Upgrade to Pro — share decks privately, control downloads, hide ads and more …

ウェーブレットおきもち講座

Sponsored · Your Podcast. Everywhere. Effortlessly. Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
Avatar for aikiriao aikiriao
May 10, 2024

 ウェーブレットおきもち講座

ウェーブレットと高速ウェーブレット変換の実装までの概要

Avatar for aikiriao

aikiriao

May 10, 2024
Tweet

More Decks by aikiriao

Other Decks in Science

Transcript

  1. ΢ΣʔϒϨοτ͓͖΋ͪ – ಋೖͱ࣮૷ – aikiriao May 10, 2024 Available at:

    Source: https://github.com/aikiriao/introduction_to_wavelet 1 / 61
  2. ΋͘͡ 1. ४උ ؔ਺͸ϕΫτϧ ؔ਺ۭؒͷྫɿϑʔϦΤڃ਺ ࿈ଓ΢ΣʔϒϨοτม׵ ௚ަ΢ΣʔϒϨοτม׵ 2. ଟॏղ૾౓ղੳ (MRA)

    ଟॏղ૾౓ղੳͷ֓ཁ ଟॏղ૾౓ղੳͷ৚݅ͱੑ࣭ ߴ଎΢ΣʔϒϨοτม׵ (FWT) 3. ࣮૷ Python ʹΑΔ࣮૷ Ԡ༻ྫ 2 / 61
  3. ؔ਺ͷ಺ੵ 2 ؔ਺ f, g ͷ಺ੵΛ࣍ͰఆΊΔɿ ⟨f(·), g(·)⟩ := b

    a f(x)g(x)dx (1) g(x) : g(x) ͷෳૉڞ໾ ੵ෼ൣғ [a, b] ͸ର৅ʹΑΓมΘΔɽলུͯ͠ ⟨f, g⟩ ͱ΋ॻ͘ɽߟ͑ํ͸ɼ༗ݶ࣍ݩϕΫτϧͱ ಉ͡ɿ ⟨v, w⟩ := n (v)n (w)n 5 / 61
  4. ؔ਺ͷ಺ੵ ಺ੵʹؔ͢Δੑ࣭΋༗ݶ࣍ݩϕΫτϧͱಉ༷ ▶ ؔ਺ͷ௚ަੑɿ ؔ਺ f ͱ g ͕௚ަ ⇐⇒

    ⟨f, g⟩ = 0 (2) ▶ ؔ਺ͷϊϧϜɿ ||f||2 2 := ⟨f, f⟩ (3) 6 / 61
  5. ؔ਺ۭؒ ؔ਺ͷுΔϕΫτϧۭؒΛؔ਺ۭؒͱ͍͏ɽͨͱ ͑͹ɼϊϧϜ͕༗ݶ ||f||2 2 = ∞ −∞ |f(x)|2dx <

    ∞ ͳؔ਺ f : R → C ͷू߹͸ؔ਺ۭؒΛͳ͢ɽ͜Ε Λ L2 (R) ͱॻ͘ɽ 7 / 61
  6. ؔ਺ۭؒͷྫɿϑʔϦΤڃ਺ पظ T = 2π/ω ͷؔ਺ f ͷϑʔϦΤڃ਺ɿ  

           f(t) = ∞ n=−∞ cn exp(jnωt) cn = 1 T T/2 −T/2 f(t) exp(−jnωt)dt (4) f(t) ͷ exp(jnωt) ʹΑΔ௚ަల։ ▶ 1 √ T exp(jnωt) ͸पظ T ͷؔ਺ͷਖ਼ن௚ަج ఈ 1 ͳͷͰՄೳ 1ิ଍ͷิ୊ 5 Λࢀর 8 / 61
  7. ؔ਺ۭؒͷྫɿϑʔϦΤڃ਺ ϑʔϦΤ܎਺ cn ͸ exp ͱͷ಺ੵͷఆ਺ഒ cn = 1 √

    T ⟨f(·), 1 √ T exp(jnω·)⟩ (5) ͔ͩΒɼnω ͷप೾਺੒෼ͱͷྨࣅ౓ʹ૬౰ 9 / 61
  8. ࿈ଓ΢ΣʔϒϨοτม׵ ۭؒʹہࡏ͢Δ 2”͟͟೾”ψ Λ࢖ͬͨ৴߸෼ੳ ख๏ɽ ▶ ψ ͷ͜ͱΛ΢ΣʔϒϨοτ (Wavelet) ؔ਺ͱ

    ͍͏ ▶ ψ Λ࣌ؒ࣠ํ޲ʹεέʔϧʢ৳ͼॖΈʣ/γϑ τͨؔ͠਺Λجఈͱ͢Δ 2஫ҙɿແݶൣғͰ஋Λ࣋ͭ΋ͷ΋͋Δ 10 / 61
  9. ྫɿϋʔϧ΢ΣʔϒϨοτψH -1 0 1 -5 -4 -3 -2 -1 0

    1 2 3 4 5 psi(t) t Haar wavelet ψH (t) :=    1 (0 ≤ t < 1 2 ) −1 (1 2 ≤ t < 1) 0 otherwise 11 / 61
  10. ྫɿϝΩγΧϯϋοτ΢ΣʔϒϨοτ -1 0 1 -5 -4 -3 -2 -1 0

    1 2 3 4 5 psi(t) t Mexican hat wavelet ψ(t) := (1 − t2) exp(−t2) 12 / 61
  11. ྫɿγϟϊϯ΢ΣʔϒϨοτ -1 0 1 -5 -4 -3 -2 -1 0

    1 2 3 4 5 psi(t) t Shanon wavelet ψ(t) := 2sinc(2t) − sinc(t) sinc(t) := sin(πt) πt 13 / 61
  12. Կނ΢ΣʔϒϨοτΛ࢖͏ͷ͔ʁ ▶ ϑʔϦΤڃ਺͸࣌ؒతʹہࡏ͢Δ৴߸ͷղੳ ͸ۤख ▶ ϑʔϦΤڃ਺͸ఆৗͳ৴߸ʢࡾ֯ؔ਺ʣʹΑΔج ఈ෼ղख๏ ▶ ࣌ؒͷζϨ͸Ґ૬ΛͣΒ͢͜ͱʹΑΓදݱ ▶

    ϑʔϦΤղੳͩͱݫ͍͠έʔεͷྫ 1. ୯ҰΠϯύϧε͸શप೾਺Ͱ܎਺͕౳͘͠ͳΓɼ Ͳ͜ʹΠϯύϧε͕͋Δ͔ෆ໌ 2. प೾਺͕࣌ؒʹԠͯ͡มԽ͢Δ৔߹ʢྫɿεΠʔ ϓ৴߸ʣ΋ɼप೾਺͸ղੳ۠ؒͰҰఆͱͯ͠ղੳ ΢ΣʔϒϨοτ͸ɼجఈͷதʹ࣌ؒతͳہࡏੑΛ ೖΕͯ໰୊ղܾΛਤΔ 14 / 61
  13. ࿈ଓ΢ΣʔϒϨοτม׵ ψ ʹ࣌ؒεέʔϧͱγϑτม׵Λࢪͨؔ͠਺Λ ψa,b (t) := 1 √ a ψ

    t − b a (6) ͱॻ͘ɽa ͸εέʔϧɼb ͸γϑτҐஔΛઃఆɽ 1/ √ a ͸ϊϧϜΛอͭͨΊͷఆ਺ 3 3ʢݕࢉʣs = (t − b)/a ͱஔ׵ੵ෼͢Ε͹ɼ ||ψa,b||2 2 = ∞ −∞ 1 a ψ t − b a ψ t − b a dt = 1 a ∞ −∞ ψ(s)ψ(s)ads = ||ψ||2 2 15 / 61
  14. ྫɿϋʔϧ΢ΣʔϒϨοτ -2 -1 0 1 2 -1 0 1 2

    3 4 5 6 7 8 9 10 psi(t) t a=1, b=0 a=0.25, b=3 a=4, b=5 16 / 61
  15. ࿈ଓ΢ΣʔϒϨοτม׵ ؔ਺ f ͷ࿈ଓ΢ΣʔϒϨοτม׵ F(a, b) ͸ɼf ͱ ψa,b ͷ಺ੵʹΑͬͯಘΒΕΔɿ

    F(a, b) := ∞ −∞ f(t)ψa,b (t)dt (7) = ⟨f(·), ψa,b (·)⟩ ม׵ઌ͸εέʔϧ a ͱγϑτ b ͷ 2 ࣠ʢεέϩά ϥϜͱ͍͏ʣ ▶ ϑʔϦΤม׵ͷҰൠԽʢψa,b (t) = exp(jat)ʣ ʹ૬౰ 17 / 61
  16. ΢ΣʔϒϨοτͷ཭ࢄԽ ψa,b ʢࣜ (6)ʣͷεέʔϧ a ͱγϑτ b Λ a =

    2−m, b = n2−m ͱ੔਺ m, n ∈ Z Ͱ཭ࢄԽͯ͠ 4ɼ ψm,n (t) := 1 √ 2−m ψ t − n2−m 2−m = 2m 2 ψ(2mt − n) (8) ͱॻ͘ɽ 4จݙʹΑͬͯ͸ m ͷූ߸͕ٯస͍ͯ͠ΔͷͰ஫ҙʂ 18 / 61
  17. ௚ަ΢ΣʔϒϨοτม׵ ΋͠ɼψm,n (t) ͕ਖ਼ن௚ަجఈΛͳ͢ ∀i, j, k, l ∈ Z.

    ⟨ψi,j , ψk,l ⟩ = δik δjl ͳΒ͹ 5ɼ೚ҙͷ৴߸ x ∈ L2 (R) Λ΢ΣʔϒϨο τల։܎਺ Xm,n = ⟨x, ψm,n ⟩ Λ༻͍ͯ x(t) = m,n Xm,n ψm,n (t) (9) ͱల։Ͱ͖Δɽ͜ΕΛ௚ަ΢ΣʔϒϨοτม׵ͱ ͍͏ɽ 5εέʔϧ/γϑτͷ྆ํͰਖ਼ن௚ަ 19 / 61
  18. ଟॏղ૾౓ղੳ(MRA)ͷ֓ཁ ଟॏղ૾౓ղੳ (MRA6) ͸௚ަ΢ΣʔϒϨοτม ׵ͷख๏ͷͻͱͭɽ εέʔϧ M ͷ৴߸ f(M)(t) Λ

    1 ͭεέʔϧͷམͱ ͨ͠৴߸ f(M−1)(t) ͱޡࠩ৴߸ g(M−1)(t) ͷ࿨Ͱද ͢͜ͱΛߟ͑Δɿ f(M)(t) = f(M−1)(t) + g(M−1)(t) (10) M ͸εέʔϧͷࡉ͔͞ɽେ͖͘ͱΕ͹ͲΜͳ৴߸ Ͱ΋ۙࣅͰ͖Δɽ 6MultiResolution Analysis 21 / 61
  19. ଟॏղ૾౓ղੳ(MRA)ͷ֓ཁ ࣜ (10) Λ܁Γฦ͠ద༻͍ͯ͘͠ͱɼ f(M)(t) = f(M−1)(t) + g(M−1)(t) =

    f(M−2)(t) + g(M−1)(t) + g(M−2)(t) = ... = f(J)(t) + M−1 m=J g(m)(t) (11) ೚ҙͷεέʔϧ J < M ·Ͱ৴߸Λ෼ղͰ͖Δʂ 22 / 61
  20. ଟॏղ૾౓ղੳ(MRA) MRA ͸࣍ͷ෦෼ۭؒ Vm ͱؔ਺ ϕ Vm := n cn

    ϕm,n (t) cn ∈ l2 (Z) (12) ϕm,n (t) := 2m 2 ϕ(2mt − n) (13) Λجʹߏ੒͞ΕΔ 78ɽϕ ΛεέʔϦϯάؔ਺ (scaling function) ͱ͍͏ɽ 7l2 (Z) ͸ೋ৐૯࿨Մೳͳ਺ྻ ( n |cn |2 < ∞) ͷू߹ 8จݙʹΑͬͯ͸ m ͷූ߸͕ٯస͍ͯ͠ΔͷͰ஫ҙʂ 24 / 61
  21. MRAͷຬͨ͢΂͖৚݅ I MRA ͸ɼू߹ Vm ʹରͯ͠ҎԼͷ৚݅ (M1)-(M4) Λཁٻ͢Δ 9ɿ (M1)

