Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2025年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2025. 11. 28)
Search
Akira Asano
PRO
November 18, 2025
Video
Education
0
0
2025年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2025. 11. 28)
関西大学総合情報学部 応用数学(解析)(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2025a/AMA/
Akira Asano
PRO
November 18, 2025
Tweet
Share
Video
More Decks by Akira Asano
See All by Akira Asano
2025年度秋学期 画像情報処理 第10回 離散フーリエ変換と離散コサイン変換 (2025. 11. 28)
akiraasano
PRO
0
1
2025年度秋学期 画像情報処理 第9回 離散フーリエ変換と離散コサイン変換 (2025. 11. 21)
akiraasano
PRO
0
4
2025年度秋学期 画像情報処理 第8回 行列の直交変換と基底画像 (2025. 11. 14)
akiraasano
PRO
0
11
2025年度秋学期 応用数学(解析) 第7回 2階線形微分方程式(2) (2025. 11. 14)
akiraasano
PRO
0
15
2025年度秋学期 画像情報処理 第6回 ベクトルと行列について(数学の補足説明・第2部の準備),高速フーリエ変換 (2025. 10. 31)
akiraasano
PRO
0
9
2025年度秋学期 画像情報処理 第7回 主成分分析とKarhunen-Loève変換 (2025. 11. 7)
akiraasano
PRO
0
18
2025年度秋学期 応用数学(解析) 第6回 変数分離形の変形 (2025. 10. 31)
akiraasano
PRO
0
12
2025年度秋学期 応用数学(解析) 第7回 2階線形微分方程式(1) (2025. 11. 7)
akiraasano
PRO
0
21
2025年度秋学期 画像情報処理 第5回 離散フーリエ変換,フーリエ変換の実例と関連する話題 (2025. 10. 31)
akiraasano
PRO
0
31
Other Decks in Education
See All in Education
吉岡研究室紹介(2025年度)
kentaroy47
0
610
ROSConJP 2025 発表スライド
f0reacharr
0
260
2024-2025 CBT top items
cbtlibrary
0
140
✅ レポート採点基準 / How Your Reports Are Assessed
yasslab
PRO
0
130
20250807_がんばらないコミュニティ運営
ponponmikankan
1
200
DIP_3_Frequency
hachama
0
300
Présentation_2nde_2025.pdf
bernhardsvt
0
320
【ZEPホスト用メタバース校舎操作ガイド】
ainischool
0
120
Introduction - Lecture 1 - Web Technologies (1019888BNR)
signer
PRO
0
5.7k
Introduction - Lecture 1 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
2.6k
Master of Applied Science & Engineering: Computer Science & Master of Science in Applied Informatics: Artificial Intelligence and Data Science
signer
PRO
0
850
今の私を形作る4つの要素と偶然の出会い(セレンディピティ)
mamohacy
2
120
Featured
See All Featured
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
36
6.1k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
35
3.2k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
The Pragmatic Product Professional
lauravandoore
36
7k
A better future with KSS
kneath
239
18k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
970
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Music & Morning Musume
bryan
46
6.9k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
54k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.3k
A Modern Web Designer's Workflow
chriscoyier
697
190k
Transcript
関西大学総合情報学部 浅野 晃 応用数学(解析) 2025年度秋学期 第3部・微分方程式に関する話題 / 第10回 生存時間分布と半減期
今日は,「寿命」を扱う微分方程式🤔🤔
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら その理由は「偶然」
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら その理由は「偶然」 寿命は[確率変数]であるという
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら その理由は「偶然」 寿命は[確率変数]であるという 寿命がいくらである確率がどのくらいであるかを
表すのが[確率分布]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり 次の瞬間
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり 次の瞬間 l(t) は 時刻tまで生存している人が 次の瞬間に死ぬ危険の度合
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり 次の瞬間 l(t) は 時刻tまで生存している人が 次の瞬間に死ぬ危険の度合 [ハザード関数]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 確率変数 T に対して [累積分布関数] F(t)
= P(T ≤ t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 確率変数 T に対して [累積分布関数] F(t)
= P(T ≤ t) この場合,寿命が t 以下である確率
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 確率変数 T に対して [累積分布関数] F(t)
= P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 時刻 t の時点でまだ生きている確率 確率変数 T
に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 時刻 t の時点でまだ生きている確率 ハザード関数は「瞬間瞬間の死亡の危険」 確率変数
T に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 時刻 t の時点でまだ生きている確率 ハザード関数は「瞬間瞬間の死亡の危険」 確率変数
T に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数] 生存関数は,ある時間がたったとき,まだ生きている確率
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T
≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T
≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T
≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T
≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t) 青い部分 の高さ = F(t + Δt) − F(t) Δt
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T
≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t) 青い部分 の高さ = F(t + Δt) − F(t) Δt その の極限 Δt → 0 lim Δt→0 F(t + Δt) − F(t) Δt = F′ (t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T
≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t) 青い部分 の高さ = F(t + Δt) − F(t) Δt その の極限 Δt → 0 lim Δt→0 F(t + Δt) − F(t) Δt = F′ (t) すなわち f(t) = F′ (t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 = 1 P(T > t)
lim ∆→0 F(t + ∆) − F(t) ∆ l(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 = 1 P(T > t)
lim ∆→0 F(t + ∆) − F(t) ∆ l(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T >
t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T >
t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T >
t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T >
t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T >
t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T >
t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T
> t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T
> t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T
> t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t) S′(t) = (1 − F(t))′ = −F′(t) = −f(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T
> t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t) S′(t) = (1 − F(t))′ = −F′(t) = −f(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T
> t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t) S′(t) = (1 − F(t))′ = −F′(t) = −f(t) 以上から l(t) = − S′(t) S(t) という微分方程式が得られる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t))
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0 C = 0
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C よって という解が得られる S(t) = exp − t 0 l(u)du 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0 C = 0
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C よって という解が得られる S(t) = exp − t 0 l(u)du 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0 C = 0 ハザード関数と生存関数の関係
ワイブル分布と指数分布📈📈
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する
S(t) = exp − t 0 l(u)du に代入
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する
S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1du = exp − [(λu)p]u=t u=0 = exp (−(λt)p)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する
S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1du = exp − [(λu)p]u=t u=0 = exp (−(λt)p)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する
S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1du = exp − [(λu)p]u=t u=0 = exp (−(λt)p) 微積分の関係
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する
S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1du = exp − [(λu)p]u=t u=0 = exp (−(λt)p) 微積分の関係 F(t) = 1 − S(t) = 1 − exp (−(λt)p)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 この形の累積分布関数をもつ確率分布を[ワイブル分布]とよぶ ハザード関数を l(t) = λp(λt)p−1
と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1du = exp − [(λu)p]u=t u=0 = exp (−(λt)p) 微積分の関係 F(t) = 1 − S(t) = 1 − exp (−(λt)p)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは,
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 < p < 1 のときは,
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 < p < 1 のときは, l(t) = λp(λt)p−1 の指数が負
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 < p < 1 のときは, l(t) = λp(λt)p−1 の指数が負 時間が経つにつれて,死亡・故障する危険が小さくなる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 < p < 1 のときは, l(t) = λp(λt)p−1 の指数が負 時間が経つにつれて,死亡・故障する危険が小さくなる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 < p < 1 のときは, l(t) = λp(λt)p−1 の指数が負 時間が経つにつれて,死亡・故障する危険が小さくなる [初期故障]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 13 t F(t) F(t) = 1
– e–t4 F(t) = 1 – e–t2 経過時間 累積分布関数 (ある時刻までに死亡・ 故障したものの割合) p = 2 の場合と p = 4 の場合 どちらも摩耗故障(時間につれて故障しやすくなる) p = 4 のほうが,急激に故障が増える
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =
exp (−(λt)p) より 1 S(t) = exp ((λt)p)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =
exp (−(λt)p) より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =
exp (−(λt)p) より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる = log {(λt)p} = p(log t + log λ)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =
exp (−(λt)p) より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる = log {(λt)p} = p(log t + log λ) Y
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =
exp (−(λt)p) より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる = log {(λt)p} = p(log t + log λ) Y X
