Comparing origins of low-frequency quasi-periodic oscillations with spectral-timing

Comparing origins of low-frequency quasi-periodic oscillations with spectral-timing

Presented at the 16th AAS High Energy Astrophysics Division (HEAD) meeting in Sun Valley, Idaho.

Abstract: The light curves of low-mass X-ray binaries show variability on timescales from milliseconds to months. The rapid (sub-second) variability is particularly interesting because it is thought to probe the inner region of the accretion disk and the central compact object. Observations suggest that different types of low-frequency quasi-periodic oscillations (QPOs) are associated with different emitting-region geometries (e.g., disk-like or jet-like) in the innermost part of the X-ray binary, that are varying possibly due to general relativistic precession. A new way to analyze QPOs is with spectral-timing, which seeks to investigate how matter behaves in the strong gravitational field around the compact object by causally linking the variations from different spectral components. We developed a technique for phase-resolved spectroscopy of QPOs, and are applying it to two types of low-frequency QPOs from the black hole X-ray binary GX 339-4. Over a QPO “period”, we find that the energy spectrum changes not only in normalization, but also in spectral shape. We can quantify how the spectral shape changes as a function of QPO phase, and the two different QPOs show markedly different spectral changes. The "Type B" low-frequency QPO shows evidence of a large-scale-height (jet-like) power-law- emitting precessing region, while in the same outburst the "Type C" low-frequency QPO shows evidence of a small-scale-height (disk-like) power-law-emitting precessing region. These interpretations can be used to look into the evolution of matter in the strong-gravity regime.


Abbie Stevens

August 24, 2017