$30 off During Our Annual Pro Sale. View Details »

McGill: Mapping Matter in Strong Gravity

McGill: Mapping Matter in Strong Gravity

Astrophysics seminar given at the McGill Space Institute on Tuesday 11 December 2018.

Title: "Mapping Matter in Strong Gravity: Spectral-Timing of Black Holes and Neutron Stars"

Abstract: One of the best laboratories to study strong-field gravity is the inner 100s of kilometers around black holes and neutron stars in binary systems with low-mass stars like our Sun. The light curves of low-mass X-ray binaries show variability on timescales from milliseconds to months — the shorter (sub-second) variability is particularly interesting because it probes the inner region of the accretion disk and compact object. My research looks at X-ray quasi-periodic oscillations (QPOs) from black holes and neutron stars (as well as coherent X-ray pulsations from neutron stars) by fitting the phase-resolved energy spectra of these signals to constrain their physical origin and track their evolution in time. In this talk, I will present state-of-the-art “spectral-timing” analysis of QPOs from different classes of sources and different accretion states, and I will discuss how this sets the stage for future research.

Dr. Abbie Stevens

December 11, 2018
Tweet

More Decks by Dr. Abbie Stevens

Other Decks in Science

Transcript

  1. Mapping Matter in Strong Gravity: Spectral-Timing of Black Holes and

    Neutron Stars Abbie Stevens NSF Astronomy & Astrophysics Postdoctoral Fellow Michigan State University & University of Michigan [email protected] @abigailstev github.com/abigailstev
  2. Outline § Low-mass X-ray binaries, timing, spectroscopy § Quasi-periodic oscillations

    (QPOs) § Low-frequency QPOs § kHz QPOs § NICER and STROBE-X: Current and future X- ray observatories § Stingray: open-source spectral-timing software § Mental wellbeing for early-career researchers A.L. Stevens • Michigan State U. & U. Michigan
  3. Outline § Low-mass X-ray binaries, timing, spectroscopy § Quasi-periodic oscillations

    (QPOs) § Low-frequency QPOs § kHz QPOs § NICER and STROBE-X: Current and future X- ray observatories § Stingray: open-source spectral-timing software § Mental wellbeing for early-career researchers A.L. Stevens • Michigan State U. & U. Michigan
  4. A.L. Stevens • Michigan State U. & U. Michigan Image:

    NASA/CXC/M. Weiss Companion star ≲ 1 MSun Hot inner flow/ corona Compact object (BH or NS) Accretion disk Low-mass X-ray binaries
  5. A.L. Stevens • Michigan State U. & U. Michigan Low-mass

    X-ray binaries Image: NASA/CXC/M. Weiss 10 5 20 0.1 1 keV2 (Photons cm−2 s−1 keV−1) Energy (keV) Comptonized blackbody reflection Companion star ≲ 1 MSun Accretion disk Compact object (BH or NS) Hot inner flow/ corona
  6. A.L. Stevens • Michigan State U. & U. Michigan Low-mass

    X-ray binaries Image: NASA/CXC/M. Weiss 1700 1702 1704 1706 1708 1710 2000 4000 6000 8000 104 1.2×104 Count/sec T im e (s) S tart T im e 12339 7:28:14:566 S top T im e 12339 7:29:32:683 B in tim e: 0.7812E −02 s Accretion disk X-ray variability Companion star ≲ 1 MSun Hot inner flow/ corona Compact object (BH or NS)
  7. A.L. Stevens • Michigan State U. & U. Michigan Low-mass

    X-ray binaries Image: NASA/CXC/M. Weiss 10 5 20 0.1 1 keV2 (Photons cm−2 s−1 keV−1) Energy (keV) Comptonized blackbody reflection Companion star ≲ 1 MSun Accretion disk Compact object (BH or NS) Hot inner flow/ corona 1700 1702 1704 1706 1708 1710 2000 4000 6000 8000 104 1.2×104 Count/sec T im e (s) S tart T im e 12339 7:28:14:566 S top T im e 12339 7:29:32:683 B in tim e: 0.7812E −02 s X-ray variability How does matter behave in strong gravitational fields?
  8. “Soft” spectrum: strong accretion disk emission “Hard” spectrum: strong Comptonized

    emission Spectrum changes in “outburst” over weeks to months A.L. Stevens • Michigan State U. & U. Michigan Same object, different spectra Image: Done+07 1000
  9. Fourier transforms A.L. Stevens • Michigan State U. & U.

