Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
物体追跡
Search
Masafumi Abeta
January 24, 2022
Science
0
270
物体追跡
社内勉強会で発表した資料です。
Masafumi Abeta
January 24, 2022
Tweet
Share
More Decks by Masafumi Abeta
See All by Masafumi Abeta
Pythonのパッケージマネージャー「uv」
abeta
0
140
GPTモデルでキャラクター設定する際の課題
abeta
0
250
GPTをLINEで使えるようにして布教した
abeta
0
140
【Nishika】プリント基板の電子部品検出
abeta
0
270
初心者向けChatGPT入門
abeta
0
210
GPT Short Talk
abeta
0
110
拡散モデルについて少しだけ
abeta
0
44
動的計画モデル
abeta
0
140
特徴量記述
abeta
0
170
Other Decks in Science
See All in Science
[第62回 CV勉強会@関東] Long-CLIP: Unlocking the Long-Text Capability of CLIP / kantoCV 62th ECCV 2024
lychee1223
1
890
山形とさくらんぼに関するレクチャー(YG-900)
07jp27
1
280
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
10
2k
小杉考司(専修大学)
kosugitti
2
630
科学で迫る勝敗の法則(名城大学公開講座.2024年10月) / The principle of victory discovered by science (Open lecture in Meijo Univ. 2024)
konakalab
0
300
(論文読み)贈り物の交換による地位の競争と社会構造の変化 - 文化人類学への統計物理学的アプローチ -
__ymgc__
1
190
観察研究における因果推論
nearme_tech
PRO
1
190
論文紹介: PEFA: Parameter-Free Adapters for Large-scale Embedding-based Retrieval Models (WSDM 2024)
ynakano
0
230
大規模言語モデルの論理構造の把握能力と予測モデルの生成
fuyu_quant0
0
120
ガウス過程回帰とベイズ最適化
nearme_tech
PRO
1
260
【健康&筋肉と生産性向上の関連性】 【Google Cloudを企業で運用する際の知識】 をお届け
yasumuusan
0
510
Explanatory material
yuki1986
0
130
Featured
See All Featured
Code Review Best Practice
trishagee
67
18k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
22
2.6k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
29
2k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
How to Think Like a Performance Engineer
csswizardry
22
1.5k
Intergalactic Javascript Robots from Outer Space
tanoku
270
27k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.5k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
How GitHub (no longer) Works
holman
314
140k
Adopting Sorbet at Scale
ufuk
75
9.3k
Gamification - CAS2011
davidbonilla
81
5.2k
Transcript
XX University 物体追跡 2022.01.24 Abeta
2 テンプレートマッチング テンプレート画像を⾛査させて、⼀致度が⾼い箇所を検出する。動画では検出、テンプレート画像の更新を繰 り返して追跡を⾏う。 𝑆!!" (𝑥# , 𝑦# ) =
( $!%& '!() ( *!%& +!() 𝐼# 𝑥# + 𝑥, , 𝑦# + 𝑦, − 𝐼, 𝑥, , 𝑦, - 差分は⼆乗和や絶対値和を使⽤する。
3 Meanshift 探索窓内の点群の重⼼に、探索窓の中⼼を移すという処理を繰り返す。 2値画像の中の物体重⼼を求めることに使⽤し、物体を追跡する。
4 CAMshift(Continuously Adaptive Meanshift) ターゲットの⼤きさや回転に合わせて、ウィンドウの⼤きさを調整しながらMeanshiftを⾏う。 https://docs.opencv.org/4.x/d7/d00/tutorial_meanshift.html
5 カルマンフィルター カルマンフィルターは、逐次ベイズフィルターの⼀種であり、測定データからシステムの状態を推定するアル ゴリズム。 直前までの情報と、たった今取得したデータをもとに、もっとも適切な(最適な)システムの状 態を推定する⼿ 法。ただし、測定値にはノイズが乗っており、システムの状態を⽰す変数⾃ 体にもノイズが乗っているもの とする。 https://jp.mathworks.com/discovery/kalman-filter.html
https://www.avelio.co.jp/math/wordpress/?p=605 http://www1.accsnet.ne.jp/~aml00731/kalman.pdf
6 https://jp.mathworks.com/discovery/kalman-filter.html
7 粒⼦フィルター パーティクルフィルタは、複数の粒⼦にノイズをくわえながら観測データとモデルを元に内部状態を推定しく ⼿法。⾮線形なモデルに対しても適⽤でき、粒⼦の数だけ精度はよくなるが、計算量もその分増え、粒⼦数が Nのときに時間計算量はO(N)となる。 実装が簡単で様々な分野で適⽤することができるのが特徴. https://www.matsue-ct.jp/ee/index.php/ja/30-denki-menu20130501-4/denki-cat-senkoka-kenkyu/denki-cat-senkoka-kenkyu-2014/251-senkoka-kenkyu2014-8 http://www.thothchildren.com/chapter/5c7bc083ba4d5d6b2c2419ea
8 DeepSORT SeepSORTは3つの技術で構成される。 • YOLO:物体検出 • ReId(Person Re-Identification):個⼈識別 • SORT(Simple
Online Realtime Tracking):バウンディングボックスの予測 予測 𝑡 𝑡 + 1 物体認識 ⼈物の類似度と 重なりで同⼀判定
9 参考⽂献 • 中村恭之, ⼩枝正直, 上⽥悦⼦, 『OpenCVによるコンピュータビジョン・機械学習⼊⾨』, 講談社, 2017