Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
物体追跡
Search
Masafumi Abeta
January 24, 2022
Science
0
290
物体追跡
社内勉強会で発表した資料です。
Masafumi Abeta
January 24, 2022
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
240
GPTモデルでキャラクター設定する際の課題
abeta
0
290
GPTをLINEで使えるようにして布教した
abeta
0
160
【Nishika】プリント基板の電子部品検出
abeta
0
300
初心者向けChatGPT入門
abeta
0
230
GPT Short Talk
abeta
0
120
拡散モデルについて少しだけ
abeta
0
57
動的計画モデル
abeta
0
150
特徴量記述
abeta
0
190
Other Decks in Science
See All in Science
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
770
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
960
Explanatory material
yuki1986
0
350
Machine Learning for Materials (Challenge)
aronwalsh
0
310
データベース03: 関係データモデル
trycycle
PRO
1
140
論文紹介 音源分離:SCNET SPARSE COMPRESSION NETWORK FOR MUSIC SOURCE SEPARATION
kenmatsu4
0
260
学術講演会中央大学学員会府中支部
tagtag
0
290
03_草原和博_広島大学大学院人間社会科学研究科教授_デジタル_シティズンシップシティで_新たな_学び__をつくる.pdf
sip3ristex
0
510
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.6k
アナログ計算機『計算尺』を愛でる Midosuji Tech #4/Analog Computing Device Slide Rule now and then
quiver
1
210
データマイニング - コミュニティ発見
trycycle
PRO
0
110
機械学習 - pandas入門
trycycle
PRO
0
280
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Making the Leap to Tech Lead
cromwellryan
134
9.4k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
GitHub's CSS Performance
jonrohan
1031
460k
Balancing Empowerment & Direction
lara
1
490
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
229
22k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
Why Our Code Smells
bkeepers
PRO
337
57k
Building Flexible Design Systems
yeseniaperezcruz
328
39k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.9k
Designing for Performance
lara
610
69k
Transcript
XX University 物体追跡 2022.01.24 Abeta
2 テンプレートマッチング テンプレート画像を⾛査させて、⼀致度が⾼い箇所を検出する。動画では検出、テンプレート画像の更新を繰 り返して追跡を⾏う。 𝑆!!" (𝑥# , 𝑦# ) =
( $!%& '!() ( *!%& +!() 𝐼# 𝑥# + 𝑥, , 𝑦# + 𝑦, − 𝐼, 𝑥, , 𝑦, - 差分は⼆乗和や絶対値和を使⽤する。
3 Meanshift 探索窓内の点群の重⼼に、探索窓の中⼼を移すという処理を繰り返す。 2値画像の中の物体重⼼を求めることに使⽤し、物体を追跡する。
4 CAMshift(Continuously Adaptive Meanshift) ターゲットの⼤きさや回転に合わせて、ウィンドウの⼤きさを調整しながらMeanshiftを⾏う。 https://docs.opencv.org/4.x/d7/d00/tutorial_meanshift.html
5 カルマンフィルター カルマンフィルターは、逐次ベイズフィルターの⼀種であり、測定データからシステムの状態を推定するアル ゴリズム。 直前までの情報と、たった今取得したデータをもとに、もっとも適切な(最適な)システムの状 態を推定する⼿ 法。ただし、測定値にはノイズが乗っており、システムの状態を⽰す変数⾃ 体にもノイズが乗っているもの とする。 https://jp.mathworks.com/discovery/kalman-filter.html
https://www.avelio.co.jp/math/wordpress/?p=605 http://www1.accsnet.ne.jp/~aml00731/kalman.pdf
6 https://jp.mathworks.com/discovery/kalman-filter.html
7 粒⼦フィルター パーティクルフィルタは、複数の粒⼦にノイズをくわえながら観測データとモデルを元に内部状態を推定しく ⼿法。⾮線形なモデルに対しても適⽤でき、粒⼦の数だけ精度はよくなるが、計算量もその分増え、粒⼦数が Nのときに時間計算量はO(N)となる。 実装が簡単で様々な分野で適⽤することができるのが特徴. https://www.matsue-ct.jp/ee/index.php/ja/30-denki-menu20130501-4/denki-cat-senkoka-kenkyu/denki-cat-senkoka-kenkyu-2014/251-senkoka-kenkyu2014-8 http://www.thothchildren.com/chapter/5c7bc083ba4d5d6b2c2419ea
8 DeepSORT SeepSORTは3つの技術で構成される。 • YOLO:物体検出 • ReId(Person Re-Identification):個⼈識別 • SORT(Simple
Online Realtime Tracking):バウンディングボックスの予測 予測 𝑡 𝑡 + 1 物体認識 ⼈物の類似度と 重なりで同⼀判定
9 参考⽂献 • 中村恭之, ⼩枝正直, 上⽥悦⼦, 『OpenCVによるコンピュータビジョン・機械学習⼊⾨』, 講談社, 2017