$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
110
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
83
UKARA 1.0 Challenge Track 1
aliakbars
1
77
Introduction to Artificial Intelligence
aliakbars
2
330
Feature Selection & Extraction
aliakbars
0
110
Introduction to Natural Language Processing
aliakbars
0
59
Machine Learning for Healthcare
aliakbars
0
56
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
62
How Technology Can Change Food Logistics
aliakbars
0
60
Data Science for Business
aliakbars
2
94
Other Decks in Education
See All in Education
Semantic Web and Web 3.0 - Lecture 9 - Web Technologies (1019888BNR)
signer
PRO
2
2.5k
Introduction - Lecture 1 - Web Technologies (1019888BNR)
signer
PRO
0
4.9k
オープンソース防災教育ARアプリの開発と地域防災での活用
nro2daisuke
0
190
Flinga
matleenalaakso
2
13k
2409_CompanyInfo_Hanji_published.pdf
yosukemurata
0
490
Blogit opetuksessa
matleenalaakso
0
1.7k
不登校予防・再登校支援プログラムを提供するToCo (トーコ) の会社紹介資料 toco.mom
toco3week
0
470
Chapitre_1_-__L_atmosphère_et_la_vie_-_Partie_2.pdf
bernhardsvt
0
210
The Gender Gap in the Technology Field and Efforts to Address It
codeforeveryone
0
230
Repaso electricidade e electrónica
irocho
0
200
Comment aborder et contribuer sereinement à un projet open source ? (Masterclass Université Toulouse III)
pylapp
0
3.2k
Zoom-ohjeet
matleenalaakso
7
7.2k
Featured
See All Featured
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
44
2.2k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
28
2k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
150
Done Done
chrislema
181
16k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.6k
Ruby is Unlike a Banana
tanoku
97
11k
Imperfection Machines: The Place of Print at Facebook
scottboms
266
13k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Building Applications with DynamoDB
mza
90
6.1k
Building an army of robots
kneath
302
43k
VelocityConf: Rendering Performance Case Studies
addyosmani
326
24k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you