    V0 ͸ਖ਼ن௚ަجఈ {ϕ(t − n)|n ∈ Z}, ϕ ∈ L2 (R) ʹΑͬͯுΒΕΔ 25 / 61
  22. MRAͷຬͨ͢΂͖৚݅ II M1 ͓ؾ࣋ͪ εέʔϦϯάؔ਺ ϕ ͸੔਺γϑτʹؔͯ͠ਖ਼ن ௚ަجఈͱͳΔ͜ͱΛཁٻɿ ⟨ϕ(· −

    n), ϕ(· − m)⟩ = δnm (M1) ͕੒ཱ͢Ε͹ɼ೚ҙͷ m, p, q ∈ Z ʹର͠ɼ ⟨ϕm,p , ϕm,q ⟩ = ∞ −∞ 2m 2 ϕ(2mt − p)2m 2 ϕ(2mt − q)dt = 2m ∞ −∞ ϕ(2mt − p)ϕ(2mt − q)dt = ∞ −∞ ϕ(s − p)ϕ(s − q)ds (s = 2mt) = δpq ʢ∵ ϕ ͸γϑτʹؔͯ͠ਖ਼ن௚ަʣ ͔ͩΒɼV0 ͑͞ఆ·Ε͹શͯͷ Vm ͕ுΒΕΔɽ 26 / 61
  23. MRAͷຬͨ͢΂͖৚݅ III (M2) Vm ⊂ Vm+1 M2 ͓ؾ࣋ͪ Vm ͸ೖΕࢠߏ଄Λͳ͢ɽ

    εέʔϧ m Λ্͛ΔͱදݱՄೳͳ৴߸͕૿͑Δ 27 / 61
  24. MRAͷຬͨ͢΂͖৚݅ IV (M3) m Vm = L2 (R)ʢAɿू߹ A ͷดแʣ

    M3 ͓ؾ࣋ͪ lim m→∞ Vm = L2 (R) Ͱ͋Δ͜ͱɼͭ·ΓɼL2 (R) ͷ ͲΜͳ৴߸Ͱ͋ͬͯ΋೚ҙͷਫ਼౓ͰۙࣅͰ͖Δ (M4) m Vm = {0} M4 ͓ؾ࣋ͪ lim m→−∞ Vm = {0} Ͱ͋Δ͜ͱɼͭ·Γɼεέʔϧ Λۃݶ·Ͱམͱ͢ͱ Vm ʹؚ·ΕΔ৴߸͸ఆ஋ؔ ਺ 0 ͷΈʹͳΔ 9ͳͥ͜ͷཁٻ (M1)-(M4) Ͱྑ͍͔͸ׂѪɽ[1, 2] Λࢀরͷ͜ͱ 28 / 61
  25. ྫɿϋʔϧ΢ΣʔϒϨοτψH ψH ʹରԠ͢ΔεέʔϦϯάؔ਺ ϕH ϕH (t) := 1 (0 ≤

    t < 1) 0 otherwise ϕHm,n (t) := 2m 2 ϕH (2mt − n) ͱ͔͘ɽ 0 1 2 -1 0 1 2 3 4 5 6 7 8 9 10 phi(t) t m=0, n=0 m=2, n=8 m=-2, n=1 29 / 61
  26. ྫɿϋʔϧ΢ΣʔϒϨοτψH ϕH ͕৚݅ (M1)-(M4) Λຬ͔ͨ͢νΣοΫ (M1) a, b ∈ Z

    ʹରͯ͠ɼ ⟨ϕH (· − a), ϕH (· − b)⟩ = ∞ −∞ ϕH (t − a)ϕH (t − b)dt = ∞ −∞ ϕH (s)ϕH (s + a − b)ds (s = t − a) = δab ͳͷͰ {ϕH (t − n)|n ∈ Z} ͸ਖ਼ن௚ަجఈɽ 30 / 61
  27. ྫɿϋʔϧ΢ΣʔϒϨοτψH (M2) ೚ҙͷ m, n ∈ Z ʹରͯ͠ɼ ϕHm,n (t)

    = 2m 2 2−mn ≤ t < 2−m(n + 1) 0 otherwise ϕHm+1,2n (t) = 2m+1 2 2−(m+1)2n ≤ t < 2−(m+1)(2n + 1) 0 otherwise = 2m+1 2 2−mn ≤ t < 2−m(n + 1 2 ) 0 otherwise ͔ͩΒɼ೚ҙͷ ϕHm,n ∈ Vm ͸ ϕHm+1,2n , ϕHm+1,2n+1 ∈ Vm+1 Λ༻͍ͯ ϕHm,n (t) = 2−1 2 ϕHm+1,2n (t) + 2−1 2 ϕHm+1,2n+1 (t) (14) ͱදͤΔɽΑͬͯ Vm ⊂ Vm+1 ɽ 31 / 61
  28. ྫɿϋʔϧ΢ΣʔϒϨοτψHʢઆ໌͸লུʣ (M3) lim m→∞ ϕHm,0 (t) = δ(t)ʢδ(t)ɿΠϯύϧεؔ਺ʣͷ؍࡯ ͔Βɼ lim

    m→∞ Vm ͸Πϯύϧεؔ਺Λ࣌ؒγϑτͨ͠ू ߹ͱͳΔɽ೚ҙͷ f ∈ L2 (R)ɼs ∈ R ʹରͯ͠ δ(t − s) ∈ lim m→∞ Vm ͕ଘࡏͯ͠ɼ ⟨f(·), δ(· − s)⟩ = ∞ −∞ f(t)δ(t − s)dt = f(s) ͔ͩΒɼf ∈ lim m→∞ Vm Ͱ L2 (R) ⊂ lim m→∞ Vm ɽҰํɼ ϕHm,n ∈ L2 (R) ͔ͩΒ L2 (R) ⊃ lim m→∞ Vm ɽैͬͯɼ lim m→∞ Vm = L2 (R)ɽ (M4) lim m→−∞ ϕHm,n (t) = 0 ΑΓ͔֬ʹ lim m→−∞ Vm ͸ 0 ؚ͔͠·ͳ͍ɽ 32 / 61
  29. Dilationํఔࣜʢπʔεέʔϧؔ܎ʣ (M2) ͕੒ཱ͢Ε͹ V−1 ⊂ V0 ɽΑͬͯ ϕ(t/2) ∈ V−1

    ͸ V0 ͷجఈ {ϕ(t − n)|n ∈ Z} ͷઢܗ݁߹Ͱදݱ Ͱ͖ɼ ϕ(t/2) = √ 2 n h[n]ϕ(t − n) (15) Λຬͨ͢܎਺ {h[n]} ͕ଘࡏ͢Δ 10ɽ͜ΕΛ Dilation ํఔࣜͱ͔πʔεέʔϧؔ܎ͱݺͿɽ 10 √ 2 ͸ن֨Խఆ਺ 33 / 61
  30. MRAͷ΢ΣʔϒϨοτؔ਺ (M2) ΑΓ Vm ⊂ Vm+1 ͔ͩΒɼVm ⊕ Wm =

    Vm+1 ʢ⊕ɿ௚࿨ʣͱͳΔ Wm ͕ଘࡏ͢Δɿ 34 / 61
  31. MRAͷ΢ΣʔϒϨοτؔ਺ Wm = Vm+1 ⊖ Vm ΑΓɼWm ͸εέʔϧ m ͷ

    ΢ΣʔϒϨοτ͔ΒுΒΕΔΑ͏ʹఆΊΔɿ Wm := n cn ψm,n (t) cn ∈ l2 (Z) (16) ͜ͷͱ͖ɼWm ͸ Vm ⊥ Wm 11 Λຬ͞ͳ͚Ε͹ͳΒ ͳ͍ɽͦͷ੒ཱ৚݅Λݟ͍ͯ͘ɽ 11Vm , Wm ͦΕͧΕ͔ΒબΜͩ೚ҙͷݩʢؔ਺ʣ͕௚ަ͍ͯ͠Δ 35 / 61
  32. MRAͷ΢ΣʔϒϨοτؔ਺ W−1 ⊂ V0 ͔ͩΒɼψ(t/2) ∈ W−1 ΋ V0 ͷجఈ

    {ϕ(t − n)|n ∈ Z} ͷઢܗ݁߹Ͱදͤͯɼ ψ(t/2) = √ 2 n g[n]ϕ(t − n) (17) Λຬͨ͢܎਺ {g[n]} ͕ଘࡏ͢Δɽ 36 / 61
  33. MRAͷ΢ΣʔϒϨοτؔ਺ ͜ͷͱ͖ɼ g[n] = (−1)nh[1 − n] (18) ͱ͢Ε͹ Vm

    ⊥ Wm ͕ຬͨ͞ΕΔ 12ɽ ⇒ ඞཁͳͷ͸ {h[n]} ͚ͩʂ༗໊ͳ΢ΣʔϒϨο τ͸ {h[n]} ͷ਺ද͕༩͑ΒΕ͍ͯΔʂ 12ূ໌͸௕͘ͳΔɽิ଍ʹͯड़΂Δʢܥ 1ʣ 37 / 61
  34. ྫɿϋʔϧ΢ΣʔϒϨοτ ࣜ (14) ʹ͓͍ͯ m = −1, n = 0

    ͱ͓͘ͱɼ ϕH−1,0 (t) = 2−1 2 ϕH0,0 (t) + 2−1 2 ϕH0,1 (t) ⇐⇒ 2−1 2 ϕH (t/2) = 2−1 2 ϕH (t) + 2−1 2 ϕH (t − 1) ⇐⇒ ϕH (t/2) = ϕH (t) + ϕH (t − 1) Dilation ํఔࣜʢࣜ (15)ʣͱݟൺ΂Δͱ h[0] = h[1] = 2−1 2 ࣜ (18) ʹΑΓ g[0] = 2−1 2 , g[1] = −2−1 2 ͕ಘΒΕɼ ψH (t/2) = ϕH (t) − ϕH (t − 1) ϕH ͔Β ψH ͕ಘΒΕͨɽ 38 / 61
  35. MRAͷ௚ަ΢ΣʔϒϨοτม׵ Vm ⊕ Wm = Vm+1 Λ܁Γฦ͠ద༻͢Δͱɼ Vm = Vm−1

    ⊕ Wm−1 = Vm−2 ⊕ Wm−2 ⊕ Wm−1 = ... = VJ ⊕ WJ ⊕ WJ−1 ⊕ · · · ⊕ Wm−1 (J < m) = VJ ⊕ m−1 k=J Wk ͱॻ͚Δɽm → ∞ ͱ͢Δͱɼ lim m→∞ Vm = VJ ⊕ ∞ k=J Wk (19) 39 / 61
  36. MRAͷ௚ަ΢ΣʔϒϨοτม׵ ೚ҙͷ x(t) ∈ L2 (R) ͸ҎԼͷΑ͏ʹ௚ަల։Ͱ͖ Δ 13ɿ x(t)

    = n pJ [n]ϕJ,n (t) ∈VJ + ∞ m=J n qm [n]ψm,n (t) ∈Wm (20) ͜͜Ͱɼpm [n] = ⟨x, ϕm,n ⟩, qm [n] = ⟨x, ψm,n ⟩ɽ 13∵ ࣜ (19)ɼ(M3)ʢlimm→∞ Vm = L2 (R)ʣ ɼVm ⊥ Wm (m ∈ Z) ΑΓ 40 / 61
  37. MRAͷ௚ަ΢ΣʔϒϨοτม׵ εέʔϧ M > J Ҏ্ͷ੒෼Λແࢹ͢ΔͱҎԼͷ ۙࣅ͕੒Γཱͭɿ x(t) ≈ n

    pJ [n]ϕJ,n (t) + M−1 m=J n qm [n]ψm,n (t) (21) ͜͜Ͱɼf(m)(t) := n pm [n]ϕm,n (t)ɼ g(m)(t) := n qm [n]ψm,n (t) ͱ͢Δͱ x(t) ≈ f(J)(t) + M−1 m=J g(m)(t) ࣜ (11) ͦͷ΋ͷɿଟॏղ૾౓ղੳΛߏ੒ͯ͠ ͍Δɽ 41 / 61
  38. FWTͷಋग़ʢల։ʣ ࣜ (20) ͷల։܎਺ pm [n], qm [n] ͸ h[n],

    g[n] Λ༻͍ ͯܭࢉͰ͖Δɽ ิ୊ 1 (ల։ܭࢉ) pm [n] = k h[k − 2n]pm+1 [k] (22) qm [n] = k g[k − 2n]pm+1 [k] (23) ৞ΈࠐΈԋࢉͱؒҾ͖ʹͳ͍ͬͯΔ͜ͱʹ஫໨ʂ 42 / 61
  39. FWTͷಋग़ʢల։ʣ ʢূ໌ʣ४උͱͯ͠ɼDilation ํఔࣜʢࣜ (15)ʣ͔Βಋ͔ΕΔؔ܎ࣜʹண໨͢Δɽ ϕm,n(t) = 2 m 2 ϕ(2mt

