Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
2025年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2025. 11. 28)
Search
Akira Asano
PRO
November 18, 2025
Video
Education
0
18
2025年度秋学期 応用数学(解析) 第10回 生存時間分布と半減期 (2025. 11. 28)
関西大学総合情報学部 応用数学(解析)(担当・浅野晃)
http://racco.mikeneko.jp/Kougi/2025a/AMA/
Akira Asano
PRO
November 18, 2025
Tweet
Share
Video
More Decks by Akira Asano
See All by Akira Asano
2025年度秋学期 応用数学(解析) 第12回 複素関数論ダイジェスト(2) 孤立特異点と留数 (2025. 12. 19)
akiraasano
PRO
0
6
2025年度秋学期 応用数学(解析) 第12回 複素関数論ダイジェスト(1) 複素関数・正則関数 (2025. 12. 12)
akiraasano
PRO
0
5
2025年度秋学期 応用数学(解析) 第11回 振動と微分方程式 (2025. 12. 5)
akiraasano
PRO
0
17
2025年度秋学期 画像情報処理 第11回 逆投影法による再構成 (2025. 12. 5)
akiraasano
PRO
0
13
2025年度秋学期 画像情報処理 第10回 離散フーリエ変換と離散コサイン変換 (2025. 11. 28)
akiraasano
PRO
0
23
2025年度秋学期 画像情報処理 第9回 離散フーリエ変換と離散コサイン変換 (2025. 11. 21)
akiraasano
PRO
0
14
2025年度秋学期 画像情報処理 第8回 行列の直交変換と基底画像 (2025. 11. 14)
akiraasano
PRO
0
21
2025年度秋学期 応用数学(解析) 第7回 2階線形微分方程式(2) (2025. 11. 14)
akiraasano
PRO
0
22
2025年度秋学期 画像情報処理 第6回 ベクトルと行列について(数学の補足説明・第2部の準備),高速フーリエ変換 (2025. 10. 31)
akiraasano
PRO
0
10
Other Decks in Education
See All in Education
XML and Related Technologies - Lecture 7 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
ロータリー国際大会について~国際大会に参加しよう~:古賀 真由美 会員(2720 Japan O.K. ロータリーEクラブ・(有)誠邦産業 取締役)
2720japanoke
1
720
1125
cbtlibrary
0
130
俺と地方勉強会 - KomeKaigi・地方勉強会への期待 -
pharaohkj
1
1.5k
1202
cbtlibrary
0
130
アジャイルの知見から新卒研修作り、そして組織作り
pokotyamu
0
110
1111
cbtlibrary
0
230
Портфолио - Шынар Ауелбекова
shynar
0
140
20250830_本社にみんなの公園を作ってみた
yoneyan
0
170
Sanapilvet opetuksessa
matleenalaakso
0
34k
Web Search and SEO - Lecture 10 - Web Technologies (1019888BNR)
signer
PRO
2
3k
KBS新事業創造体験2025_科目説明会
yasuchikawakayama
0
140
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
69k
Code Reviewing Like a Champion
maltzj
527
40k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
120
20k
Large-scale JavaScript Application Architecture
addyosmani
514
110k
Speed Design
sergeychernyshev
33
1.4k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.8k
Embracing the Ebb and Flow
colly
88
4.9k
Navigating Team Friction
lara
191
16k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.1k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Visualization
eitanlees
150
16k
Transcript
関西大学総合情報学部 浅野 晃 応用数学(解析) 2025年度秋学期 第3部・微分方程式に関する話題 / 第10回 生存時間分布と半減期
今日は,「寿命」を扱う微分方程式🤔🤔
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら その理由は「偶然」
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら その理由は「偶然」 寿命は[確率変数]であるという
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命は「確率変数」 3 人間の寿命は,各個人によってばらばら 機械の寿命も,同じ型でも個体によってばらばら その理由は「偶然」 寿命は[確率変数]であるという 寿命がいくらである確率がどのくらいであるかを
表すのが[確率分布]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり 次の瞬間
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり 次の瞬間 l(t) は 時刻tまで生存している人が 次の瞬間に死ぬ危険の度合
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 寿命の確率分布を考える 4 寿命を表す確率変数 T (時刻0に誕生した人が死亡する時刻) l(t) =
lim ∆→0 1 ∆ P(t < T < t + ∆|T > t) 時刻 t までは確かに生存している人が 時刻 t 以後,時間Δの間に死亡する確率 単位時間 あたり 次の瞬間 l(t) は 時刻tまで生存している人が 次の瞬間に死ぬ危険の度合 [ハザード関数]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 確率変数 T に対して [累積分布関数] F(t)
= P(T ≤ t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 確率変数 T に対して [累積分布関数] F(t)
= P(T ≤ t) この場合,寿命が t 以下である確率
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 確率変数 T に対して [累積分布関数] F(t)
= P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 時刻 t の時点でまだ生きている確率 確率変数 T
