Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
110
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
97
UKARA 1.0 Challenge Track 1
aliakbars
1
90
Introduction to Artificial Intelligence
aliakbars
2
370
Feature Selection & Extraction
aliakbars
0
150
Introduction to Natural Language Processing
aliakbars
0
71
Machine Learning for Healthcare
aliakbars
0
65
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
99
How Technology Can Change Food Logistics
aliakbars
0
110
Data Science for Business
aliakbars
2
130
Other Decks in Education
See All in Education
バックオフィス組織にも「チームトポロジー」の考えが使えるかもしれない!!
masakiokuda
0
120
登壇未経験者のための登壇戦略~LTは設計が9割!!!~
masakiokuda
3
620
Human-AI Interaction - Lecture 11 - Next Generation User Interfaces (4018166FNR)
signer
PRO
0
490
生成AIとの上手な付き合い方【公開版】/ How to Get Along Well with Generative AI (Public Version)
handlename
0
560
View Manipulation and Reduction - Lecture 9 - Information Visualisation (4019538FNR)
signer
PRO
1
2.1k
H5P-työkalut
matleenalaakso
4
39k
2025年度春学期 統計学 第4回 データを「分布」で見る (2025. 5. 1)
akiraasano
PRO
0
160
Data Management and Analytics Specialisation
signer
PRO
0
1.4k
JPCERTから始まる草の根活動~セキュリティ文化醸成のためのアクション~
masakiokuda
0
210
シリコンバレーでスタートアップを共同創業したファウンディングエンジニアとしての学び
tomoima525
1
390
2025年度春学期 統計学 第7回 データの関係を知る(2)ー回帰と決定係数 (2025. 5. 22)
akiraasano
PRO
0
150
著作権と授業に関する出前講習会/dme-2025-05-01
gnutar
0
210
Featured
See All Featured
RailsConf 2023
tenderlove
30
1.2k
Code Reviewing Like a Champion
maltzj
524
40k
Testing 201, or: Great Expectations
jmmastey
45
7.6k
Balancing Empowerment & Direction
lara
1
540
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
183
54k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Building a Scalable Design System with Sketch
lauravandoore
462
33k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
Why Our Code Smells
bkeepers
PRO
337
57k
A better future with KSS
kneath
239
17k
Imperfection Machines: The Place of Print at Facebook
scottboms
267
13k
The Cult of Friendly URLs
andyhume
79
6.5k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you