    − n) = 2 m 2 ϕ 2m+1t − 2n 2 = 2 m 2 √ 2 k h[k]ϕ(2m+1t − 2n − k) ʢ∵ Dilation ํఔࣜʣ = k h[k]2 m+1 2 ϕ(2m+1 − 2n − k) = k h[k]ϕm+1,2n+k(t) (24) ψm,n ʹؔͯ͠΋ಉ༷ʹͯ͠ɼࣜ (17) ͔Βɼ ψm,n(t) = k g[k]ϕm+1,2n+k(t) (25) ೚ҙͷ x(t) ∈ L2(R) ΛͱΔɽࣜ (24)ɼࣜ (25) Λ༻͍Δͱɼ pm[n] = ⟨x, ϕm,n⟩ = ⟨x, k h[k]ϕm+1,2n+k⟩ = k h[k]⟨x, ϕm+1,2n+k⟩ = k h[k]pm+1[2n + k] = k h[k − 2n]pm+1[k] (k ← 2n + k) qm[n] = ⟨x, ψm,n⟩ = ⟨x, k g[k]ϕm+1,2n+k⟩ = k g[k − 2n]pm+1[k] 43 / 61
  40. FWTͷಋग़ʢ࠶ߏ੒ʣ ٯʹɼpm [n], qm [n] ͔Β pm+1 [n] Λ࠶ߏ੒Ͱ͖Δɽ ิ୊

    2 (࠶ߏ੒ܭࢉ) pm+1 [n] = k h[n − 2k]pm [k] + k g[n − 2k]qm [k] (26) ࣜ (22)ɼࣜ (23)ɼࣜ (26) ʹΑΔஞ࣍తͳల։ɾ࠶ ߏ੒ΞϧΰϦζϜΛߴ଎΢ΣʔϒϨοτม׵ (FWT, Fast Wavelet Transform) ͱ͍͏ɽ 44 / 61
  41. FWTͷಋग़ʢ࠶ߏ੒ʣ ʢূ໌ʣpm+1[n] ͷఆٛͱ x ͷ௚ަల։ࣜʢࣜ (20)ʣΑΓɼ pm+1[n] = ⟨x, ϕm+1[n]⟩

    = ⟨ k pm[k]ϕm,k + ∞ t=m k qt[k]ψt,k, ϕm+1,n⟩ = k pm[k]⟨ϕm,k, ϕm+1,n⟩ + ∞ t=m k qt[k]⟨ψt,k, ϕm+1,n⟩ ͜͜Ͱɼࣜ (24) ΑΓɼ ⟨ϕm,k, ϕm+1,n⟩ = ⟨ l h[l]ϕm+1,2k+l, ϕm+1,n⟩ = ⟨ s h[s − 2k]ϕm+1,s, ϕm+1,n⟩ (s = 2k + l) = s h[s − 2k]⟨ϕm+1,s, ϕm+1,n⟩ = s h[s − 2k]δsn ʢ∵ ϕ ͷγϑτʹؔ͢Δ௚ަੑʣ = h[n − 2k] 45 / 61
  42. FWTͷಋग़ʢ࠶ߏ੒ʣ ೚ҙͷ t ≥ m + 1 ʹରͯ͠ (M2) ΑΓ

    Vm+1 ⊂ Vt ͔ͩΒɼ Wt ⊥ Vt =⇒ Wt ⊥ Vm+1 Αͬͯ ⟨ψt,k, ϕm+1,n⟩ = 0 (t ≥ m + 1)ɽ͜ΕΑΓɼ ∞ t=m ⟨ψt,k, ϕm+1,n⟩ = ⟨ψm,k, ϕm+1,n⟩ = ⟨ l g[l]ϕm+1,2k+l, ϕm+1,n⟩ ʢ∵ ࣜ (25)ʣ = ⟨ s g[s − 2k]ϕm+1,s, ϕm+1,n⟩ (s = 2k + l) = s g[s − 2k]⟨ϕm+1,s, ϕm+1,n⟩ = s g[s − 2k]δsn ʢ∵ ϕ ͷγϑτʹؔ͢Δ௚ަੑʣ = g[n − 2k] Ҏ্ͷ݁Ռ͔Βɼ pm+1[n] = k pm[k]⟨ϕm,k, ϕm+1,n⟩ + ∞ t=m k qt[k]⟨ψt,k, ϕm+1,n⟩ = k h[n − 2k]pm[k] + k g[n − 2k]qm[k] 46 / 61
  43. FWTͷϑΟϧλදݱ ల։ॲཧʢࣜ (22)ɼ(23)ʣΛϑΟϧλදݱ͢Δͱ H G ↓ 2 qm ↓ 2

    H G ↓ 2 qm−1 ↓ 2 G ↓ 2 qm−2 pm+1 pm pm−1 Figure 1: ల։ॲཧɽ↓ 2 ͸ 2 ഒͷؒҾ͖ʢ1 ݸඈ͹͠ʣ H ͸ϩʔύεϑΟϧλɼG ͸ϋΠύεϑΟϧλ ▶ pm ͸εέʔϧΛམͱͨ͠৴߸੒෼ɼqm ͸ࠩ ෼੒෼͔ͩΒ 47 / 61
  44. FWTͷϑΟϧλදݱ ࠶ߏ੒ॲཧʢࣜ (26)ʣΛϑΟϧλදݱ͢Δͱ ↑ 2 H G ↑ 2 qm−1

    ↑ 2 H G ↑ 2 qm pm−1 pm pm+1 Figure 2: ࠶ߏ੒ॲཧɽ↑ 2 ͸ 2 ഒͷิؒʢ0 ஋ૠೖʣ 48 / 61
  45. FWTͷܭࢉྔ FWT ͷ࣌ؒతܭࢉྔ͸ɼೖྗσʔλݸ਺ N ʹର ͯ͠ O(N)ɽ ʢূ໌ʣpM [n] ͕

    N ݸͷσʔλ͔ΒͳΓɼH, G Λ௕͞ L ͷ FIR ϑΟϧλͱ͢Δͱɼ֤ εέʔϧʹ͓͚Δੵ࿨ԋࢉճ਺͸࣍ͷΑ͏ʹͳΔɿ 1 ஈ໨ pM [n] ͸ N ݸͷσʔλ͔ΒͳΔͨΊɼpM−1[n] ͷܭࢉͰ NL ճͷੵ࿨ԋࢉɼ qM−1[n] ͷܭࢉͰ NL ճͷੵ࿨ԋࢉ ⇒ ܭ 2NL ճ 2 ஈ໨ pM−1[n] ͸ N/2 ݸͷσʔλ͔ΒͳΔͨΊɼpM−2[n] ͷܭࢉͰ NL/2 ճͷੵ࿨ ԋࢉɼqM−2[n] ͷܭࢉͰ NL/2 ճͷੵ࿨ԋࢉ ⇒ ܭ NL ճ 3 ஈ໨ pM−2[n] ͸ N/4 ݸͷσʔλ͔ΒͳΔͨΊɼpM−3[n] ͷܭࢉͰ NL/4 ճͷੵ࿨ ԋࢉɼqM−3[n] ͷܭࢉͰ NL/4 ճͷੵ࿨ԋࢉ ⇒ ܭ NL/2 ճ ... Αͬͯ͢΂ͯͷஈͷੵ࿨ԋࢉճ਺ͷ࿨͸ɼ 2NL + NL + NL 2 + ... ≤ 4NL ࠶ߏ੒ॲཧʹ͓͍ͯ΋ٯ޲͖ͷखॱͷܭࢉΛߦ͏͚ͩͳͷͰܭࢉྔ͸มΘΒͳ͍ɽैͬ ͯɼܭࢉྔ͸ O(N)ɽ 49 / 61
  46. ల։܎਺ͷೖྗʹΑΔۙࣅ ิ୊ 3 (܎਺ͷۙࣅ [3]) M ͸े෼ʹେ͖͍ͱ͢Δɽx ͕࿈ଓ͔ͭ ϕ ͕ίϯ

    ύΫταϙʔτ a ͳΒ͹ɼ pM [n] ≈ Ax(2−M n) A = ∞ −∞ ϕ(t)dt (27) a༗քͳൣғ֎Ͱ͸ৗʹ 0 ͱͳ͍ͬͯΔ͜ͱ ⇒ ೖྗ৴߸ܥྻΛͦͷ··෼ղɾ࠶ߏ੒ʹಥͬࠐ ΜͰʢ΄΅ʣOKʂ 14 14ϋʔϧ΢ΣʔϒϨοτͳΒ A = 1 50 / 61
  47. ల։܎਺ͷೖྗʹΑΔۙࣅ ʢূ໌ʣϕ ͸ԾఆΑΓɼ͋Δൣғ [−L, L] ͷ֎Ͱ͸ৗʹ 0 ͱ͢Δɽ͜ͷͱ͖ pM [n]

    ͸ɼ pM [n] = ⟨x, ϕM,n⟩ = ∞ −∞ x(s)ϕM,n(s)ds = ∞ −∞ x(s)2M ϕ(2M s − n)ds = ∞ −∞ x(2−M t + 2−M n)2M ϕ(t)2−M dt (t = 2M s − n) = ∞ −∞ x(2−M t + 2−M n)ϕ(t)dt = L −L x(2−M t + 2−M n)ϕ(t)dt ʢ∵ ϕ ͸ίϯύΫταϙʔτʣ M ͕े෼େ͖͍ͱ͖ɼx ͷ࿈ଓੑʹΑΓ۠ؒ [−2−M L + 2−M n, 2−M L + 2−M n] Ͱ x ͸΄΅ҰఆͱΈͳͤΔ͔Βɼ x(2−M t + 2−M n) ≈ x(2−M n) ͜ͷۙࣅʹΑΓɼ pM [n] ≈ L −L x(2−M n)ϕ(t)dt = x(2−M n) L −L ϕ(t)dt = x(2−M n) ∞ −∞ ϕ(t)dt ʢ∵ ϕ ͸ίϯύΫταϙʔτʣ = Ax(2−M n) 51 / 61
  48. FWTͷಛ௃ ಛ௃ ▶ ࣜ (18)ʢg[n] := (−1)nh[1 − n]ʣΑΓ࣮ߦʹ ඞཁͳͷ͸

    h[n] ͷΈʂʂ ▶ ༗໊ͳ΢ΣʔϒϨοτ͸ h[n] ͕ެ։͞Ε͍ͯΔ ▶ ܭࢉྔ͸ O(N)ʂʂ ▶ ࣮༻্͸ೖྗ৴߸Λͦͷ··࢖༻Ͱ͖Δʂʂ ஫ҙ఺ ▶ εέʔϧ͸ 2 ͷࢦ਺ʹݶΔʢFFT ͸౳ִؒε έʔϧʣ ▶ ෆ֬ఆੑݪཧʢิ଍ࢀরʣʹ͸റΒΕΔ 52 / 61
  49. ΢ΣʔϒϨοτ܎਺ͷܭࢉ(fwt.py) 28 def calculate_wavelet_coef(scaling_coefficients): 29 """ εέʔϦϯά܎਺͔Β΢ΣʔϒϨοτ܎਺Λੜ੒ """ 30 wavelet_coefficients