    Michigan § X-rays from BHs and NSs vary on timescales from microseconds to years § Shorter (< 1 minute) variability: Fourier analysis! § Study time domain f in the frequency domain f § Break down light curve into sine waves, take amplitude of sines at each frequency ^ Image: L. Barbosa via wikiMedia
  10. Fourier transforms A.L. Stevens • Michigan State U. & U.

    Michigan § X-rays from BHs and NSs vary on timescales from microseconds to years § Shorter (< 1 minute) variability: Fourier analysis! § Study time domain f in the frequency domain f § Break down light curve into sine waves, take amplitude of sines at each frequency ^ Problem solution solve (hard) Transformed problem Transformed solution solve (easy) Fourier transform inverse Fourier transform
  11. Applying Fourier transforms to data 1016 1018 1020 1022 1024

    5000 104 1.5×104 Count/sec Time (s) Start Time 10168 18:16:52:570 Stop Time 10168 18:17:08:180 Bin time: 0.1562E−01 s Time domain Light curve Frequency/Fourier domain Power density spectrum FOURIER TRANSFORM2 A.L. Stevens • Michigan State U. & U. Michigan Light curve broken into equal-length chunks (64 seconds), take power spectrum of each chunk, average those together
  12. X-ray variability: Hard to see by eye 1014 1016 1018

    1020 1022 5000 104 1.5×104 Count/sec Time (s) CYGNUS_X−1 Start Time 10168 18:16:52:578 Stop Time 10168 18:17:02:547 Bin time: 0.3125E−01 s A.L. Stevens • Michigan State U. & U. Michigan 1696 1698 1700 1702 1704 4000 5000 6000 7000 Count/sec Time (s) GRS1915+105 Start Time 12339 7:28:14:582 Stop Time 12339 7:28:24:542 Bin time: 0.4000E−01 s
  13. X-ray variability: Hard to see by eye 1014 1016 1018

    1020 1022 5000 104 1.5×104 Count/sec Time (s) CYGNUS_X−1 Start Time 10168 18:16:52:578 Stop Time 10168 18:17:02:547 Bin time: 0.3125E−01 s A.L. Stevens • Michigan State U. & U. Michigan 1696 1698 1700 1702 1704 4000 5000 6000 7000 Count/sec Time (s) GRS1915+105 Start Time 12339 7:28:14:582 Stop Time 12339 7:28:24:542 Bin time: 0.4000E−01 s Light curves Power density spectra Noise: Cygnus X-1 Signal: GRS 1915+105
  14. Outline § Low-mass X-ray binaries, timing, spectroscopy § Quasi-periodic oscillations

    (QPOs) § Low-frequency QPOs § kHz QPOs § NICER and STROBE-X: Current and future X- ray observatories § Stingray: open-source spectral-timing software § Mental wellbeing for early-career researchers A.L. Stevens • Michigan State U. & U. Michigan
  15. Strohmayer ‘01 § High-frequency: 100’s Hz § Hot blobs in

    Keplerian orbit at inner disk edge? § Low-frequency: ~0.1-10’s Hz § Precession of corona/hot flow? Magnetic warps in disk? Comptonized disk fluctuations? A.L. Stevens • Michigan State U. & U. Michigan Quasi-periodic oscillations (QPOs)
  16. QPOs → Damped harmonic oscillators A.L. Stevens • Michigan State