に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 時刻 t の時点でまだ生きている確率 ハザード関数は「瞬間瞬間の死亡の危険」 確率変数
T に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 累積分布関数と「生存関数」 5 時刻 t の時点でまだ生きている確率 ハザード関数は「瞬間瞬間の死亡の危険」 確率変数
T に対して [累積分布関数] F(t) = P(T ≤ t) この場合,寿命が t 以下である確率 S(t) = 1 − F(t) = P(T > t) [生存関数] 生存関数は,ある時間がたったとき,まだ生きている確率
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T
≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T
≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T
≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T
≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t) 青い部分 の高さ = F(t + Δt) − F(t) Δt
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T
≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t) 青い部分 の高さ = F(t + Δt) − F(t) Δt その の極限 Δt → 0 lim Δt→0 F(t + Δt) − F(t) Δt = F′ (t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 (ところで)累積分布関数と確率密度関数 6 ヒストグラム 柱の面積が確率を表す t グレーの部分の面積 P(T
≤ t) t 連続型になると グレーの部分の面積 = P(T ≤ t) ヒストグラム(だったもの)の「へり」 [確率密度関数] f(t) [累積分布関数] F(t) t t + Δt 青い部分 の面積 = P(t ≤ T ≤ t + Δt) = F(t + Δt) − F(t) 青い部分 の高さ = F(t + Δt) − F(t) Δt その の極限 Δt → 0 lim Δt→0 F(t + Δt) − F(t) Δt = F′ (t) すなわち f(t) = F′ (t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 7 l(t) = lim ∆→0 1
∆ P(t < T < t + ∆|T > t) = lim ∆→0 1 ∆ · P{(t < T < t + ∆) and (T > t)} P(T > t) = lim ∆→0 1 ∆ · P(t < T < t + ∆) P(T > t) (条件付確率の定義) 含まれる F(t) = P(T ≤ t) (累積分布関数の定義) = 1 P(T > t) lim ∆→0 F(t + ∆) − F(t) ∆ 寿命 T ハザード関数 l(t) 累積分布関数 F(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 = 1 P(T > t)
lim ∆→0 F(t + ∆) − F(t) ∆ l(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 = 1 P(T > t)
lim ∆→0 F(t + ∆) − F(t) ∆ l(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T >
t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T >
t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T >
t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T >
t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T >
t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) = 1 P(T >
t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T
> t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T
> t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T
> t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t) S′(t) = (1 − F(t))′ = −F′(t) = −f(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T
> t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t) S′(t) = (1 − F(t))′ = −F′(t) = −f(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 生存関数とハザード関数 8 (微分の定義) (生存関数の定義) = 1 P(T
> t) lim ∆→0 F(t + ∆) − F(t) ∆ l(t) ( ) = 1 P(T > t) F′(t) (確率密度関数) f(t) = F′(t) = f(t) S(t) l(t) S(t) = P(T > t) S′(t) = (1 − F(t))′ = −F′(t) = −f(t) 以上から l(t) = − S′(t) S(t) という微分方程式が得られる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t))
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0 C = 0
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C よって という解が得られる S(t) = exp − t 0 l(u)du 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0 C = 0
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 微分方程式を解く 9 l(t) = − S′(t) S(t)
= − d dt (log S(t)) (両辺を積分) − t 0 l(u)du = log S(t) + C よって という解が得られる S(t) = exp − t 0 l(u)du 時刻0,つまり誕生の瞬間に生存している確率は1 つまり S(0) = 1 t = 0 のとき S(0) = 1 だから 0 0 0 1 0 C = 0 ハザード関数と生存関数の関係
ワイブル分布と指数分布📈📈
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する
S(t) = exp − t 0 l(u)du に代入
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する
