Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
物体追跡
Search
Masafumi Abeta
January 24, 2022
Science
0
310
物体追跡
社内勉強会で発表した資料です。
Masafumi Abeta
January 24, 2022
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
320
GPTモデルでキャラクター設定する際の課題
abeta
0
320
GPTをLINEで使えるようにして布教した
abeta
0
180
【Nishika】プリント基板の電子部品検出
abeta
0
320
初心者向けChatGPT入門
abeta
0
240
GPT Short Talk
abeta
0
130
拡散モデルについて少しだけ
abeta
0
65
動的計画モデル
abeta
0
170
特徴量記述
abeta
0
200
Other Decks in Science
See All in Science
Quelles valorisations des logiciels vers le monde socio-économique dans un contexte de Science Ouverte ?
bluehats
1
570
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
150
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
220
機械学習 - ニューラルネットワーク入門
trycycle
PRO
0
870
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
2
19k
Transport information Geometry: Current and Future II
lwc2017
0
220
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
120
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.4k
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
240
データベース14: B+木 & ハッシュ索引
trycycle
PRO
0
510
My Little Monster
juzishuu
0
210
タンパク質間相互作⽤を利⽤した⼈⼯知能による新しい薬剤遺伝⼦-疾患相互作⽤の同定
tagtag
0
110
Featured
See All Featured
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Designing Experiences People Love
moore
142
24k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.5k
The Language of Interfaces
destraynor
162
25k
Speed Design
sergeychernyshev
32
1.2k
Unsuck your backbone
ammeep
671
58k
Code Review Best Practice
trishagee
72
19k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
What’s in a name? Adding method to the madness
productmarketing
PRO
24
3.8k
Scaling GitHub
holman
463
140k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Transcript
XX University 物体追跡 2022.01.24 Abeta
2 テンプレートマッチング テンプレート画像を⾛査させて、⼀致度が⾼い箇所を検出する。動画では検出、テンプレート画像の更新を繰 り返して追跡を⾏う。 𝑆!!" (𝑥# , 𝑦# ) =
( $!%& '!() ( *!%& +!() 𝐼# 𝑥# + 𝑥, , 𝑦# + 𝑦, − 𝐼, 𝑥, , 𝑦, - 差分は⼆乗和や絶対値和を使⽤する。
3 Meanshift 探索窓内の点群の重⼼に、探索窓の中⼼を移すという処理を繰り返す。 2値画像の中の物体重⼼を求めることに使⽤し、物体を追跡する。
4 CAMshift(Continuously Adaptive Meanshift) ターゲットの⼤きさや回転に合わせて、ウィンドウの⼤きさを調整しながらMeanshiftを⾏う。 https://docs.opencv.org/4.x/d7/d00/tutorial_meanshift.html
5 カルマンフィルター カルマンフィルターは、逐次ベイズフィルターの⼀種であり、測定データからシステムの状態を推定するアル ゴリズム。 直前までの情報と、たった今取得したデータをもとに、もっとも適切な(最適な)システムの状 態を推定する⼿ 法。ただし、測定値にはノイズが乗っており、システムの状態を⽰す変数⾃ 体にもノイズが乗っているもの とする。 https://jp.mathworks.com/discovery/kalman-filter.html
https://www.avelio.co.jp/math/wordpress/?p=605 http://www1.accsnet.ne.jp/~aml00731/kalman.pdf
6 https://jp.mathworks.com/discovery/kalman-filter.html
7 粒⼦フィルター パーティクルフィルタは、複数の粒⼦にノイズをくわえながら観測データとモデルを元に内部状態を推定しく ⼿法。⾮線形なモデルに対しても適⽤でき、粒⼦の数だけ精度はよくなるが、計算量もその分増え、粒⼦数が Nのときに時間計算量はO(N)となる。 実装が簡単で様々な分野で適⽤することができるのが特徴. https://www.matsue-ct.jp/ee/index.php/ja/30-denki-menu20130501-4/denki-cat-senkoka-kenkyu/denki-cat-senkoka-kenkyu-2014/251-senkoka-kenkyu2014-8 http://www.thothchildren.com/chapter/5c7bc083ba4d5d6b2c2419ea
8 DeepSORT SeepSORTは3つの技術で構成される。 • YOLO:物体検出 • ReId(Person Re-Identification):個⼈識別 • SORT(Simple
Online Realtime Tracking):バウンディングボックスの予測 予測 𝑡 𝑡 + 1 物体認識 ⼈物の類似度と 重なりで同⼀判定
9 参考⽂献 • 中村恭之, ⼩枝正直, 上⽥悦⼦, 『OpenCVによるコンピュータビジョン・機械学習⼊⾨』, 講談社, 2017