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =
exp (−(λt)p) より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる = log {(λt)p} = p(log t + log λ) Y X Y = p(X + log λ)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =
exp (−(λt)p) より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる = log {(λt)p} = p(log t + log λ) Y X Y = p(X + log λ) 時刻を上の X ,その時刻での生存割合を上の Y に変換してプロット →並びを近似する直線の傾きが p
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1 ハザード関数は l(t) = λ
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 ハザード関数は l(t) = λ
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ [指数分布] 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ [指数分布] 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は 放射性原子核は,どの時刻においても,その時点で 存在する核のうち一定の割合が崩壊する
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ [指数分布] 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は 放射性原子核は,どの時刻においても,その時点で 存在する核のうち一定の割合が崩壊する ハザード関数が一定で,指数分布にしたがう
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 時刻 に存在する原子核の数が半分になる時刻を とする
t t′
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 時刻 に存在する原子核の数が半分になる時刻を とする
t t′ S(t′) = 1 2 S(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を
とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を
とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を
とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を
とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt 対数をとる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を
とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt −λt′ = − log 2 − λt t′ − t = log 2 λ 対数をとる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 原子核の数が半分になるまでの時間 指数分布の生存関数 時刻
に存在する原子核の数が半分になる時刻を とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt −λt′ = − log 2 − λt t′ − t = log 2 λ 対数をとる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 原子核の数が半分になるまでの時間 指数分布の生存関数 時刻
に存在する原子核の数が半分になる時刻を とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt −λt′ = − log 2 − λt t′ − t = log 2 λ 対数をとる t によらず一定
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 原子核の数が半分になるまでの時間 指数分布の生存関数 時刻
に存在する原子核の数が半分になる時刻を とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt −λt′ = − log 2 − λt t′ − t = log 2 λ 対数をとる t によらず一定 [半減期]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 17 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は?
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 17 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 時間 の単位を「年」とする t
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 17 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 時間 の単位を「年」とする t
指数分布の生存関数を とおくと 半減期 = S(t) = e−λt log 2 λ
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 17 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 時間 の単位を「年」とする t
指数分布の生存関数を とおくと 半減期 = S(t) = e−λt log 2 λ 半減期は2年なので λ = log 2 2
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 17 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 時間 の単位を「年」とする t
指数分布の生存関数を とおくと 半減期 = S(t) = e−λt log 2 λ 半減期は2年なので λ = log 2 2 求めるのは,指数分布の累積分布関数 において の値 F(t) = 1 − e−λt F(1)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 18 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 半減期は2年なので λ =
log 2 2 求めるのは,指数分布の累積分布関数 において の値 F(t) = 1 − e−λt F(1)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 18 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 半減期は2年なので λ =
log 2 2 求めるのは,指数分布の累積分布関数 において の値 F(t) = 1 − e−λt F(1) F(1) = 1 − e− log 2 2 ⋅1 = 1 − elog(2− 1 2 ) = 1 − 2−1 2 = 1 − 1 2 ≒ 0.293
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 18 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 半減期は2年なので λ =
log 2 2 求めるのは,指数分布の累積分布関数 において の値 F(t) = 1 − e−λt F(1) F(1) = 1 − e− log 2 2 ⋅1 = 1 − elog(2− 1 2 ) = 1 − 2−1 2 = 1 − 1 2 ≒ 0.293 1個の原子が1年以内に崩壊する確率 0.293
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 18 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 半減期は2年なので λ =
log 2 2 求めるのは,指数分布の累積分布関数 において の値 F(t) = 1 − e−λt F(1) F(1) = 1 − e− log 2 2 ⋅1 = 1 − elog(2− 1 2 ) = 1 − 2−1 2 = 1 − 1 2 ≒ 0.293 1個の原子が1年以内に崩壊する確率 0.293 原子がたくさんあれば,そのうち崩壊する原子の割合が 29.3%
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 今日のまとめ 19 集団中の個体の数が 死亡・故障によって減少して行く この現象を表す 微分方程式 解に仮定を持ち込むことで,
ワイブル分布,指数分布といった 「死亡・故障による現象のモデル」が導かれる