S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1du = exp − [(λu)p]u=t u=0 = exp (−(λt)p)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する
S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1du = exp − [(λu)p]u=t u=0 = exp (−(λt)p)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する
S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1du = exp − [(λu)p]u=t u=0 = exp (−(λt)p) 微積分の関係
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 ハザード関数を l(t) = λp(λt)p−1 と仮定する
S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1du = exp − [(λu)p]u=t u=0 = exp (−(λt)p) 微積分の関係 F(t) = 1 − S(t) = 1 − exp (−(λt)p)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布 11 この形の累積分布関数をもつ確率分布を[ワイブル分布]とよぶ ハザード関数を l(t) = λp(λt)p−1
と仮定する S(t) = exp − t 0 l(u)du に代入 S(t) = exp − t 0 λp(λu)p−1du = exp − [(λu)p]u=t u=0 = exp (−(λt)p) 微積分の関係 F(t) = 1 − S(t) = 1 − exp (−(λt)p)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは,
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 < p < 1 のときは,
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 < p < 1 のときは, l(t) = λp(λt)p−1 の指数が負
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 < p < 1 のときは, l(t) = λp(λt)p−1 の指数が負 時間が経つにつれて,死亡・故障する危険が小さくなる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 < p < 1 のときは, l(t) = λp(λt)p−1 の指数が負 時間が経つにつれて,死亡・故障する危険が小さくなる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 12 パラメータは λ と p l(t)
= λp(λt)p−1 λ が大きいと,ハザード関数が全体に大きくなる 死亡・故障する危険が どの時刻でも大きくなる p > 1 のときは, l(t) = λp(λt)p−1 の指数が正 時間が経つにつれて,死亡・故障する危険が大きくなる [摩耗故障] 0 < p < 1 のときは, l(t) = λp(λt)p−1 の指数が負 時間が経つにつれて,死亡・故障する危険が小さくなる [初期故障]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブル分布のパラメータ 13 t F(t) F(t) = 1
– e–t4 F(t) = 1 – e–t2 経過時間 累積分布関数 (ある時刻までに死亡・ 故障したものの割合) p = 2 の場合と p = 4 の場合 どちらも摩耗故障(時間につれて故障しやすくなる) p = 4 のほうが,急激に故障が増える
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =
exp (−(λt)p) より 1 S(t) = exp ((λt)p)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =
exp (−(λt)p) より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =
exp (−(λt)p) より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる = log {(λt)p} = p(log t + log λ)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =
exp (−(λt)p) より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる = log {(λt)p} = p(log t + log λ) Y
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =
exp (−(λt)p) より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる = log {(λt)p} = p(log t + log λ) Y X
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =
exp (−(λt)p) より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる = log {(λt)p} = p(log t + log λ) Y X Y = p(X + log λ)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 ワイブルプロット 14 実務では,たくさんの個体で耐久試験を行い, ワイブル分布を仮定して,パラメータを推測する S(t) =
exp (−(λt)p) より 1 S(t) = exp ((λt)p) log log 1 S(t) = log {log (exp ((λt)p))} 両辺の対数を2回とる = log {(λt)p} = p(log t + log λ) Y X Y = p(X + log λ) 時刻を上の X ,その時刻での生存割合を上の Y に変換してプロット →並びを近似する直線の傾きが p
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1 ハザード関数は l(t) = λ
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 ハザード関数は l(t) = λ
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ [指数分布] 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ [指数分布] 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は 放射性原子核は,どの時刻においても,その時点で 存在する核のうち一定の割合が崩壊する
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 指数分布 15 で p = 1 の場合
