
220
初心者向けChatGPT入門
abeta
0
190
GPT Short Talk
abeta
0
100
拡散モデルについて少しだけ
abeta
0
31
動的計画モデル
abeta
0
130
物体追跡
abeta
0
260
Other Decks in Science
See All in Science
山形とさくらんぼに関するレクチャー(YG-900)
07jp27
1
230
深層学習を利用して 大豆の外部欠陥を判別した研究事例の紹介
kentaitakura
0
250
多次元展開法を用いた 多値バイクラスタリング モデルの提案
kosugitti
0
200
拡散モデルの概要 −§2. スコアベースモデルについて−
nearme_tech
PRO
0
690
ウェーブレットおきもち講座
aikiriao
1
800
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
10
1.6k
創薬における機械学習技術について
kanojikajino
13
4.7k
Iniciativas independentes de divulgação científica: o caso do Movimento #CiteMulheresNegras
taisso
0
400
ベイズ最適化をゼロから
brainpadpr
2
900
ICRA2024 速報
rpc
3
5.5k
Analysis-Ready Cloud-Optimized Data for your community and the entire world with Pangeo-Forge
jbusecke
0
110
位相的データ解析とその応用例
brainpadpr
1
720
Featured
See All Featured
The Pragmatic Product Professional
lauravandoore
32
6.3k
How STYLIGHT went responsive
nonsquared
95
5.2k
VelocityConf: Rendering Performance Case Studies
addyosmani
326
24k
YesSQL, Process and Tooling at Scale
rocio
169
14k
Build The Right Thing And Hit Your Dates
maggiecrowley
33
2.4k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.4k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
KATA
mclloyd
29
14k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
2
170
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Typedesign – Prime Four
hannesfritz
40
2.4k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Transcript
XX University ウェブ最適化からはじめる機械学習 3章 2021.3.30 Abeta
2 4つのデザインによるA/Bテスト 4種のデザインのパターンでコンバージョンを測定。 詳しく⾒る 今すぐ購⼊ 詳しく⾒る 今すぐ購⼊ ヒーロー画像 ボタン 表⽰回数
クリック数 クリック率 A 商品イメージ 今すぐ購⼊ 434 8 1.84% B 商品イメージ 詳しく⾒る 382 17 4.45% C サンプル写真 今すぐ購⼊ 394 10 2.54% D サンプル写真 詳しく⾒る 88 4 4.55% A B C D
3 ベイズ推定によるクリック率推定 B、D案が良さそう。 ヒーロー画像 ボタン 表⽰回数 クリック数 クリック率 A 商品イメージ
今すぐ購⼊ 434 8 1.84% B 商品イメージ 詳しく⾒る 382 17 4.45% C サンプル写真 今すぐ購⼊ 394 10 2.54% D サンプル写真 詳しく⾒る 88 4 4.55% A C B D
4 効果分析 ボタンと画像がどれくらい影響しているのか?データの⽣成過程をモデリングする。 𝛼 𝛽! 𝛽" ベースライン 画像の効果 ボタンの効果 ∼
∼ ∼ ?! = 𝜃 ∼ 𝑎 表⽰回数𝑁 ⼆項分布 クリック数 ?" ?𝟐 分布のモデリング ?" ?" 効果を結合する関数 ?𝟏 のモデリング
5 関数のモデリング 効果を線形結合し、ロジット関数でモデリングする。 ヒーロー画像 ボタン 表⽰回数 クリック数 クリック率 A 商品イメージ