    U. & U. Michigan y = cos(⍵t) x e-bt b=0 b=0.08
  17. QPOs → Damped harmonic oscillators A.L. Stevens • Michigan State

    U. & U. Michigan y = cos(⍵t) x e-bt b=0 b=0.08 b=0.22
  18. QPOs → Damped harmonic oscillators A.L. Stevens • Michigan State

    U. & U. Michigan y = cos(⍵t) x e-bt b=0 b=0.08 b=0.22 b=0.5
  19. QPOs → Damped harmonic oscillators A.L. Stevens • Michigan State

    U. & U. Michigan y = cos(⍵t) x e-bt b=0 b=0.08 b=0.22 b=0.5 b=1.0 The stronger the damping, the wider the peak
  20. QPOs → Damped harmonic oscillators A.L. Stevens • Michigan State

    U. & U. Michigan y = cos(⍵t) x e-bt The stronger the damping, the wider the peak Astrophysics: What is the cause of the oscillation? What is the cause of the damping/dissipation? What else are we not accounting for? b=0 b=0.08 b=0.22 b=0.5 b=1.0
  21. LF QPOs: Lense-Thirring precession? × A.L. Stevens • Michigan State

    U. & U. Michigan Hot inner flow (Comptonizing region) Accretion disk Stella & Vietri ‘98; Fragile & Anninos ‘05; Schnittman, Homan & Miller ‘06; Ingram, Done & Fragile ‘09; Ingram & van der Klis ‘15; Fragile+16; Ingram+16a,b; Liska+18 Disk color pattern: Doppler shifting and boosting of emission
  22. LF QPOs: Lense-Thirring precession? Stella & Vietri ‘98; Fragile &

    Anninos ‘05; Schnittman, Homan & Miller ‘06; Ingram, Done & Fragile ‘09; Ingram & van der Klis ‘15; Fragile et al. ‘16; Ingram+16a,b × A.L. Stevens • Michigan State U. & U. Michigan Liska+18 Maybe in big jets too! Cycle = 0 Cycle = 0.25
  23. LF QPOs: Lense-Thirring precession? × A.L. Stevens • Michigan State

    U. & U. Michigan Expect changing energy spectrum on sub-QPO timescale: • Normalization • Blackbody • Iron line profile Want to: • Determine low-freq. QPO emission mechanism • Different mechanism for QPO types? Stella & Vietri ‘98; Fragile & Anninos ‘05; Schnittman, Homan & Miller ‘06; Ingram, Done & Fragile ‘09; Ingram & van der Klis ‘15; Fragile+16; Ingram+16a,b; Liska+18
  24. Quasi-periodic signals: § not coherent enough to fold light curve

    § in time domain, signal would smear out! è average together signals in frequency domain § ephemeris not needed Phase-resolved spectroscopy Periodic signals: § fold light curve at pulse period, stack signal in time domain § need to know ephemeris of source See Miller & Homan ‘05; Ingram & van der Klis ‘15; Stevens & Uttley ‘16 A.L. Stevens • Michigan State U. & U. Michigan
  25. “Type B” QPO origin Large scale height of Comptonizing region,

    weakly modulated disk illumination further out A.L. Stevens • Michigan State U. & U. Michigan Stevens & Uttley ‘16 Disk Comptonizing region § Comptonized: large variation § Blackbody: very small variation at cooler temperature § Blackbody leads Comptonized variation by ~1/3 in phase
  26. “Type C” QPO origin Image: ESA/NASA/A. Ingram Small scale height,

    strongly modulated illumination at inner edge of accretion disk A.L. Stevens • Michigan State U. & U. Michigan Stevens+ in prep. Disk Comptonizing region § Comptonized: smaller variation § Blackbody: larger variation at hotter temperature § Blackbody lags Compton- ized variation by ~1/4 in phase
  27. A.L. Stevens • Michigan State U. & U. Michigan Power

    (rms2/Hz) Elapsed time (in 64 s segments) NICER observations of MAXI J1535 Stevens+18 Dynamical power spectrum: evolution of power spectrum in time
  28. Power (rms2/Hz) Elapsed time (in 64 s segments) Broadband/band-limited noise