    = scaling_coefficients [::-1].copy() # ॱংٯͷ഑ྻ 31 for i in range(len(scaling_coefficients)): 32 wavelet_coefficients[i] *= ((-1) ** i) 33 return wavelet_coefficients ϑΟϧλ܎਺৚݅ʢࣜ (18)ʣʹ͓͍ͯɼ g[n] = (−1)nh[1 − n] = (−1)nh[L + 1 − n] ͔ͩΒʢLɿϑΟϧλ܎਺௕ɽ཭ࢄϑʔϦΤม׵ͷੑ࣭ΑΓ पظੑΛ࣋ͭʣ ɼn ͷൣғΛ 0, ..., L − 1 ʹ௚͢ͱɼ g[n] = (−1)nh[L − 1 − n] (n = 0, ..., L − 1) 54 / 61
  50. FWTͷ࣮૷ྫ(fwt.py) 36 def fwt1d(src, scaling_coef): 37 """ 1࣍ݩߴ଎΢ΣʔϒϨοτม׵ """ 38

    # ΢ΣʔϒϨοτ܎਺ܭࢉ 39 wavelet_coef = calculate_wavelet_coef( scaling_coef) 40 # ೖྗ͕੔਺ͩͱؙΊࠐ·ΕΔͨΊfloatʹม׵ 41 src = src.astype(float) 42 # correlate1d͸ϑΟϧλΧʔωϧͷ൒෼ʢத৺ʣ͚ͩग़ ྗ͕ޙΖʹͣΕΔͷͰ 43 # ઌʹೖྗΛલʹͣΒ͓ͯ͘͠ 44 src = np.roll(src, -len(scaling_coef) // 2) 45 # ৞ΈࠐΈ ೖྗͷ୺఺͸८ճ 46 # ϑΟϧλͷΠϯσοΫε͕ਖ਼ํ޲ʹ૿Ճ͢ΔͨΊ correlate1dΛ࢖༻ 47 decomp_src = correlate1d(src, scaling_coef, mode= ’wrap’)[::2] 48 decomp_wav = correlate1d(src, wavelet_coef, mode= ’wrap’)[::2] 49 return [decomp_src, decomp_wav] 55 / 61
  51. IFWTͷ࣮૷ྫ(fwt.py) 52 def ifwt1d(decomp_src, decomp_wav, scaling_coef): 53 """ 1࣍ݩߴ଎΢ΣʔϒϨοτٯม׵ """

    54 # ΢ΣʔϒϨοτ܎਺ܭࢉ 55 wavelet_coef = calculate_wavelet_coef( scaling_coef) 56 src_len = 2 * len(decomp_src) 57 # 0஋ૠೖ 58 scaling_interp = np.zeros(src_len) 59 scaling_interp[::2] = decomp_src 60 wavelet_interp = np.zeros(src_len) 61 wavelet_interp[::2] = decomp_wav 62 # ৞ΈࠐΈ ೖྗͷ୺఺͸८ճ 63 src = convolve1d(scaling_interp, scaling_coef, mode=’wrap’) 64 src += convolve1d(wavelet_interp, wavelet_coef, mode=’wrap’) 65 # convolve1d͸ϑΟϧλΧʔωϧͷ൒෼ʢத৺ʣ͚ͩग़ྗ ͕લʹͣΕΔͷͰ 66 # ೖྗΛޙΖʹͣΒ͢ 67 src = np.roll(src, len(scaling_coef) // 2) 68 return src 56 / 61
  52. 2࣍ݩFWTͷ࣮૷ྫ(fwt.py) 71 def fwt2d(src2d, scaling_coef): 72 """ 2࣍ݩߴ଎΢ΣʔϒϨοτม׵ """ 81

    # src2dΛ௿ҬʢࠨʣͱߴҬʢӈʣʹ෼ղ 82 for j in range(src_len): 83 src_l, src_h = fwt1d(src2d[j, :], scaling_coef) 84 src2d_l[j, :] = src_l 85 src2d_h[j, :] = src_h 86 # src2d_l, src2d_hΛߋʹࠨ্(ll)ɺࠨԼ(hl)ɺӈ্(lh )ɺӈԼ(hh)ʹ෼ղ 87 for j in range(half_src_len): 88 src_l, src_h = fwt1d(src2d_l[:, j], scaling_coef) 89 src2d_ll[:, j] = src_l 90 src2d_hl[:, j] = src_h 91 src_l, src_h = fwt1d(src2d_h[:, j], scaling_coef) 92 src2d_lh[:, j] = src_l 93 src2d_hh[:, j] = src_h 94 return [src2d_ll, src2d_hl, src2d_lh, src2d_hh] 58 / 61
  53. 2࣍ݩIFWTͷ࣮૷ྫ(fwt.py) 97 def ifwt2d(src2d_ll, src2d_hl, src2d_lh, src2d_hh, scaling_coef): 98 """

    2࣍ݩߴ଎΢ΣʔϒϨοτٯม׵ """ 99 src_len = src2d_ll.shape[0] 100 twice_src_len = 2 * src_len 101 src2d = np.zeros((twice_src_len, twice_src_len)) 102 src2d_l = np.zeros((twice_src_len, src_len)) 103 src2d_h = np.zeros((twice_src_len, src_len)) 104 # ࠨ্(ll)ɺࠨԼ(hl)ɺӈ্(lh)ɺӈԼ(hh)͔Βࠨ(l)ɺ ӈ(h)ʹ߹੒ 105 for j in range(src_len): 106 src2d_l[:, j] = ifwt1d(src2d_ll[:, j], src2d_hl[:, j], scaling_coef) 107 src2d_h[:, j] = ifwt1d(src2d_lh[:, j], src2d_hh[:, j], scaling_coef) 108 # ࠨ(l)ɺӈ(h)͔ΒݩΛ߹੒ 109 for j in range(twice_src_len): 110 src2d[j, :] = ifwt1d(src2d_l[j, :], src2d_h[j , :], scaling_coef) 111 return src2d 59 / 61
  54. ૉ๿ͳٙ໰ पظ T ͷؔ਺ f(x) ͕ҎԼͷΑ͏ʹϑʔϦΤڃ਺ ల։Ͱ͖Δͱ͠Α͏ɽ f(x) = n

    cn exp(jnωx) cn = 1 T T 2 −T 2 f(x) exp(−jnωx)dx ͍΍଴ͯΑɿ ▶ ࡾ֯ؔ਺ͷ࿨Ͱ f ͬͯදݱͰ͖Δͷʁ ▶ Ͱ͖ͨͱͯ͠ɼf ʹ͸ͲΜͳ৚͕݅ඞཁʁ 2 / 59
  55. σΟϦΫϨ֩ Ұ୴ϑʔϦΤڃ਺ల։͕Ͱ͖Δͱड͚ೖΕͯɼ ϑʔϦΤڃ਺ͷ͔ࣜΒ cn Λফͯ͠੔ཧͯ͠ΈΔɿ f(x) = n cn exp(jnωx)

    = n 1 T T 2 − T 2 f(s) exp(−jnωs)ds exp(jnωx) = 1 T T 2 − T 2 f(s) n exp[−jnω(x − s)]ds = 1 T x+ T 2 x− T 2 f(x − u) n exp(jnωu)du (u = x − s) = 1 T T 2 − T 2 f(x − u) n exp(jnωu)du ʢ∵ f ͸पظ Tʣ 3 / 59
  56. σΟϦΫϨ֩ ͜͜ͰɼҎԼͷσΟϦΫϨ֩ (Dirichlet Kernel)DN Λఆٛ͢Δɿ DN (x) = N n=−N

    exp(jnx) (28) f ͸ DN ͱͷ৞ࠐΈͰ෮ݩͰ͖Δɿ f(x) = 1 T T 2 −T 2 f(x − u)D∞ (ωu)du DN ͷੑ࣭Λ؍࡯ͯ͠ΈΑ͏ 4 / 59
  57. σΟϦΫϨ֩ DN ͸࿨Λ࢖Θͳ͍ࣜͰ΋දݱͰ͖Δɿ DN (x) = sin 1 2 +

    N x sin 1 2 x (29) ʢূ໌ʣ·ͣɼ DN (x) = N n=−N exp(jnx) = exp(0) + N n=1 {exp(jnx) + exp(−jnx)} = 1 + N n=1 {cos(nx) + j sin(nx) + cos(nx) − j sin(nx)} = 1 + 2 N n=1 cos(nx) (30) ΑΓɼDN ͸ cos ͷ࿨ͰදݱͰ͖Δɽ 5 / 59
  58. σΟϦΫϨ֩ ྆ล sin 1 2 x Λ৐͡Δͱɼ sin 1 2

    x DN (x) = 2 sin 1 2 x 1 + 2 N n=1 cos(nx) = sin 1 2 x + 2 sin 1 2 x {cos(x) + cos(2x) + cos(3x) + ... + cos(Nx)} = sin 1 2 x + sin 1 2 − 1 x + sin 1 2 + 1 x + sin 1 2 − 2 x + sin 1 2 + 2 x + ... + sin 1 2 − N x + sin 1 2 + N x ʢ∵ Ճ๏ఆཧ sin(nx) cos(mx) = 1 2 {sin(n + m)x + sin(n − m)x}ʣ = sin 1 2 x + sin − 1 2 x + sin 3 2 x + sin − 3 2 x + ... + sin 1 2 + N x = sin 1 2 + N x Αͬͯɼ DN (x) = sin 1 2 + N x sin 1 2 x 6 / 59
  59. σΟϦΫϨ֩ DN (ωx) ͷ 1 पظ෼ʹ౉Δੵ෼͸ T ʹ౳͍͠ɿ T 2

    −T 2 DN (ωx)dx = T (31) ʢূ໌ʣࣜ (30) Λ࢖͏ͱɼ T 2 − T 2 DN (ωx) = T 2 − T 2 1 + 2 N n=1 cos(nωx) dx = T 2 − T 2 dx + 2 N n=1 T 2 − T 2 cos(nωx)dx = T + 2 N n=1 1 nω sin n 2π T x T 2 − T 2 ∵ ω = 2π T = T + 2 N n=1 1 nω {sin(nπ) − sin(−nπ)} = T 7 / 59
  60. ϑʔϦΤڃ਺ʹΑΔۙࣅ σΟϦΫϨ֩Λ࢖͏͜ͱͰɼf ͷ N ࣍·Ͱͷϑʔ ϦΤڃ਺ SN (x) Λ SN

    (x) = 1 T T 2 −T 2 f(x − u)DN (ωu)du (32) ͱදݱͰ͖ΔɽͰ͸ɼ lim N→∞ |SN (x) − f(x)| = 0 (33) ͱͳΔͷ͸ͲΜͳ͔࣌ʁ 8 / 59
  61. ϑʔϦΤڃ਺ʹΑΔۙࣅ SN (x) − f(x) Λมܗ͍ͯ͘͠ͱɼ SN (x) − f(x)

    = 1 T T 2 − T 2 f(x − u)DN (ωu)du − f(x) = 1 T T 2 − T 2 f(x − u)DN (ωu)du − 1 T T 2 − T 2 DN (ωu)f(x)du ʢ∵ ࣜ (31)ʣ = 1 T T 2 − T 2 {f(x − u) − f(x)} DN (ωu)du = 1 T T 2 − T 2 f(x − u) − f(x) sin 1 2 ωu sin 1 2 + N ωu du ʢ∵ ࣜ (29)ʣ(34) 9 / 59
  62. ϑʔϦΤڃ਺ʹΑΔۙࣅ ࣜ (34) ͕ 0 ʹऩଋ͢Δ͔൱͔͸ɼ࣍ͷิ୊ʹΑΓ ൑ఆͰ͖Δɿ ิ୊ 4 (ϦʔϚϯɾϧϕʔάͷิ୊)

