Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
110
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
82
UKARA 1.0 Challenge Track 1
aliakbars
1
76
Introduction to Artificial Intelligence
aliakbars
2
330
Feature Selection & Extraction
aliakbars
0
100
Introduction to Natural Language Processing
aliakbars
0
57
Machine Learning for Healthcare
aliakbars
0
56
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
60
How Technology Can Change Food Logistics
aliakbars
0
57
Data Science for Business
aliakbars
2
92
Other Decks in Education
See All in Education
1106
cbtlibrary
0
410
アニメに学ぶチームの多様性とコンピテンシー
terahide
0
240
Repaso electricidade e electrónica
irocho
0
190
横浜国立大学大学院 国際社会科学府 経営学専攻博士課程前期(社会人専修コース)_在校生体験談
miki_small_pin
0
690
Semantic Web and Web 3.0 - Lecture 9 - Web Technologies (1019888BNR)
signer
PRO
1
2.5k
HCI and Interaction Design - Lecture 2 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
810
Introduction - Lecture 1 - Web Technologies (1019888BNR)
signer
PRO
0
4.9k
CSS3 and Responsive Web Design - Lecture 5 - Web Technologies (1019888BNR)
signer
PRO
1
2.5k
H5P-työkalut
matleenalaakso
4
36k
オープンソース防災教育ARアプリの開発と地域防災での活用
nro2daisuke
0
170
XML and Related Technologies - Lecture 7 - Web Technologies (1019888BNR)
signer
PRO
0
2.5k
開発終了後こそ成長のチャンス!プロダクト運用を見送った先のアクションプラン
ohmori_yusuke
2
160
Featured
See All Featured
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
280
13k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
Six Lessons from altMBA
skipperchong
27
3.5k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
Code Review Best Practice
trishagee
64
17k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
191
16k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
Put a Button on it: Removing Barriers to Going Fast.
kastner
59
3.5k
Unsuck your backbone
ammeep
668
57k
Code Reviewing Like a Champion
maltzj
520
39k
Typedesign – Prime Four
hannesfritz
40
2.4k
Designing for humans not robots
tammielis
250
25k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you