Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ウェブ最適化からはじめる機械学習 3章
Search
Masafumi Abeta
April 01, 2021
Science
1
90
ウェブ最適化からはじめる機械学習 3章
「ウェブ最適化からはじめる機械学習」輪講会で発表した資料です。
Masafumi Abeta
April 01, 2021
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
40
GPTモデルでキャラクター設定する際の課題
abeta
0
210
GPTをLINEで使えるようにして布教した
abeta
0
120
【Nishika】プリント基板の電子部品検出
abeta
0
210
初心者向けChatGPT入門
abeta
0
180
GPT Short Talk
abeta
0
99
拡散モデルについて少しだけ
abeta
0
27
動的計画モデル
abeta
0
130
物体追跡
abeta
0
250
Other Decks in Science
See All in Science
生成AI による論文執筆サポートの手引き(ワークショップ) / A guide to supporting dissertation writing with generative AI (workshop)
ks91
PRO
0
250
事業会社における 機械学習・推薦システム技術の活用事例と必要な能力 / ml-recsys-in-layerx-wantedly-2024
yuya4
3
230
ultraArmをモニター提供してもらった話
miura55
0
190
Sociovirology
uni_of_nomi
0
100
はじめてのバックドア基準:あるいは、重回帰分析の偏回帰係数を因果効果の推定値として解釈してよいのか問題
takehikoihayashi
2
740
Improving Search @scale with efficient query experimentation @BerlinBuzzwords 2024
searchhub
0
240
Machine Learning for Materials (Lecture 6)
aronwalsh
0
510
HAS Dark Site Orientation
astronomyhouston
0
5.3k
Pericarditis Comic
camkdraws
0
1.2k
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
160
機械学習による確率推定とカリブレーション/probabilistic-calibration-on-classification-model
ktgrstsh
2
240
Machine Learning for Materials (Lecture 7)
aronwalsh
0
820
Featured
See All Featured
Designing Dashboards & Data Visualisations in Web Apps
destraynor
229
52k
How STYLIGHT went responsive
nonsquared
95
5.2k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Typedesign – Prime Four
hannesfritz
40
2.4k
Reflections from 52 weeks, 52 projects
jeffersonlam
346
20k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
44
2.2k
Building Your Own Lightsaber
phodgson
103
6.1k
The Cost Of JavaScript in 2023
addyosmani
45
6.8k
Site-Speed That Sticks
csswizardry
0
27
RailsConf 2023
tenderlove
29
900
The World Runs on Bad Software
bkeepers
PRO
65
11k
Transcript
XX University ウェブ最適化からはじめる機械学習 3章 2021.3.30 Abeta
2 4つのデザインによるA/Bテスト 4種のデザインのパターンでコンバージョンを測定。 詳しく⾒る 今すぐ購⼊ 詳しく⾒る 今すぐ購⼊ ヒーロー画像 ボタン 表⽰回数
クリック数 クリック率 A 商品イメージ 今すぐ購⼊ 434 8 1.84% B 商品イメージ 詳しく⾒る 382 17 4.45% C サンプル写真 今すぐ購⼊ 394 10 2.54% D サンプル写真 詳しく⾒る 88 4 4.55% A B C D
3 ベイズ推定によるクリック率推定 B、D案が良さそう。 ヒーロー画像 ボタン 表⽰回数 クリック数 クリック率 A 商品イメージ
今すぐ購⼊ 434 8 1.84% B 商品イメージ 詳しく⾒る 382 17 4.45% C サンプル写真 今すぐ購⼊ 394 10 2.54% D サンプル写真 詳しく⾒る 88 4 4.55% A C B D