    ൣғ [a, b] Ͱ۠෼తʹ࿈ଓͳؔ਺ f ʹରͯ͠ɼ lim N→∞ b a f(x) sin(Nx)dx = 0 (35) ิ୊ͷূ໌͸ޙΖͰߦ͏ɽ͜ΕΑΓɼf(x−u)−f(x) sin(1 2 ωu) ͕۠෼తʹ࿈ଓͰ͋Ε͹ྑ͍ɽ 10 / 59
  63. ϑʔϦΤڃ਺ʹΑΔۙࣅ ఆཧ 1 (ऩଋఆཧ) f ͕఺ x Ͱඍ෼ՄೳͳΒ͹ɼϑʔϦΤڃ਺ʹΑΔ ۙࣅʢࣜ (32)ʣ͸

    f(x) ʹ఺ऩଋ͢Δɽ ʢূ໌ʣ f(x−u)−f(x) sin( 1 2 ωu) ͷ෼฼͕ 0 ͱͳΔ࣌ʹऩଋ͢Ε͹ྑ͍ɽu → 0 ͷۃݶΛͱΔͱɼ lim u→0 f(x − u) − f(x) sin 1 2 ωu = lim u→0 f(x − u) − f(x) u u sin 1 2 ωu ͔ͩΒɼ͜ͷۃݶ͕ऩଋ͢ΔͨΊʹ͸ɼ lim u→0 f(x − u) − f(x) u , lim u→0 u sin 1 2 ωu ͕ڞʹऩଋ͢Δ͜ͱ͕ඞཁͰ͋Δɽୈೋ߲͸ϩϐλϧͷఆཧΑΓɼ lim u→0 u sin 1 2 ωu = lim u→0 1 1 2 ω cos 1 2 ωu = 2 ω ͔ͩΒऩଋ͢ΔɽΑͬͯɼୈҰ߲ͷ f ͷ఺ x ʹ͓͚Δඍ෼͕ऩଋ͢Ε͹ྑ͍͜ͱ͕෼͔ Δɽͦͯͦ͠ͷ࣌ɼϦʔϚϯɾϧϕʔάͷิ୊ͷԾఆ͕ຬͨ͞Εɼऩଋఆཧ͕੒ཱ͢Δɽ 11 / 59
  64. ࡾ֯ؔ਺ͷ׬શੑ ิ୊ 5 (ࡾ֯ؔ਺ͷ׬શੑ) 1 √ T exp(jnωt)|n ∈ Z

    ͸ϑʔϦΤڃ਺ల։Մೳ ͳؔ਺ͷਖ਼ن௚ަجఈܥ ʢূ໌ʣऩଋఆཧΑΓ೚ҙͷϑʔϦΤڃ਺ల։Մೳͳؔ਺ΛදݱՄೳ͔ͩΒɼجఈܥΛͳ ͢͜ͱ͸ࣔ͞Ε͍ͯΔɽ࣍ʹ௚ަੑΛࣔ͢ɽn, m ∈ Z ʹରͯ͠ 1 पظ෼ͷ಺ੵΛͱΔͱɼ ⟨ 1 √ T exp(jnω·), 1 √ T exp(jmω·)⟩ = 1 T T/2 −T/2 exp(jnωt) exp(−jmωt)dt = 1 T exp {j(n − m)2πt/T} j(n − m)2π/T T/2 −T/2 (∵ ω = 2π/T) = 1 π exp {j(n − m)π} − exp {−j(n − m)π} j2(n − m) = 1 π sin {(n − m)π} n − m ʢ∵ ΦΠϥʔͷެࣜʣ = δnm ʢδɿΫϩωοΧʔͷσϧλʣ ࠷ޙͷࣜมܗͰ n = m ͷͱ͖͸ x = n − m ͱ͓͍ͯ x → 0 ͱ͢Δɿ lim x→0 sin(πx) x = lim x→0 π cos(πx) 1 = π 12 / 59
  65. ࡾ֯ؔ਺ͷ׬શੑ ࠷ޙʹɼ͜ΕҎ֎ͷجఈ͸ͳ͍͜ͱΛഎཧ๏ʹΑΓࣔ͢ɽ ʮ{exp(jnωt)|n ∈ Z} ͷશͯʹ ௚ަ͢Δ࿈ଓؔ਺جఈ h(t) ͕ଘࡏ͢ΔʯͱԾఆ͢ΔɽԾఆʹΑΓ ⟨h(·),

    exp(jnω·)⟩ = 0 ͕੒ཱ͢Δ͕ɼh(t) = 0 ͸ۭؒΛੜ੒͠ͳ͍θϩϕΫτϧͷͨΊɼh(t) ̸= 0 Ͱߟ͑Δɽ h(t) ͷϑʔϦΤڃ਺ల։Λߟ͑Δɽn ࣍ͷϑʔϦΤ܎਺͸ɼ cn = 1 T T 2 − T 2 h(t) exp(−jnωt)dt = 1 T ⟨h(·), exp(jnω·)⟩ = 0 ʢ∵ h(t) ͷԾఆʣ ͔ͩΒɼh(t) ͷ N ࣍·ͰͷϑʔϦΤڃ਺ۙࣅ SN (t) ͸ɼ SN (t) = N n=−N cn exp(jnωt) = 0 ͱͳΔɽऩଋఆཧΛ༻͍Δͱɼ lim N→∞ SN (t) = h(t) = 0 ͜Ε͸ɼh(t) ̸= 0 Ͱߟ͍͑ͯΔ͜ͱʹໃ६͢Δɽैͬͯ {exp(jnωt)|n ∈ Z} Ҏ֎ʹجఈ ͸ଘࡏͤͣɼఆཧ͕੒ཱ͢Δɽ 13 / 59
  66. ϦʔϚϯɾϧϕʔάͷิ୊ͷূ໌ ۠ؒ [a, b] Λ M ෼ׂ͠ɼ۠ؒͷখ͍͞ํ͔Βॱʹ a = x1,

    x2, ..., xM−1, xM = b ͱͳΔ Α͏ʹͱΔɽ͜ͷͱ͖ɼ b a f(x) sin(Nx)dx = M−1 k=1 xk+1 xk f(x) sin(Nx)dx ≤ M−1 k=1 xk+1 xk f(x) sin(Nx)dx ۠ؒ [xk, xk+1] ͷੵ෼ʹ஫໨͢Δͱɼ xk+1 xk f(x) sin(Nx)dx = xk+1 xk {f(x) − f(xk) + f(xk)} sin(Nx)dx = xk+1 xk {f(x) − f(xk)} sin(Nx)dx + xk+1 xk f(xk) sin(Nx)dx ≤ xk+1 xk {f(x) − f(xk)} sin(Nx)dx + xk+1 xk f(xk) sin(Nx)dx 14 / 59
  67. ϦʔϚϯɾϧϕʔάͷิ୊ͷূ໌ લϖʔδ࠷ޙͷࣜͷ 1 ߲໨͸ɼ xk+1 xk {f(x) − f(xk)} sin(Nx)dx

    ≤ xk+1 xk | {f(x) − f(xk)} sin(Nx)|dx ≤ xk+1 xk |f(x) − f(xk)|| sin(Nx)|dx ≤ xk+1 xk |f(x) − f(xk)|dx (∵ | sin(x)| ≤ 1) 2 ߲໨ʹ͍ͭͯ͸ɼ࿈ଓͳؔ਺͸༗ք͔ͩΒ |f(x)| < L (a ≤ x ≤ b) Λຬͨ͢ఆ਺ L ͕ ଘࡏ͢ΔԾఆͷ΋ͱɼ xk+1 xk f(xk) sin(Nx)dx ≤ max x∈[xk,xk+1] |f(x)| xk+1 xk sin(Nx)dx ≤ max x∈[xk,xk+1] |f(x)| − 1 N cos(Nx) xk+1 xk < L − 1 N [cos(Nx)]xk+1 xk ≤ 2L N 15 / 59
  68. ϦʔϚϯɾϧϕʔάͷิ୊ͷূ໌ ݩʹ໭ͬͯ݁ՌΛ·ͱΊΔͱɼ b a f(x) sin(Nx)dx ≤ M−1 k=1 xk+1

    xk f(x) sin(Nx)dx < M−1 k=1 xk+1 xk |f(x) − f(xk)|dx + 2L N = b a |f(x) − f(xk)|dx + 2LM N ೚ҙͷਖ਼਺ ε > 0 ʹରͯ͠ɼे෼ʹେ͖ͳ M Λͱͬͯ෼ׂΛࡉ͔͘͢Ε͹ɼ |f(x) − f(xk)| < ε 2(b−a) ͱͰ͖Δɽ·ͨ͜ͷͱ͖ɼN ΋େ͖͘औͬͯ 2LM N < ε 2 ͱ͢ Δ͜ͱ͕Ͱ͖ΔɽΑͬͯɼ b a f(x) sin(Nx)dx < b a ε 2(b − a) dx + ε 2 = ε 2 + ε 2 = ε ε ͸೚ҙ͔ͩͬͨΒɼ lim N→∞ b a f(x) sin(Nx)dx = 0 16 / 59
  69. ·ͱΊ ࡾ֯ؔ਺ͷ࿨Ͱ f ͬͯදݱͰ͖Δͷʁ ▶ पظؔ਺Ͱ͋Ε͹දݱͰ͖Δɽ ▶ ࡾ֯ؔ਺͸पظؔ਺ͷ௚ަجఈɽ Ͱ͖ͨͱͯ͠ɼf ʹ͸ͲΜͳ৚͕݅ඞཁʁ

    ▶ ֤఺Ͱඍ෼ՄೳͰ͋Δ͜ͱ͕ඞཁɽ ▶ ෆ࿈ଓؔ਺Ͱ΋ڧҾʹ౰ͯ͸ΊΒΕΔ͚Ͳɼ ෆ࿈ଓ఺Ͱޡ͕ࠩ૿େ͢ΔʢΪϒεݱ৅ʣ 17 / 59
  70. ࣜ(18)ͷূ໌ ิ୊6 ิ୊ 6 (प೾਺ྖҬͰͷ௚ަ৚݅) f, g ∈ L2 (R)

    ͷϑʔϦΤม׵Λ F, G ͱ͢Δɽ 1. ू߹ {f(t − n)|n ∈ Z} ͱ {g(t − n)|n ∈ Z} ͕ ௚ަ͢Δඞཁे෼৚݅͸ k F(ω + 2πk)G(ω + 2πk) = 0 (36) 2. ू߹ {f(t − n)|n ∈ Z} ͕ਖ਼ن௚ަܥͱͳΔඞ ཁे෼৚݅͸ k |F(ω + 2πk)|2 = 1 (37) 19 / 59
  71. ࣜ(18)ͷূ໌ ิ୊6 ʢূ໌ʣ1. ͸ɼ೚ҙͷ n, m ∈ Z ʹରͯ͠ɼ ⟨f(·

    − n), g(· − m)⟩ = ∞ −∞ f(t − n)g(t − m)dt = 1 2π ∞ −∞ F [f(t − n)] F [g(t − m)]dω ʢ∵ ύʔηόϧͷ౳ࣜʣ = 1 2π ∞ −∞ F(ω) exp(−jnω)G(ω) exp(−jmω)dω ʢ∵ ࣌ؒγϑτͷϑʔϦΤม׵ʣ = 1 2π ∞ −∞ F(ω)G(ω) exp[−j(n − m)ω]dω = 1 2π k π −π F(ω + 2πk)G(ω + 2πk) exp[−j(n − m)ω]dω = 1 2π π −π k F(ω + 2πk)G(ω + 2πk) exp[−j(n − m)ω]dω = 0 ͕੒ཱ͍ͯ͠ΔͨΊɼ௚ަ͢Δͱ͖ͷඞཁे෼৚݅͸ {·} ͷத͕ 0 ʹͳΔ͜ͱͰ͋Δɽ Αͬͯɼ1. ͕ࣔ͞Εͨɽ 20 / 59
  72. ࣜ(18)ͷূ໌ ิ୊6 2. ͸ɼ1. ͷূ໌ʹ͓͍ͯ f = g ͱ͢Ε͹ɼ ⟨f(·

    − n), f(· − m)⟩ = ∞ −∞ f(t − n)f(t − m)dt = 1 2π ∞ −∞ F(ω)F(ω) exp[−j(n − m)ω]dω = 1 2π π −π k |F(ω + 2πk)|2 exp[−j(n − m)ω]dω = δnm ͱͳΓɼ͜ͷ౳ࣜ͸ k |F(ω + 2πk)|2 = 1 ͷͱ͖ɼ͔ͭͦͷͱ͖ʹݶΓ੒ཱ͢Δɽ࣮ࡍɼ ⟨f(· − n), f(· − m)⟩ = 1 2π π −π exp[−j(n − m)ω]dω = 1 2π − exp[−j(n − m)ω] j(n − m) π −π = 1 2π − exp[−j(n − m)ω] j(n − m) π −π = 1 π sin {(n − m)π} n − m ͔Βɼn = m ͷͱ͖ͱ n ̸= m ͷͱ͖Ͱ৔߹෼͚͢Ε͹֬ೝͰ͖Δʢn = m ͷͱ͖͸ x = n − m ͱͯ͠ x → 0 Λߟ͑Δʣ ɽΑͬͯɼ2. ͸ࣔ͞Εͨɽ 21 / 59
  73. ࣜ(18)ͷূ໌ ิ୊7 ิ୊ 7 (Dilation ํఔࣜΛຬͨ͢ H(ω) ͷੑ࣭) Dilation ํఔࣜʢࣜ