    Type C QPO QPO harmonic Type B or A QPO hiding here? A.L. Stevens • Michigan State U. & U. Michigan NICER observations of MAXI J1535 Stevens+18
  29. Power (rms2/Hz) Elapsed time (in 64 s segments) A.L. Stevens

    • Michigan State U. & U. Michigan Hybrid type ‘AB’ NICER observations of MAXI J1535 Stevens+18
  30. § Soft lag shape in QPO and BBN § QPO:

    20%-30% phase lag below 2 keV is ~50ms time lag § BBN: 5% phase lag below 2 keV is also ~50ms time lag! MAXI J1535 lag-energy spectrum A.L. Stevens • Michigan State U. & U. Michigan Stevens+18
  31. § Soft lag shape in QPO and BBN § QPO:

    20%-30% phase lag below 2 keV is ~50ms time lag § BBN: 5% phase lag below 2 keV is also ~50ms time lag! MAXI J1535 lag-energy spectrum A.L. Stevens • Michigan State U. & U. Michigan Stevens+18 § Compared with previous Type B QPO: predict ‘jet-like’ emitting region § But, lag sign is opposite and binary has different inclination! § Compact, smaller scale- height emitting region like Type Cs?
  32. § Most rapid variability seen from accreting compact objects; 300-1200

    Hz § Upper kHz frequencies consistent with Keplerian motion at inner accretion disk (Stella & Vietri ’99, van der Klis'06) § Spectrum of lower kHz QPO looks like “boundary layer” between accretion disk and NS surface (Gilfanov+03, Peille+15, Troyer & Cackett ’17) See also work by, e.g., Alpar, Altamirano, Barret, Berger, Bult, Cackett, Mendez, Strohmayer, Vaughan, van der Klis Figure: Sanna+14 Kilohertz (kHz) QPOs A.L. Stevens • Michigan State U. & U. Michigan NS Accretion disk (not to scale) Boundary layer
  33. § Most rapid variability seen from accreting compact objects; 300-1200

    Hz § Upper kHz frequencies consistent with Keplerian motion at inner accretion disk (Stella & Vietri ’99, van der Klis'06) § Spectrum of lower kHz QPO looks like “boundary layer” between accretion disk and NS surface (Gilfanov+03, Peille+15, Troyer & Cackett ’17) See also work by, e.g., Alpar, Altamirano, Barret, Berger, Bult, Cackett, Mendez, Strohmayer, Vaughan, van der Klis Figure: Sanna+14 High-freq. QPOs in BHs are very rare. What makes NS kHz QPOs so relatively common? → NS surface? magnetosphere? Kilohertz (kHz) QPOs A.L. Stevens • Michigan State U. & U. Michigan
  34. § Most rapid variability seen from accreting compact objects; 300-1200

    Hz § Upper kHz frequencies consistent with Keplerian motion at inner accretion disk (Stella & Vietri ’99, van der Klis'06) § Spectrum of lower kHz QPO looks like “boundary layer” between accretion disk and NS surface (Gilfanov+03, Peille+15, Troyer & Cackett ’17) See also work by, e.g., Alpar, Altamirano, Barret, Berger, Bult, Cackett, Mendez, Strohmayer, Vaughan, van der Klis Figure: Sanna+14 Change in shape of Comptonized spectrum with kHz QPO phase! Stevens+ in prep Kilohertz (kHz) QPOs A.L. Stevens • Michigan State U. & U. Michigan
  35. § Modulation in heating rate gives oscillation in boundary layer

    scale height/radius: NS surface is heated → boundary layer expands → density and heating rate fall → boundary layer contracts kHz QPO interpretation A.L. Stevens • Michigan State U. & U. Michigan See: Lee+01; Gilfanov+03; Barret13; de Avellar+13; Kumar & Misra ’14,’16; Peille+15; de Avellar+16; Cackett16; Troyer & Cackett ’17
  36. kHz QPO interpretation Kulkarni & Romanova ‘08 A.L. Stevens •

