$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
AWSで始めるサーバーレスなデータ分析基盤
Search
afooooil
October 22, 2025
0
460
AWSで始めるサーバーレスなデータ分析基盤
JAWS-UG東京 ランチタイムLT会 #28(
https://jawsug.connpass.com/event/367465/
) で発表させていただいた資料です。
afooooil
October 22, 2025
Tweet
Share
More Decks by afooooil
See All by afooooil
DynamoDBからS3(Icebergテーブル)へのZeroETLを行う
afooooil
1
88
退屈なことはAI_Agentにやらせよう
afooooil
0
180
Amazon Qとのより良い付き合い方を考える
afooooil
0
210
ZeroETLで始めるDynamoDBとS3の連携
afooooil
0
240
Featured
See All Featured
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Automating Front-end Workflow
addyosmani
1371
200k
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Keith and Marios Guide to Fast Websites
keithpitt
413
23k
Faster Mobile Websites
deanohume
310
31k
Java REST API Framework Comparison - PWX 2021
mraible
34
9k
Bash Introduction
62gerente
615
210k
The Cult of Friendly URLs
andyhume
79
6.7k
Facilitating Awesome Meetings
lara
57
6.7k
Transcript
AWSではじめるサーバーレスな データ分析基盤 株式会社モリサワ 岡田 晃 JAWS-UG東京 ランチタイムLT会 #28
自己紹介 岡田 晃 / @afooooil 所属: 株式会社モリサワ ポジション: データエンジニア /
データサイエンティスト 最近興味のある技術: Apache Iceberg, DuckDB
データを分析、活用するための基盤。 • プロダクトなどからデータを収集して、 • 扱いやすい形に加工を行い、 • BIツールなどに連携し、活用する データ分析基盤とは? 収集 加工
活用
構築、運用にかかるコストを下げたかった。 • 自分のロールはデータ分析、活用 + 基盤の整備。 ◦ サーバーレスにすることで浮くリソースを分析業務に配分できる。 サーバーレスに絶対のこだわりがあるわけではなく、要件で必要になることがあれ ば、ECSやRedshiftを利用する。 •
コスト軽減が目的でありサーバーレス化はあくまで手段である。 なぜサーバーレス?
データ分析基盤のアーキテクチャ 収集: DynamoDBのPITRをLambdaでRawデータのS3へコピー。 加工: Athenaを用いて加工して、データレイクのS3へ移動。 データレイクではApache Icebergを利用。 活用: QuickSight(BIツール)をもちいてユーザーへデータ提供。
Apache Icebergとは? Apache IcebergとはOpen Table Formatのひとつ。 - 個々のファイルの集合をあたかも一つのテーブルのように扱える。 - 従来のデータレイクにある課題を解決する次世代のフォーマットとして注目され
ている。 嬉しい特徴の一つとして、レコードの追加、更新、削除を容易に効率的に行う ことがあげられる。 ここでは紹介しませんが、Icebergには他にも様々な魅力的な機能があり ます。
Icebergは何が嬉しいか? SQLを用いてS3上のデータの追加、更新、削除が行える • INSERT, MERGE, DELETEが使える • データソースの変更の差分を継続的にデータレイクに取り込むことも可能 • 一方でS3にあるファイルを直接触らなくて良い
そのためStepFunctionsでAthenaのクエリを定期的に実行するだけで データ変換が可能になる。 Redshiftの導入も視野に入れていたが、Icebergをデータレイクに導入した。 DynamoDBからSageMaker Lakehouse(Icebergテーブル)へのZeroETL も可能になっており導入に向けて検証中
まとめ • Lambda, Athena, QuickSightなどを使うことで、AWS上でサーバレスな データ分析基盤を構築することが可能。 • Apache Icebergではデータの追加、更新、削除が効率的、容易に行うことが できる。
• Apache Icebergをデータレイクに採用することでデータレイクの構築、運用 にかかるコストを低減できる。