    (15)ʣΛຬͨ͢܎਺ h[n] ͷ཭ ࢄ࣌ؒϑʔϦΤม׵ H(ω)a ͸ɼ |H(ω)|2 + |H(ω + π)|2 = 2 (38) Λຬͨ͢ɽ aH(ω) := n h[n] exp(−jnω) 22 / 59
  74. ࣜ(18)ͷূ໌ ิ୊7 ʢূ໌ʣิ୊ 6 ΑΓɼϕ(t) ͷϑʔϦΤม׵Λ Φ(ω) ͱॻ͘ͱɼ{ϕ(t − n)|n

    ∈ Z} ͕ਖ਼ن ௚ަجఈΛͳͨ͢Ίͷඞཁे෼৚݅͸ɼ k |Φ(ω + 2πk)|2 = 1 (39) ͱॻ͚Δɽ͜ΕʹɼDilation ํఔࣜͷ྆ลΛϑʔϦΤม׵ͨ͠ F [ϕ(t/2)] = √ 2F n h[n]ϕ(t − n) ⇐⇒ 2Φ(2ω) = √ 2 ∞ −∞ n h[n]ϕ(t − n) exp(−jωt)dt = √ 2 n h[n] ∞ −∞ ϕ(t − n) exp(−jωt)dt = √ 2 n h[n]Φ(ω) exp(−jnω) = √ 2Φ(ω)H(ω) ⇐⇒ √ 2Φ(2ω) = Φ(ω)H(ω) (40) Λಋೖ͢Δ͜ͱΛߟ͑Δɽ 23 / 59
  75. ࣜ(18)ͷূ໌ ิ୊7 ࣜ (39)ɼࣜ (40) ΑΓɼ 2 = 2 k

    |Φ(2ω + 2πk)|2 ʢࣜ (39) Ͱ ω → 2ω ͱͨ͠ʣ = k |Φ(ω + πk)|2|H(ω + πk)|2 ʢ∵ ࣜ (40)ʣ = k |Φ(ω + 2πk)|2|H(ω + 2πk)|2 + k |Φ(ω + 2πk + π)|2|H(ω + 2πk + π)|2 = |H(ω)|2 k |Φ(ω + 2πk)|2 + |H(ω + π)|2 k |Φ(ω + 2πk + π)|2 ʢ∵ H(ω) ͸पظ 2π16ʣ = |H(ω)|2 + |H(ω + π)|2 ʢ∵ ୈ 2 ߲͸ࣜ (39) Ͱ ω → ω + π ͱ͢Δʣ Αͬͯิ୊ 7 ͷ੒ཱ͕͔֬ΊΒΕͨɽ 16∵ H(ω + 2π) = n h[n] exp[−jn(ω + 2π)] = n h[n] exp(−jnω) = H(ω) 24 / 59
  76. ࣜ(18)ͷূ໌ ิ୊8 ิ୊ 8 (H(ω), G(ω) ʹΑΔ௚ަ৚݅) {ϕ(t − n)|n

    ∈ Z} ͸ਖ਼ن௚ަܥͱ͢Δɽ 1. ࣜ (17) Λຬͨ͢ ψ Λ༻͍ͨ {ψ(t − n)|n ∈ Z} ͕ਖ਼ن௚ަܥͱͳΔඞཁे෼৚݅͸ɼ |G(ω)|2 + |G(ω + π)|2 = 2 (41) 2. {ϕ(t − n)|n ∈ Z} ͱ {ψ(t − n)|n ∈ Z} ͕௚ަ ͢Δඞཁे෼৚݅͸ɼ H(ω)G(ω) + H(ω + π)G(ω + π) = 2 (42) 25 / 59
  77. ࣜ(18)ͷূ໌ ิ୊8 ʢূ໌ʣ΢ΣʔϒϨοτؔ਺ ψ(t) ͷϑʔϦΤม׵Λ Ψ(ω) ͱॻ͘ɽ͜ͷͱ͖ɼࣜ (17) ͷ ྆ลΛϑʔϦΤม׵͢Δͱɼࣜ

    (40) ͱಉ༷ʹɼ √ 2Ψ(2ω) = G(ω)Φ(ω) (43) ͕੒Γཱͭɽࣜ (41) ͷূ໌͸ิ୊ 7 ͱશ͘ಉ༷Ͱ͋ΓɼDilation ํఔࣜͷ୅ΘΓʹࣜ (17) Λ༻͍Ε͹ྑ͍ɽࣜ (42) ͸ɼิ୊ 6 ͷ 1. Λ ϕ, ψ ʹద༻͢Δͱɼ 0 = k Φ(2ω + 2πk)Ψ(2ω + 2πk) = k 1 2 H(ω + πk)Φ(ω + πk)G(ω + πk)Φ(ω + πk) ʢ∵ ࣜ (40)ɼࣜ (43)ʣ = 1 2 k H(ω + πk)G(ω + πk)|Φ(ω + πk)|2 = 1 2 k H(ω + 2πk)G(ω + 2πk)|Φ(ω + 2πk)|2 + k H(ω + 2πk + π)G(ω + 2πk + π)|Φ(ω + 2πk + π)|2 26 / 59
  78. ࣜ(18)ͷূ໌ ิ୊8 ʢલϖʔδͷଓ͖ʣ 0 = 1 2 H(ω)G(ω) k |Φ(ω

    + 2πk)|2 + H(ω + π)G(ω + π) k |Φ(ω + 2πk + π)|2 ʢ∵ H(ω), G(ω) ͸पظ 2πʣ = 1 2 H(ω)G(ω) + H(ω + π)G(ω + π) ʢ∵ ࣜ (39)ʣ ʹΑΓࣔ͞ΕΔɽ 27 / 59
  79. ࣜ(18)ͷূ໌ ิ୊9 h, g ͷ཭ࢄ࣌ؒϑʔϦΤม׵Λ H, G ͱॻ͖ɼ H(ω) :=

    1 √ 2 H(ω) H(ω + π) G(ω) G(ω + π) (44) ͱ͓͘ɽิ୊ 7 ͱิ୊ 8 Λຬͨ͢ͳΒ͹ɼH(ω) ͸ϢχλϦߦྻʢH∗(ω) = H−1(ω)ʣͰ͋Δ 17ɽ 17ʢূ໌ʣH(ω) ͱ H∗(ω) ͷੵΛͱΕ͹ɼ H(ω)H∗(ω) = 1 2 H(ω) H(ω + π) G(ω) G(ω + π) H(ω) G(ω) H(ω + π) G(ω + π) = 1 2 H(ω)H(ω) + H(ω + π)H(ω + π) H(ω)G(ω) + H(ω + π)G(ω + π) G(ω)H(ω) + G(ω + π)H(ω + π) G(ω)G(ω) + G(ω + π)G(ω + π) = 1 2 2 0 0 2 ʢ∵ ิ୊ 7 ͱิ୊ 8ʣ = I 28 / 59
  80. ࣜ(18)ͷূ໌ ิ୊9 ิ୊ 9 (FWT ͷߦྻදݱ) H(ω) ͕ϢχλϦߦྻͰ͋Ε͹ɼ͕࣍੒Γཱͭɿ Pm (ω)

    Qm (ω) = 1 √ 2 H ω 2 Pm+1 ω 2 Pm+1 ω 2 + π (45) Pm+1 (ω) Pm+1 (ω + π) = √ 2H∗(ω) Pm (2ω) Qm (2ω) (46) ͜͜ͰɼPm , Qm ͸ pm , qm ͷ཭ࢄ࣌ؒϑʔϦΤม ׵Ͱ͋Δɽ 29 / 59
  81. ࣜ(18)ͷূ໌ ิ୊9 ʢূ໌ʣy[n] := k h[k − n]pm+1[k] ͷ཭ࢄ࣌ؒϑʔϦΤม׵ Y

    (ω) ͸ɼ Y (ω) = n k h[k − n]pm+1[k] exp(−jnω) = k pm+1[k] n h[k − n] exp(−jnω) = k pm+1[k] exp(−jkω) l h[l] exp(−jlω) (l = k − n) = Pm+1(ω)H(ω) pm[n] = y[2n] ͔ͩΒɼؒҾ͍ͨ਺ྻͷ཭ࢄ࣌ؒϑʔϦΤม׵ͷެࣜʢࣜ (56)ʣΛ࢖͏ͱɼ Pm(ω) = 1 2 Y ω 2 + Y ω 2 + π = 1 2 Pm+1 ω 2 H ω 2 + Pm+1 ω 2 + π H ω 2 + π (47) ಉ༷ʹͯ͠ɼ Qm(ω) = 1 2 Pm+1 ω 2 G ω 2 + Pm+1 ω 2 + π G ω 2 + π (48) 30 / 59
  82. ࣜ(18)ͷূ໌ ิ୊9 ࣜ (47)ɼࣜ (48) ͷ݁ՌΛߦྻԋࢉͰද͢ͱɼ Pm(ω) Qm(ω) = 1

    2 H ω 2 H ω 2 + π G ω 2 G ω 2 + π Pm+1 ω 2 Pm+1 ω 2 + π ⇐⇒ Pm(ω) Qm(ω) = 1 √ 2 H ω 2 Pm+1 ω 2 Pm+1 ω 2 + π ·ͨɼ྆ลࠨ͔Β √ 2H∗ ω 2 Λ৐͡Δͱɼ √ 2H∗ ω 2 Pm(ω) Qm(ω) = Pm+1 ω 2 Pm+1 ω 2 + π ͕ಘΒΕΔɽࣜ (46) ͸ ω Λ 2ω ʹஔ͖׵͑ͯಘΒΕΔɽ 31 / 59
  83. ࣜ(18)ͷূ໌ ࣍ͷ໨ඪ ิ୊ 8 Λຬͨ͢ͳΒ͹ɼ೚ҙͷ m, p, q ∈ Z

    ʹର͠ɼ ⟨ψm,p , ψm,q ⟩ = 2m ∞ −∞ ψ(2mt − p)ψ(2mt − q)dt = δpq ʢ∵ ψ ͸γϑτʹؔͯ͠ਖ਼ن௚ަʣ ͔ͩΒ ψm,n ͸ Wm ͷਖ਼ن௚ަܥͱͳΔɽ·ͨɼ ψm,n ͰுΒΕΔ Wm ͱ ϕm,n ͰுΒΕΔ Vm ͕௚ަ ͢ΔͷͰ Vm ⊥ Wm ɽ ⇒ ࣍ʹɼVm ⊕ Wm = Vm+1 Λࣔ͢ɽ 32 / 59
  84. ࣜ(18)ͷূ໌ ิ୊10 ิ୊ 10 (௚ަ௚࿨෼ղՄೳͳ৚݅) {ϕ(t − n)|n ∈ Z}

    ͸ਖ਼ن௚ަܥ͔ͭɼิ୊ 7 ͱิ ୊ 8 Λຬͨ͢ͳΒ͹ɼ Vm ⊕ Wm = Vm+1 , Vm ⊥ Wm (m ∈ Z) ʢূ໌ʣVm ⊕ Wm ⊂ Vm+1, Vm ⊥ Wm ͷલఏʹ͓͍ͯɼx(t) ∈ Vm+1 ⊖ (Vm ⊕ Wm) ͳΔཁૉʢؔ਺ʣΛ೚ҙʹͱΔɽ͜Ε͕ x(t) = 0 ͔͠ͳ͍͜ͱ͕ࣔͤΕ͹ɼ Vm ⊕ Wm ⊃ Vm+1 ɼैͬͯɼVm ⊕ Wm = Vm+1 ͕݁࿦Ͱ͖Δɽ ͍· Vm ⊥ Wm ͔ͭ x / ∈ Vm ⊕ Wm ͔ͩΒɼVm, Wm ΁ͷࣹӨ੒෼͸ͦΕͧΕ pm[n] = ⟨x, ϕm,n⟩ = 0, qm[n] = ⟨x, ψm,n⟩ = 0 ͱͳΔɽ͜ΕΒΛ྆ล཭ࢄ࣌ؒϑʔϦ Τม׵͢Δͱ Pm(ω) = Qm(ω) = 0 ΛಘΔɽ͜ΕΛࣜ (46) ʹ୅ೖ͢Δͱ Pm+1(ω) = 0 ͱͳΓɼ͜Ε͸࣌ؒྖҬͰ pm+1[n] = ⟨x, ϕm+1,n⟩ = 0 ͱͳΔ͜ͱΛ͍ࣔͯ͠Δɽ {ϕm+1,n(t)|n ∈ Z} ͕ Vm+1 ͷਖ਼ن௚ަجఈͰ͋Δ͜ͱΛ౿·͑Δͱɼx(t) = 0 Ͱ͋ Δ͜ͱ͕ಋ͔ΕΔɽΑͬͯɼVm ⊕ Wm = Vm+1 ͕ࣔ͞Εͨɽ 33 / 59
  85. ࣜ(18)ͷূ໌ ఆཧ2 ఆཧ 2 (MRA Λߏ੒͢Δ G(ω) ͷ৚݅) H(ω) ͸ิ୊