    Michigan State U. & U. Michigan See: Lee+01; Gilfanov+03; Barret13; de Avellar+13; Kumar & Misra ’14,’16; Peille+15; de Avellar+16; Cackett16; Troyer & Cackett ’17 § Modulation in heating rate gives oscillation in boundary layer scale height/radius: NS surface is heated → boundary layer expands → density and heating rate fall → boundary layer contracts § Unstable accretion regime, inner disk pushes against boundary layer, Rayleigh-Taylor instability, ‘tongues’ of accreting matter push through magnetosphere onto surface, heat surface § ‘Tongues’ rotate at ~kHz frequencies
  37. § Modulation in heating rate gives oscillation in boundary layer

    scale height/radius: NS surface is heated → boundary layer expands → density and heating rate fall → boundary layer contracts § Boundary layer rotating more rapidly than NS surface, velocity shear, Kelvin-Helmholz instability, dense spots in boundary layer, underlying NS surface heated See: Lee+01; Gilfanov+03; Barret13; de Avellar+13; Kumar & Misra ’14,’16; Peille+15; de Avellar+16; Cackett16; Troyer & Cackett ’17 kHz QPO interpretation Blinova, Bachetti & Romanova ‘14 A.L. Stevens • Michigan State U. & U. Michigan
  38. § Modulation in heating rate gives oscillation in boundary layer

    scale height/radius: NS surface is heated → boundary layer expands → density and heating rate fall → boundary layer contracts § Boundary layer rotating more rapidly than NS surface, velocity shear, Kelvin-Helmholz instability, dense spots in boundary layer, underlying NS surface heated See: Lee+01; Gilfanov+03; Barret13; de Avellar+13; Kumar & Misra ’14,’16; Peille+15; de Avellar+16; Cackett16; Troyer & Cackett ’17 kHz QPO interpretation Blinova, Bachetti & Romanova ‘14 A.L. Stevens • Michigan State U. & U. Michigan Additional possibilities? § NS g-modes or f-modes § Cepheid-like mechanism in boundary layer, trade-off between opacity and radiation Stevens+ in prep
  39. Outline § Low-mass X-ray binaries, timing, spectroscopy § Quasi-periodic oscillations

    (QPOs) § Low-frequency QPOs § kHz QPOs § NICER and STROBE-X: Current and future X- ray observatories § Stingray: open-source spectral-timing software § Mental wellbeing for early-career researchers A.L. Stevens • Michigan State U. & U. Michigan
  40. X-ray telescopes: NICER A.L. Stevens • Michigan State U. &

    U. Michigan Image: NASA § Neutron star Interior Composition ExploreR § Launched 3 June 2017, attached to Int’l Space Station § All-in-one: better timing than RXTE and AstroSat, energy resolution of XMM-Newton
  41. X-ray telescopes: NICER A.L. Stevens • Michigan State U. &

    U. Michigan Image: NASA § Neutron star Interior Composition ExploreR § Launched 3 June 2017, attached to Int’l Space Station § All-in-one: better timing than RXTE and AstroSat, energy resolution of XMM-Newton
  42. X-ray telescopes: NICER A.L. Stevens • Michigan State U. &

    U. Michigan Image: NASA § Neutron star Interior Composition ExploreR § Launched 3 June 2017, attached to Int’l Space Station § All-in-one: better timing than RXTE and AstroSat, energy resolution of XMM-Newton § Timing down to 85 ns § Energy range: 0.2-12 keV, ~100 eV resolution § Guest observer program starting in 2019! Prop. deadline Dec 20th
  43. X-ray telescopes: A.L. Stevens • Michigan State U. & U.

    Michigan X-ray Concentrator Array (0.2-12 keV) Wide Field Monitor (2-50 keV) Large Area Detector (2-30 keV) Solar panels RXTE Electronics, antenna, etc.
  44. X-ray telescopes: A.L. Stevens • Michigan State U. & U.