l(t) = λp(λt)p−1 死亡・故障する危険が時刻によらず一定 [偶発故障] ハザード関数は l(t) = λ [指数分布] 累積分布関数は F(t) = 1 − e−λt S(t) = e−λt 生存関数は 放射性原子核は,どの時刻においても,その時点で 存在する核のうち一定の割合が崩壊する ハザード関数が一定で,指数分布にしたがう
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 時刻 に存在する原子核の数が半分になる時刻を とする
t t′
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 時刻 に存在する原子核の数が半分になる時刻を とする
t t′ S(t′) = 1 2 S(t)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を
とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を
とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を
とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を
とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt 対数をとる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 指数分布の生存関数 時刻 に存在する原子核の数が半分になる時刻を
とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt −λt′ = − log 2 − λt t′ − t = log 2 λ 対数をとる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 原子核の数が半分になるまでの時間 指数分布の生存関数 時刻
に存在する原子核の数が半分になる時刻を とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt −λt′ = − log 2 − λt t′ − t = log 2 λ 対数をとる
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 原子核の数が半分になるまでの時間 指数分布の生存関数 時刻
に存在する原子核の数が半分になる時刻を とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt −λt′ = − log 2 − λt t′ − t = log 2 λ 対数をとる t によらず一定
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 半減期 16 ある時刻に存在する原子核の数が,その半分になるまでの時間は, どの時刻でも一定 原子核の数が半分になるまでの時間 指数分布の生存関数 時刻
に存在する原子核の数が半分になる時刻を とする t t′ S(t′) = 1 2 S(t) S(t) = e−λt e−λt′ = 1 2 e−λt −λt′ = − log 2 − λt t′ − t = log 2 λ 対数をとる t によらず一定 [半減期]
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 17 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は?
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 17 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 時間 の単位を「年」とする t
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 17 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 時間 の単位を「年」とする t
指数分布の生存関数を とおくと 半減期 = S(t) = e−λt log 2 λ
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 17 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 時間 の単位を「年」とする t
指数分布の生存関数を とおくと 半減期 = S(t) = e−λt log 2 λ 半減期は2年なので λ = log 2 2
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 17 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 時間 の単位を「年」とする t
指数分布の生存関数を とおくと 半減期 = S(t) = e−λt log 2 λ 半減期は2年なので λ = log 2 2 求めるのは,指数分布の累積分布関数 において の値 F(t) = 1 − e−λt F(1)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 18 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 半減期は2年なので λ =
log 2 2 求めるのは,指数分布の累積分布関数 において の値 F(t) = 1 − e−λt F(1)
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 18 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 半減期は2年なので λ =
log 2 2 求めるのは,指数分布の累積分布関数 において の値 F(t) = 1 − e−λt F(1) F(1) = 1 − e− log 2 2 ⋅1 = 1 − elog(2− 1 2 ) = 1 − 2−1 2 = 1 − 1 2 ≒ 0.293
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 18 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 半減期は2年なので λ =
log 2 2 求めるのは,指数分布の累積分布関数 において の値 F(t) = 1 − e−λt F(1) F(1) = 1 − e− log 2 2 ⋅1 = 1 − elog(2− 1 2 ) = 1 − 2−1 2 = 1 − 1 2 ≒ 0.293 1個の原子が1年以内に崩壊する確率 0.293
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 演習問題 18 ある原子核の半減期が2年であるとする 1年以内に崩壊する原子核の割合は? 半減期は2年なので λ =
log 2 2 求めるのは,指数分布の累積分布関数 において の値 F(t) = 1 − e−λt F(1) F(1) = 1 − e− log 2 2 ⋅1 = 1 − elog(2− 1 2 ) = 1 − 2−1 2 = 1 − 1 2 ≒ 0.293 1個の原子が1年以内に崩壊する確率 0.293 原子がたくさんあれば,そのうち崩壊する原子の割合が 29.3%
19 2025年度春学期 応用数学(解析) / 関西大学総合情報学部 浅野 晃 今日のまとめ 19 集団中の個体の数が 死亡・故障によって減少して行く この現象を表す 微分方程式 解に仮定を持ち込むことで,
ワイブル分布,指数分布といった 「死亡・故障による現象のモデル」が導かれる