    7 Λຬͨ͢ͱ͢Δɽ͜ͷͱ͖ɼิ୊ 8 Λຬͨ͢ G(ω) ͸࣍ͷܗͷؔ਺Ͱ͋Γɼ͔ͭͦͷ ͱ͖ʹݶΒΕΔɿ G(ω) = γ(ω)H(ω + π) (49) γ(ω) ͸पظ 2π ͷपظؔ਺Ͱɼ࣍Λຬͨ͢ɿ γ(ω) + γ(ω + π) = 0, |γ(ω)|2 = 1 (50) 34 / 59
  86. ࣜ(18)ͷূ໌ ఆཧ2 ʢ⇒ ͷূ໌ʣิ୊ 8 ͷࣜ (41) ΑΓɼ H(ω)G(ω)+H(ω +

    π)G(ω + π) = 0 ⇐⇒ G(ω) = −H(ω + π)G(ω + π)/H(ω) ⇐⇒ G(ω) = −H(ω + π)G(ω + π)/H(ω) = −γ(ω)H(ω + π) (51) ͜͜Ͱ γ(ω) := −G(ω + π)/H(ω) ͱఆΊͨɽG, H ͸पظ 2π ͔ͩΒ γ(ω) ΋पظ 2π Ͱɼ γ(ω + π) = −G(ω + 2π)/H(ω + π) = −G(ω)/H(ω + π) = −γ(ω) ʢ∵ ࣜ (51)ʣ ·ͨɼࣜ (51) Λิ୊ 8 ͷࣜ (42) ʹ୅ೖ͢Δͱɼ |G(ω)|2 + |G(ω + π)|2 = 2 ⇐⇒ |γ(ω)|2|H(ω + π)|2 + |γ(ω + π)|2|H(ω + 2π)|2 = 2 ⇐⇒ |γ(ω)|2|H(ω + π)|2 + |γ(ω)|2|H(ω)|2 = 2 ⇐⇒ |γ(ω)|2(|H(ω + π)|2 + |H(ω)|2) = 2 ⇐⇒ |γ(ω)|2 = 1 ʢ∵ ิ୊ 7 ͷࣜ (38)ʣ 35 / 59
  87. ࣜ(18)ͷূ໌ ఆཧ2 ʢ⇐ ͷূ໌ʣγ(ω) + γ(ω + π) = 0,

    |γ(ω)|2 = 1 Λຬͨ͢पظ 2π ͷؔ਺ γ(ω) Λ͓͘ɽ ͍· G(ω) := γ(ω)H(ω + π) ʹΑΓ G(ω) ΛఆΊΔͱɼ |G(ω)|2 + |G(ω + π)|2 = |γ(ω)|2|H(ω + π)|2 + |γ(ω + π)|2|H(ω + 2π)|2 = |γ(ω)|2|H(ω + π)|2 + | − γ(ω)|2|H(ω)|2 = |H(ω + π)|2 + |H(ω)|2 = 2 Αͬͯࣜ (41) ͕੒ཱ͍ͯ͠Δɽ·ͨɼ H(ω)G(ω) + H(ω + π)G(ω + π) = H(ω)γ(ω)H(ω + π) + H(ω + π)γ(ω + π)H(ω + 2π) = H(ω)H(ω + π) γ(ω) + γ(ω + π) = H(ω)H(ω + π){γ(ω) + γ(ω + π)} = 0 Αͬͯࣜ (42) ͕੒ཱ͍ͯ͠ΔɽҎ্ʹΑΓɼิ୊ 8 ͕੒ཱ͍ͯ͠Δɽ 36 / 59
  88. ࣜ(18)ͷূ໌ ܥ 1 (ࣜ (18) ͷূ໌) ࣜ (18) ͸ఆཧ 2

    ʹ͓͍ͯ γ(ω) = − exp(−jω) ͱ͓ ͍ͨͱ͖ʹ૬౰͢Δɽ ʢূ໌ʣG(ω) = − exp(−jω)H(ω + π) ͷ྆ลΛٯ཭ࢄ࣌ؒϑʔϦΤม׵͢Δͱɼ g[n] = − 1 2π 2π 0 H(ω + π) exp(−jω) exp(jωn)dω = − 1 2π 2π 0 H(s) exp[jω(s − π)(n − 1)]ds (s = ω + π) = − 1 2π exp[−jπ(n − 1)] 2π 0 H(s) exp[jωs(n − 1)]ds = (−1)n 1 2π 2π 0 H(s) exp[jωs(1 − n)]ds = (−1)nh[1 − n] 37 / 59
  89. ෆ֬ఆੑݪཧ ৴߸ f ͸ lim t→±∞ |t|f(t) = 0 ͱ

    ∞ −∞ |f(t)|2dt = 1 Λຬͨ͢ͱ͢Δɽࠓɼ|f(t)|2 Λ֬཰ີ౓ͱݟΑ ͏ɽύʔηόϧͷ౳ࣜ 18 ΑΓɼ 1 2π ∞ −∞ |F(ω)|2dω = 1 ͔ͩΒɼ 1 2π |F(ω)|2 ΋֬཰ີ౓ͱݟΕΔɽ 18ϑʔϦΤม׵ʹΑͬͯύϫʔ͸มΘΒͳ͍ɽ৑௕ͳͷͰ຤ඌͰࣔ͢ɽ 39 / 59
  90. ෆ֬ఆੑݪཧ t, ω ΛͦΕͧΕ֬཰ม਺ͱͯ͠ɼਅ஋ tm , ωm ʹର ͢Δඪ४ภࠩ ∆t,

    ∆ω ΛҎԼͰఆٛ͢Δɿ (∆t)2 := ∞ −∞ (t − tm )2|f(t)|2dt (52) (∆ω)2 := 1 2π ∞ −∞ (ω − ωm )2|F(ω)|2dω (53) ∆t, ∆ω ͸؍ଌͷ༳Β͗෯ͱ΋ղऍͰ͖Δɽ 40 / 59
  91. ෆ֬ఆੑݪཧ ఆཧ 3 (ෆ֬ఆੑݪཧ) ∆t, ∆ω ʹରͯ͠ҎԼͷෆ౳͕ࣜ੒ཱ͢Δɿ ∆t∆ω ≥ 1

    2 (54) ؍࡯͢Δ࣌ؒͷ෯ ∆t ͱप೾਺ͷ෯ ∆ω Λಉ࣌ʹ খ͘͢͞Δ͜ͱ͸Ͱ͖ͳ͍ɽ 41 / 59
  92. ෆ֬ఆੑݪཧͷྫ ྫ 1 ୹࣌ؒϑʔϦΤม׵ͰΑΓ޿͍प೾਺৘ใΛ ಘΑ͏ͱͯ͠૭෯Λେ͖͘औΔͱ (∆tɿେ) प೾਺෼ղೳʢਫ਼౓ʣ͕޲্ (∆ωɿখ) ͢Δ ྫ

    2 ΢ΣʔϒϨοτม׵Ͱεέʔϧ a Λখ͘͞औ Δͱࡉ͔͍ৼಈΛଊ͑ΒΕΔ (∆tɿখ) ͕ɼ௕ पظ੒෼ͷ෼ੳ͸ߥ͘ (∆ωɿେ) ͳΔ ྫ 3 ϑʔϦΤม׵͸प೾਺෼ղೳ͕࠷େ (∆ω → 0)͕ͩɼ࣌ؒ෼ղೳ͸࠷ѱ (∆t → ∞) ྫ 4 σδλϧ৴߸Λ 1 ఺͚ͩ؍ଌͨ͠ (∆tɿখ) ͱ ͖ɼৼಈͷ৘ใ͸શ͘ಘΒΕͳ͍ (∆ωɿେ) 42 / 59
  93. ෆ֬ఆੑݪཧͷূ໌ g(t) = exp(−jωmt)f(t + tm) ͱ͓͘ɽg(t) ͷϑʔϦΤม׵ G(ω) ͸ɼ

    G(ω) = ∞ −∞ g(t) exp(−jωt)dt = ∞ −∞ f(t + tm) exp[−j(ω + ωm)t]dt = exp[−j(ω + ωm)tm] ∞ −∞ f(t + tm) exp[−j(ω + ωm)(t + tm)]dt = exp[−j(ω + ωm)tm]F(ω + ωm) ͜ͷͱ͖ɼ ∞ −∞ (t − tm)2|f(t)|2dt 1 2π ∞ −∞ (ω − ωm)2|F(ω)|2dω = ∞ −∞ s2|f(s + tm)|2ds 1 2π ∞ −∞ u2|F(u + ωm)|2du = ∞ −∞ s2| exp(jωms)g(s)|2ds 1 2π ∞ −∞ u2| exp[−j(u + ωm)tm]G(u)|2du = ∞ −∞ s2|g(s)|2ds 1 2π ∞ −∞ u2|G(u)|2du (∵ ∀x ∈ R. | exp(jx)| = 1) ͔ͩΒɼtm = ωm = 0 ͱͯ͠ߟ͑Δɽ 44 / 59
  94. ෆ֬ఆੑݪཧͷূ໌ ·ͨɼ f′(t) = d dt 1 2π ∞ −∞

    F(ω) exp(jωt)dt = 1 2π ∞ −∞ F(ω) d dt exp(jωt)dt ʢॱংަ׵Մೳͱ͢Δʣ = jω 2π ∞ −∞ F(ω) exp(jωt)dt = jωf(t) ΑΓɼҎԼͷؔ܎͕ࣜಘΒΕΔɽ F f′(t) = jωF [f(t)] = jωF(ω) =⇒ F f′(t) 2 = ω2|F(ω)|2 ͜ΕΑΓɼ 1 2π ∞ −∞ ω2|F(ω)|2dω = 1 2π ∞ −∞ F f′(t) 2 dω = ∞ −∞ |f′(t)|2dt ʢ∵ ύʔηόϧͷ౳ࣜʣ 45 / 59
  95. ෆ֬ఆੑݪཧͷূ໌ ෆ౳ࣜࠨลʢ= (∆t)2(∆ω)2ʣΛมܗ͍ͯ͘͠ͱɼ ∞ −∞ t2|f(t)|2dt 1 2π ∞ −∞