    Michigan RXTE Electronics, antenna, etc. Science drivers: spin distribution of BHs, accretion disk winds, disk-jet connection, NS equation of state, burst oscillations, GRBs, LIGO EM counterparts, TDEs, discovering new sources, etc! Video from NASA Mission Design Lab, April 2018 § Combines strengths of NICER and LOFT: high throughput X-ray timing with good spectroscopy § All components already at high tech. readiness level § Highly modular design
  45. X-ray telescopes: A.L. Stevens • Michigan State U. & U.

    Michigan RXTE Video from NASA Mission Design Lab, April 2018 § Combines strengths of NICER and LOFT: high throughput X-ray timing with good spectroscopy § All components already at high tech. readiness level § Highly modular design For my science: <1ms time resolution + CCD energy resolution + soft X-ray coverage è Resolve how physical components vary, where they’re located
  46. Outline § Low-mass X-ray binaries, timing, spectroscopy § Quasi-periodic oscillations

    (QPOs) § Low-frequency QPOs § kHz QPOs § NICER and STROBE-X: Current and future X- ray observatories § Stingray: open-source spectral-timing software § Mental wellbeing for early-career researchers A.L. Stevens • Michigan State U. & U. Michigan
  47. § Open-source timing and spectral-timing software (Astropy affiliated package!) §

    Stingray: Python library of analysis tools § HENDRICS: shell scripting interface § DAVE: graphical user interface § Tutorials in Jupyter(/iPython) notebooks § Well-documented, automated unit tests, 95% test coverage § Leads: D. Huppenkothen, M. Bachetti, A.L. Stevens, S. Migliari, P. Balm § Google Summer of Code students: S. Sharma* (‘18); O. Hammad and H. Rashid (‘17); U. Khan, H. Mishra, and D. Sodhi (‘16) § Other major contributors: E. Martinez Ribeiro, R. Valles Stingray A.L. Stevens • Michigan State U. & U. Michigan StingraySoftware.github.io * Student mentored by ALS
  48. Outline § Low-mass X-ray binaries, timing, spectroscopy § Quasi-periodic oscillations

    (QPOs) § Low-frequency QPOs § kHz QPOs § NICER and STROBE-X: Current and future X- ray observatories § Stingray: open-source spectral-timing software § Mental wellbeing for early-career researchers A.L. Stevens • Michigan State U. & U. Michigan
  49. Mental wellbeing is important A.L. Stevens • Michigan State U.

    & U. Michigan § There is a mental health crisis among graduate students § ~1/3 meet criteria for depression § Gender minorities had much higher rates of problems than cis-men § Work and organizational context (incl. satisfaction with mentorship/ advising) are significant predictors of mental health § Stats, tools, resources: speakerdeck.com/abigailstev § Be aware, take care of yourself, look out for friends and colleagues
  50. Summary § X-ray binaries are awesome! One of the best

    tools to study matter in strong gravitational fields § Use X-ray spectral-timing analysis to decipher emission mechanisms for QPOs § Low-freq. QPOs: precessing hot inner flow/base of jet? § kHz QPOs: oscillation in scale height/radius of neutron star boundary layer § NICER Guest Obs. proposal deadline: Dec 20th § STROBE-X: X-ray observatory for U.S. Decadal § Stingray: github.com/ StingraySoftware GitHub: abigailStev Email: [email protected] Twitter: @abigailStev ✉ A.L. Stevens • Michigan State U. & U. Michigan
  51. STROBE-X instrument parameters Effective area >5 m2 @ 6 keV