4 効果分析 ボタンと画像がどれくらい影響しているのか?データの⽣成過程をモデリングする。 𝛼 𝛽! 𝛽" ベースライン 画像の効果 ボタンの効果 ∼
∼ ∼ ?! = 𝜃 ∼ 𝑎 表⽰回数𝑁 ⼆項分布 クリック数 ?" ?𝟐 分布のモデリング ?" ?" 効果を結合する関数 ?𝟏 のモデリング
5 関数のモデリング 効果を線形結合し、ロジット関数でモデリングする。 ヒーロー画像 ボタン 表⽰回数 クリック数 クリック率 A 商品イメージ
今すぐ購⼊ 434 8 1.84% B 商品イメージ 詳しく⾒る 382 17 4.45% C サンプル写真 今すぐ購⼊ 394 10 2.54% D サンプル写真 詳しく⾒る 88 4 4.55% 𝒙𝟏 𝒙𝟐 𝑵 𝒂 𝒂/𝑵 A 0 0 434 8 0.0184 B 0 1 382 17 0.0445 C 1 0 394 10 0.0254 D 1 1 88 4 0.0455 ダミー変数化 𝜃 = Logistic 𝛼 + 𝛽! 𝑥! + 𝛽" 𝑥" Logistic 𝑥 = 1 1 + 𝑒%& 関数のモデリング
6 分布のモデリング 連続分布で正負の値をとり、広い値域をとれる分布として正規分布を利⽤する。 事前分布の分散のを⼤きく設定すれば、広い値をとることを許容できる。
7 統計モデル 最終的な統計モデル。 𝛼 𝛽! 𝛽" ベースライン 画像の効果 ボタンの効果 ∼
∼ ∼ Logistic 𝛼 + 𝛽!𝑥! + 𝛽"𝑥" = 𝜃 ∼ 𝑎 表⽰回数𝑁 ⼆項分布 クリック数 𝒩(𝜇2 , 𝜎2 ) 𝒩(𝜇! , 𝜎! ) 𝒩(𝜇" , 𝜎" )
8 統計モデルの推定結果 ヒーロ画像とボタンそれぞれの効果を評価できた。HDI区間は狭くなっている。 𝛽! 𝛽"
9 新たなデータに対する推定 ボタンの効果が低くなっている。 𝒙𝟏 𝒙𝟐 𝑵 𝒂 𝒂/𝑵 A 0
0 434 8 0.0184 B 0 1 382 17 0.0445 C 1 0 394 10 0.0254 D 1 1 412 4 0.0194 𝛽! 𝛽"
10 交互作⽤の追加 交互作⽤を追加してモデルを変更する。 𝛼 𝛽! 𝛽" ベースライン 画像の効果 ボタンの効果 ∼
∼ ∼ Logistic 𝛼 + 𝛽!𝑥! + 𝛽"𝑥" + 𝜸𝒙𝟏𝒙𝟐 = 𝜃 ∼ 𝑎 表⽰回数𝑁 ⼆項分布 クリック数 𝒩(𝜇2 , 𝜎2 ) 𝒩(𝜇! , 𝜎! ) 𝒩(𝜇" , 𝜎" ) 𝜸 交互作⽤の効果 ∼ 𝓝(𝝁𝟑 , 𝝈𝟑 ) 主効果
11 新たなモデルによる推定 ボタンの効果と交互作⽤の効果が認められる。 𝛽! 𝛽" 詳しく⾒る 今すぐ購⼊ 詳しく⾒る 今すぐ購⼊ A
B C D 何を詳しく⾒るのか 分かりにくい 「今すぐ購⼊」より もハードルが低い
12 で、どのモデルを選べばいいの? 交互作⽤が多すぎても解釈しにくい。相関がある項を導⼊すると推定が不安定になる。 したがってシンプルなモデルからスタートし、可視化をしつつモデルに変数を加えていくのがよい。 定量的にモデルを評価するにはWAIC(widely applicable information criterion, Watanabe-Akaike information
criterion )という指標を使⽤する。 𝜽の⾯ WAIC = 3.9 WAIC = 2.1
13 (おまけ)AIC 真の分布:𝑞(𝑥) 確率モデル:𝑝(𝑥|𝑤) 予測分布: 𝑝 𝑥 * 𝑤 ,
* 𝑤は最尤推定量。 汎化損失:𝐿(* 𝑤) = −∫ 𝑑𝑥 𝑞 𝑥 log 𝑝(𝑥|* 𝑤) ← 知りたいもの (カルバック・ライブラ−情報量: 𝐾𝐿 = ∫ 𝑑𝑥 𝑞 𝑥 log " # $ 𝑥 * 𝑤 = ∫ 𝑑𝑥 𝑞 𝑥 log 𝑞 𝑥 + 𝐺% ) 経験対数損失関数: 𝐿(* 𝑤) = − ! % ∑&'! % log 𝑝 𝑋& * 𝑤 経験対数損失関数と汎化損失の間にはバイアスがある。 AIC = − 1 𝑛 < &'! % log 𝑝 𝑋& * 𝑤 + 𝑑 𝑛 , E AIC = E 𝐿 * 𝑤 + 𝜊 1 𝑛 ただし、AICは事後分布が正規分布で近似できることを仮定している。
14 (おまけ)WAIC 真の分布:𝑞(𝑥) 確率モデル:𝑝(𝑥|𝑤) 予測分布: 𝑝 𝑥 𝑋% = ∫
𝑑𝑤 𝑝 𝑥 𝑤 𝑝 𝑤 𝑋% , 𝑋% = (𝑋! , 𝑋( , 𝑋) , … , 𝑋% )はサンプル 汎化損失:𝐺% = −∫ 𝑑𝑥 𝑞 𝑥 log 𝑝(𝑥|𝑋%) ← 知りたいもの (カルバック・ライブラ−情報量: 𝐾𝐿 = ∫ 𝑑𝑥 𝑞 𝑥 log " # $ 𝑥 𝑋% = ∫ 𝑑𝑥 𝑞 𝑥 log 𝑞 𝑥 + 𝐺) 経験損失: 𝑇% = − ! % ∑&'! % log 𝑝 𝑋& 𝑋% 汎関数分散: 𝑉 % = ∑&'! % ∫ 𝑑𝑤 log 𝑝 𝑋& 𝑤 ( 𝑝 𝑤 𝑋% − ∫ 𝑑𝑤 log 𝑝 𝑋& 𝑤 𝑝(𝑤|𝑋%) ( WAIC:𝑊 % = 𝑇% + *+! % , E 𝐺% = E 𝑊 % + 𝜊 ! %
15 (おまけ)直交計画 「交互作⽤がない」と認めれば、検証する組み合わせを減らすことが出来る。農業や製造業などの実験が⼤変 なケースでは、データの⽣成過程を仮定して、実験数を減らすことができる。 詳しく⾒る 今すぐ購⼊ 詳しく⾒る 今すぐ購⼊ A B
C D 𝜃 = Logistic 𝛼 + 𝛽!𝑥! + 𝛽"𝑥" 𝒙𝟏 𝒙𝟐 A 0 0 B 0 1 C 1 0 D 1 1