    ω2|F(ω)|2du = ∞ −∞ t2|f(t)|2dt ∞ −∞ |f′(t)|2du ≥ ∞ −∞ tf(t)f′(t) 2 dt ʢ∵ γϡϫϧπͷෆ౳ࣜ ||v||2||w||2 ≥ ||⟨v, w⟩||2 ʣ ≥ 1 4 ∞ −∞ tf(t)f′(t) + tf(t)f′(t) 2 dt (∵ |ab| ≥ 1 2 |ab + ab|) ≥ 1 4 ∞ −∞ tf(t)f′(t) + tf(t)f′(t) dt 2 = 1 4 ∞ −∞ t d dt f(t)f(t) dt 2 ʢ∵ ੵͷඍ෼ެࣜʣ = 1 4 t|f(t)|2 ∞ −∞ − ∞ −∞ |f(t)|2dt 2 ʢ∵ ෦෼ੵ෼ͱ f(t)f(t) = |f(t)|2ʣ = 1 4 {0 − 1}2 ʢ∵ f(t) ʹؔ͢ΔԾఆʣ = 1 4 Αͬͯෆ֬ఆੑݪཧ͸ࣔ͞Εͨɽ 46 / 59
  96. ύʔηόϧͷ౳ࣜʢϑʔϦΤڃ਺ʣ पظ 2π ͷؔ਺ f(x), g(x) ΛͦΕͧΕҎԼͷΑ͏ʹϑʔϦΤڃ਺ల։Ͱ͖Δͱ͢Δɿ f(x) = n

    cn exp(jωx), cn = 1 2π π −π f(x) exp(−jnω)dx g(x) = n dn exp(jωx), dn = 1 2π π −π g(x) exp(−jnω)dx ͜ͷͱ͖ɼ π −π f(x)g(x)dx = π −π n cn exp(jωx) g(x)dx = n cn π −π g(x) exp(jnx)dx = n cn π −π g(x) exp(−jnx)dx = 2π n cndn ͕੒ཱ͢Δɽͱ͘ʹ f = g ͱ͢Ε͹ɼ π −π |f(x)|2dx = 2π n |cn|2 48 / 59
  97. ύʔηόϧͷ౳ࣜʢϑʔϦΤม׵ʣ ؔ਺ f(x), g(x) ͷϑʔϦΤม׵ରΛҎԼͷΑ͏ʹॻ͘ɿ F(ω) = ∞ −∞ f(x)

    exp(−jωx)dx, f(x) = 1 2π ∞ −∞ F(ω) exp(jωx)dω G(ω) = ∞ −∞ g(x) exp(−jωx)dx, g(x) = 1 2π ∞ −∞ G(ω) exp(jωx)dω ͜ͷͱ͖ɼ ∞ −∞ f(x)g(x)dx = ∞ −∞ 1 2π ∞ −∞ F(ω) exp(jωx)dω g(x)dx = 1 2π ∞ −∞ F(ω) ∞ −∞ g(x) exp(jωx)dx dω = 1 2π ∞ −∞ F(ω) ∞ −∞ g(x) exp(−jωx)dx dω = 1 2π ∞ −∞ F(ω)G(ω)dω ͕੒ཱ͢Δɽͱ͘ʹ f = g ͱ͢Ε͹ɼ ∞ −∞ |f(x)|2dx = 1 2π ∞ −∞ |F(ω)|2dω 49 / 59
  98. ύʔηόϧͷ౳ࣜʢߴ଎΢ΣʔϒϨοτม׵ʣ ิ୊ 11 (ύʔηόϧͷ౳ࣜ) ߴ଎΢ΣʔϒϨοτม׵ͷྻ {pm+1 [n]}ɼ {pm [n]}ɼ{qm [n]}

    ʹ͕ؔͯ࣍͠੒ཱ͢Δɿ ||pm+1 ||2 2 = ||pm ||2 2 + ||qm ||2 2 (55) ೖྗ৴߸ͷΤωϧΪʔ ||pm+1 ||2 2 ͸ ||pm ||2 2 ͱ ||qm ||2 2 ʹ෼഑͞ΕΔɽ 50 / 59
  99. ύʔηόϧͷ౳ࣜʢߴ଎΢ΣʔϒϨοτม׵ʣ ʢূ໌ʣࣜ (45) ͷ྆ลͷϊϧϜΛͱΔͱɼ Pm(ω) Qm(ω) 2 2 = 1

    2 H ω 2 Pm+1 ω 2 Pm+1 ω 2 + π 2 2 = 1 2 Pm+1 ω 2 Pm+1 ω 2 + π 2 2 ʢ∵ H(ω) ͸ϢχλϦߦྻʣ ⇐⇒ |Pm(ω)|2 + |Qm(ω)|2 = 1 2 Pm+1 ω 2 2 + Pm+1 ω 2 + π 2 ཭ࢄ࣌ؒϑʔϦΤม׵ͷύʔηόϧͷ౳ࣜʹΑΓɼ ||pm||2 2 + ||qm||2 2 = 1 2π π −π |Pm(ω)|2 + |Qm(ω)|2 dω = 1 4π π −π Pm+1 ω 2 2 + Pm+1 ω 2 + π 2 dω = 1 2π π 2 − π 2 |Pm+1(s)|2 + |Pm+1(s + π)|2 ds (ω = 2s) = 1 2π 3 2 π − π 2 |Pm+1(s)|2ds = 1 2π π −π |Pm+1(s)|2ds = ||pm+1||2 2 51 / 59
  100. ؒҾ͍ͨ਺ྻͷ཭ࢄ࣌ؒϑʔϦΤม׵ ʢূ໌ʣؒҾ͖ૢ࡞͸ɼx[n] ʹपظ D ͷΠϯύϧεؔ਺ྻ δD[n] := 1 n ͕

    D ͷഒ਺ 0 otherwise = 1 D D−1 k=0 exp j 2πnk D ʢ∵ ূ໌͸࣍ͷϖʔδʣ Λ৐͔ͯ͡ΒɼD ݸ͓͖ͷग़ྗΛಘΔૢ࡞ (y[n] := x[n]δD[n] ͱͯ͠ y[Dn] ͕݁Ռ) ͱ ղऍͰ͖Δɽy[Dn] Λ཭ࢄ࣌ؒϑʔϦΤม׵͢Δͱɼ F [y[Dn]] = n y[Dn] exp(−jnω) = n y[n] exp −j nω D = n x[n]δD[n] exp −j nω D = 1 D D−1 k=0 n x[n] exp j 2πnk D − j nω D ʢ∵ ࣜ (57)ʣ = 1 D D−1 k=0 n x[n] exp −jn ω − 2πk D = 1 D D−1 k=0 X ω − 2πk D 53 / 59
  101. ؒҾ͍ͨ਺ྻͷ཭ࢄ࣌ؒϑʔϦΤม׵ δD[n] = 1 D D−1 k=0 exp j 2πnk

    D (57) ʢূ໌ʣn ͕ D ͷഒ਺ͷͱ͖͸ n = mD (m ∈ Z) ͱॻ͚Δ͔Βɼ 1 D D−1 k=0 exp j 2πnk D = 1 D D−1 k=0 exp(j2πmk) = 1 D D−1 k=0 1 = 1 n ͕ D ͷഒ਺Ͱ͸ͳ͍ͱ͖͸ Wk := exp j 2πnk D ͱ͓͘ͱɼ (Wk)D = exp(j2πnk) = 1 ΑΓɼWk (k = 0, 1, ..., D − 1) ͸ 1 ͷ D ৐ࠜɼ͢ͳΘͪɼ ํఔࣜ xD − 1 = 0 ͷղͱͳ͍ͬͯΔɽํఔࣜࠨลΛҼ਺෼ղ͢Δͱɼ xD − 1 = (x − W0)(x − W1)...(x − WD−1) = xD − (W0 + W1 + ... + WD−1)xD−1 + ... + (−1)DW0W1...WD−1 ྆ลͷ܎਺Λൺֱ͢ΔɽxD−1 ͷ܎਺͸ 0 ͔ͩΒɼ W0 + W1 + ... + WD−1 = D−1 k=0 Wk = D−1 k=0 exp j 2πnk D = 0 54 / 59
  102. ࢀߟࢿྉͷ֓؍ web ͰೖखͰ͖Δࢿྉɿ ▶ [4, 5, 6] େֶߨٛࢿྉɽऔֻ͔ͬΓʹɽ ▶ [7,

    8] ෼͔Γ΍͍͢ɽC++ιʔεղઆ΋ॆ࣮ɽ ▶ [9] Lifting ͷ؆қͳઆ໌ɽιʔε΋͋Δɽ ▶ [10, 11, 12] Lifting ͷࢿྉɽͱ͘ʹ [11] ͸؆໌ɽ ॻ੶ɿ ▶ [13] ෼͔Γ΍͍͢ɽͨͩ͠ϋʔϧ΢ΣʔϒϨοτͷΈɽ ▶ [14] ෼͔Γ΍͍͢ɽC ݴޠιʔε͋Γɽ ▶ [15] ෼͔Γ΍͍͕͢ઈ൛...C++ιʔε͋Γɽ ▶ [16] ྺ࢙Λ֓؍͢Δͷʹద͢Δɽҙ֎ʹཧ࿦΋ਂ͍ɽ ▶ [2] Ұ൪ࢀߟʹͨ͠ɽ৴߸ॲཧ͔Βݟͨղઆ΋लҳɽ ▶ [1] υϕγΟ༷ࣥචɽجૅཧ࿦Λ໢ཏɽಡΈ͖Εͯͳ͍ɽ ▶ [17] ؔ਺ղੳඞਢɽ ʢ࠳ંʣ 56 / 59
  103. ࢀߟจݙ I [1] ࠤʑ໦ จ෉ Daubechies Ingrid ࢁా ಓ෉. ΢ΣʔϒϨοτ

    10 ߨ. ؙળग़൛, 2012. [2] લా ഹ et al. ΢ΣʔϒϨοτม׵ͱͦͷԠ༻. ே૔ॻళ, 2001. [3] Albert Boggess and Francis J Narcowich. A first course in wavelets with Fourier analysis. John Wiley & Sons, 2015. [4] ҏ౻ জଇ. Wavelet ม׵. url: http://www.spcom.ecei.tohoku.ac.jp/˜aito/wavelet/slide.pdf (visited on 10/08/2020). [5] Ӌੴ लত. Wavelet1. url: http://www.cfme.chiba- u.jp/˜haneishi/class/iyogazokougaku/Wavelet1.pdf (visited on 10/08/2020). [6] Ӌੴ लত. Wavelet2. url: http://www.cfme.chiba- u.jp/˜haneishi/class/iyogazokougaku/Wavelet2.pdf (visited on 10/08/2020). [7] Fussy. ѹॖΞϧΰϦζϜ (8) ΢ΣʔϒϨοτม׵ -1-. url: http://fussy.web.fc2.com/algo/compress8_wavelet.htm (visited on 10/09/2020). 57 / 59
  104. ࢀߟจݙ II [8] Fussy. ѹॖΞϧΰϦζϜ (9) ΢ΣʔϒϨοτม׵ -2-. url: http://fussy.web.fc2.com/algo/compress9_wavelet2.htm

    (visited on 10/09/2020). [9] Ian Kaplan. Basic Lifting Scheme Wavelets. url: http: //bearcave.com/misl/misl_tech/wavelets/lifting/basiclift.html (visited on 10/09/2020). [10] ౻ϊ໦ ݈հ. “ϦϑςΟϯά΢ΣʔϒϨοτͱ৴߸ղੳ”. In: 2014. [11] Geert Uytterhoeven, Dirk Roose, and Adhemar Bultheel. “Wavelet transforms using the lifting scheme”. In: (1997). [12] ౻ϊ໦ ݈հ. “ϦϑςΟϯάεΩʔϜʹΑΔ΢ΣʔϒϨοτͷߏ੒๏”. In: ೔ຊ Ԡ༻਺ཧֶձ࿦จࢽ 28.2 (2018), pp. 72–133. [13] ۚ୩ ݈Ұ. ͜ΕͳΒ෼͔ΔԠ༻਺ֶڭࣨ –࠷খೋ৐๏͔Β΢ΣʔϒϨοτ· Ͱ–. ڞཱग़൛. [14] ࢁຊ ௟உ த໺ ޺ؽ ٢ా ༃෉. ΢ΣʔϒϨοτʹΑΔ৴߸ ॲཧͱը૾ॲཧ. ڞ ཱग़൛. 58 / 59
  105. ࢀߟจݙ III [15] ઒ാ ༸ত ށా ߒ ষ ஧. ৽΢ΣʔϒϨοτ࣮ફߨ࠲

    : ೖ໳ͱԠ༻ : ৴߸ॲཧͷ جૅ͔Β࠷৽ཧ࿦·Ͱ. C magazine. ιϑτόϯΫΫϦΤΠςΟϒ, 2005. [16] ੢໺ ૢ B.B. ϋόʔυ ࢁా ಓ෉. ΢ΣʔϒϨοτೖ໳ʕ਺ֶతಓ۩ͷ෺ޠ. ே ૔ॻళ, 2003. [17] ৽Ҫ ษ C.K.Chui ࡩҪ ໌. ΢ΣʔϒϨοτೖ໳. ౦ژిػେֶग़൛ہ. 59 / 59