    2 Wide-Field Monitor (WFM) # of Camera Pairs 4 FOV/Camera Pair 70° × 70° FWHM Eff. Area/Camera Pair 364 cm^2 Optics 1.5-D coded mask Energy Range 2-50 keV Energy Resolution 300 eV FWHM Detector SDD (1.5D) Instrument Power (W) 92 Sensitivity (1 s) 600 mcrab Sensitivity (1 day) 2 mcrab Sky Coverage (sr) 4.12 Angular Resolution 4.3 arcmin Position Accuracy 1 arcmin Telemetry Rate (kpbs) 340 Large Area Detector (LAD) Number of Modules 60 Eff. Area per Module (cm^2) 850 Effective Area (cm^2 @ 10 keV) 51,000 Energy Range 2–30 keV Detector SDD (segmented large-area) Power per Module (W) 10 Instrument Power (W) 600 Background Rate (mcrab) 10 Background Rate (c/s) 1,480 Energy Resolution 200 – 300 eV FWHM Collimator 1° FWHM Time Resolution 10 µs Count Rate on Crab (2-30 keV) 148,020 Telem Rate on 100 mcrab (kbps) 355 X-ray Concentrator Array (XRCA) Number of XRC units 80 Eff. Area per XRCU 272 Effective Area (cm^2 @ 1.5 keV) 21,760 Energy Range 0.2–12 keV Detector SDD (single pixel) Instrument Power (W) 140 Diffuse Background (c/s) 2.2 Radiation Background (c/s) 0.1 Background Rate (c/s) 2.2 Energy Resolution 85 – 175 eV FWHM Collimator 4 arcmin FWHM Time Resolution 100 ns Count Rate on Crab (0.2-10 keV) 147,920 Telem Rate on 100 mcrab (kbps) 947 Wide-Field Monitor (WFM # of Camera Pairs 4 FOV/Camera Pair 70° × Eff. Area/Camera Pair 364 c Optics 1.5-D Energy Range 2-50 k Energy Resolution 300 e Detector SDD ( Instrument Power (W) 92 Sensitivity (1 s) 600 m Sensitivity (1 day) 2 mcr Sky Coverage (sr) 4.12 Angular Resolution 4.3 ar Position Accuracy 1 arcm Telemetry Rate (kpbs) 340
  52. Black hole QPOs and spectral states Heil+15a Hard state HIMS

    SIMS Soft state Type C QPOs Type B QPOs A.L. Stevens • Michigan State U. & U. Michigan
  53. Binary inclination dependence 1 10 QPO centroid Frequency (Hz) 2

    4 6 8 10 12 14 Fractional rms (%) 2 4 6 Fracti 2 4 6 8 10 12 14 Fractional rms (%) QPO rms (HI) QPO rms (LI) QPO rms (HI) Average QPO rms (HI) QPO rms (LI) Average QPO rms (LI) 0.1 1.0 10.0 QPO centroid Frequency (Hz) 5 10 15 20 25 Fractional rms (%) 5 10 Fracti 5 10 15 20 25 Fractional rms (%) QPO rms (HI) QPO rms (LI) QPO rms (HI) Average QPO rms (HI) QPO rms (LI) Average QPO rms (LI) 25 Type B’s: stronger face-on Type C’s: stronger edge-on (binary system inclination) A.L. Stevens • Michigan State U. & U. Michigan QPO amplitude: Schnittman+06; Motta+15 (figures); Heil+15b Lags: van den Eijnden+17
  54. § Power-law index: 18% variation § Electron Te: 16% variation

    § Seed blackbody: 11% flux variation § Tbb leads Te and power-law index by ~0.1 (10% of a QPO cycle) § Power-law index leads Te by ~0.01 kHz spectral variations A.L. Stevens • Michigan State U. & U. Michigan Stevens, Uttley, & Altamirano, in prep.
  55. § Power-law index: 18% variation § Electron Te: 16% variation

    § Seed blackbody: 11% flux variation § Tbb leads Te and power-law index by ~0.1 (10% of a QPO cycle) § Power-law index leads Te by ~0.01 kHz spectral variations A.L. Stevens • Michigan State U. & U. Michigan Stevens, Uttley, & Altamirano, in prep. Change in shape of Comptonized spectrum with kHz QPO phase! Simulations show: parameters must intrinsically lag one another!