今すぐ購⼊ 434 8 1.84% B 商品イメージ 詳しく⾒る 382 17 4.45% C サンプル写真 今すぐ購⼊ 394 10 2.54% D サンプル写真 詳しく⾒る 88 4 4.55% 𝒙𝟏 𝒙𝟐 𝑵 𝒂 𝒂/𝑵 A 0 0 434 8 0.0184 B 0 1 382 17 0.0445 C 1 0 394 10 0.0254 D 1 1 88 4 0.0455 ダミー変数化 𝜃 = Logistic 𝛼 + 𝛽! 𝑥! + 𝛽" 𝑥" Logistic 𝑥 = 1 1 + 𝑒%& 関数のモデリング
6 分布のモデリング 連続分布で正負の値をとり、広い値域をとれる分布として正規分布を利⽤する。 事前分布の分散のを⼤きく設定すれば、広い値をとることを許容できる。
7 統計モデル 最終的な統計モデル。 𝛼 𝛽! 𝛽" ベースライン 画像の効果 ボタンの効果 ∼
∼ ∼ Logistic 𝛼 + 𝛽!𝑥! + 𝛽"𝑥" = 𝜃 ∼ 𝑎 表⽰回数𝑁 ⼆項分布 クリック数 𝒩(𝜇2 , 𝜎2 ) 𝒩(𝜇! , 𝜎! ) 𝒩(𝜇" , 𝜎" )
8 統計モデルの推定結果 ヒーロ画像とボタンそれぞれの効果を評価できた。HDI区間は狭くなっている。 𝛽! 𝛽"
9 新たなデータに対する推定 ボタンの効果が低くなっている。 𝒙𝟏 𝒙𝟐 𝑵 𝒂 𝒂/𝑵 A 0
0 434 8 0.0184 B 0 1 382 17 0.0445 C 1 0 394 10 0.0254 D 1 1 412 4 0.0194 𝛽! 𝛽"
10 交互作⽤の追加 交互作⽤を追加してモデルを変更する。 𝛼 𝛽! 𝛽" ベースライン 画像の効果 ボタンの効果 ∼
∼ ∼ Logistic 𝛼 + 𝛽!𝑥! + 𝛽"𝑥" + 𝜸𝒙𝟏𝒙𝟐 = 𝜃 ∼ 𝑎 表⽰回数𝑁 ⼆項分布 クリック数 𝒩(𝜇2 , 𝜎2 ) 𝒩(𝜇! , 𝜎! ) 𝒩(𝜇" , 𝜎" ) 𝜸 交互作⽤の効果 ∼ 𝓝(𝝁𝟑 , 𝝈𝟑 ) 主効果
11 新たなモデルによる推定 ボタンの効果と交互作⽤の効果が認められる。 𝛽! 𝛽" 詳しく⾒る 今すぐ購⼊ 詳しく⾒る 今すぐ購⼊ A
B C D 何を詳しく⾒るのか 分かりにくい 「今すぐ購⼊」より もハードルが低い
12 で、どのモデルを選べばいいの? 交互作⽤が多すぎても解釈しにくい。相関がある項を導⼊すると推定が不安定になる。 したがってシンプルなモデルからスタートし、可視化をしつつモデルに変数を加えていくのがよい。 定量的にモデルを評価するにはWAIC(widely applicable information criterion, Watanabe-Akaike information
criterion )という指標を使⽤する。 𝜽の⾯ WAIC = 3.9 WAIC = 2.1
13 (おまけ)AIC 真の分布:𝑞(𝑥) 確率モデル:𝑝(𝑥|𝑤) 予測分布: 𝑝 𝑥 * 𝑤 ,
* 𝑤は最尤推定量。 汎化損失:𝐿(* 𝑤) = −∫ 𝑑𝑥 𝑞 𝑥 log 𝑝(𝑥|* 𝑤) ← 知りたいもの (カルバック・ライブラ−情報量: 𝐾𝐿 = ∫ 𝑑𝑥 𝑞 𝑥 log " # $ 𝑥 * 𝑤 = ∫ 𝑑𝑥 𝑞 𝑥 log 𝑞 𝑥 + 𝐺% ) 経験対数損失関数: 𝐿(* 𝑤) = − ! % ∑&'! % log 𝑝 𝑋& * 𝑤 経験対数損失関数と汎化損失の間にはバイアスがある。 AIC = − 1 𝑛 < &'! % log 𝑝 𝑋& * 𝑤 + 𝑑 𝑛 , E AIC = E 𝐿 * 𝑤 + 𝜊 1 𝑛 ただし、AICは事後分布が正規分布で近似できることを仮定している。
14 (おまけ)WAIC 真の分布:𝑞(𝑥) 確率モデル:𝑝(𝑥|𝑤) 予測分布: 𝑝 𝑥 𝑋% = ∫
𝑑𝑤 𝑝 𝑥 𝑤 𝑝 𝑤 𝑋% , 𝑋% = (𝑋! , 𝑋( , 𝑋) , … , 𝑋% )はサンプル 汎化損失:𝐺% = −∫ 𝑑𝑥 𝑞 𝑥 log 𝑝(𝑥|𝑋%) ← 知りたいもの (カルバック・ライブラ−情報量: 𝐾𝐿 = ∫ 𝑑𝑥 𝑞 𝑥 log " # $ 𝑥 𝑋% = ∫ 𝑑𝑥 𝑞 𝑥 log 𝑞 𝑥 + 𝐺) 経験損失: 𝑇% = − ! % ∑&'! % log 𝑝 𝑋& 𝑋% 汎関数分散: 𝑉 % = ∑&'! % ∫ 𝑑𝑤 log 𝑝 𝑋& 𝑤 ( 𝑝 𝑤 𝑋% − ∫ 𝑑𝑤 log 𝑝 𝑋& 𝑤 𝑝(𝑤|𝑋%) ( WAIC:𝑊 % = 𝑇% + *+! % , E 𝐺% = E 𝑊 % + 𝜊 ! %
15 (おまけ)直交計画 「交互作⽤がない」と認めれば、検証する組み合わせを減らすことが出来る。農業や製造業などの実験が⼤変 なケースでは、データの⽣成過程を仮定して、実験数を減らすことができる。 詳しく⾒る 今すぐ購⼊ 詳しく⾒る 今すぐ購⼊ A B
C D 𝜃 = Logistic 𝛼 + 𝛽!𝑥! + 𝛽"𝑥" 𝒙𝟏 𝒙𝟐 A 0 0 B 0 1 C 1 0 D 1 1