Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
120
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
100
UKARA 1.0 Challenge Track 1
aliakbars
1
95
Introduction to Artificial Intelligence
aliakbars
2
390
Feature Selection & Extraction
aliakbars
0
180
Introduction to Natural Language Processing
aliakbars
0
76
Machine Learning for Healthcare
aliakbars
0
69
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
120
How Technology Can Change Food Logistics
aliakbars
0
140
Data Science for Business
aliakbars
2
140
Other Decks in Education
See All in Education
CSS3 and Responsive Web Design - Lecture 5 - Web Technologies (1019888BNR)
signer
PRO
1
3k
仏教の源流からの奈良県中南和_奈良まほろば館‗飛鳥・藤原DAO/asuka-fujiwara_Saraswati
tkimura12
0
170
授業レポート:共感と協調のリーダーシップ(2025年上期)
jibunal
1
190
Microsoft Office 365
matleenalaakso
0
2k
IHLヘルスケアリーダーシップ研究会17期説明資料
ihlhealthcareleadership
0
350
あなたの言葉に力を与える、演繹的なアプローチ
logica0419
1
250
アジャイルの知見から新卒研修作り、そして組織作り
pokotyamu
0
130
MySmartSTEAM 2526
cbtlibrary
0
170
20251023@天童市いこう会
koshiba_noriaki
0
110
外国籍エンジニアの挑戦・新卒半年後、気づきと成長の物語
hypebeans
0
680
滑空スポーツ講習会2025(実技講習)EMFT学科講習資料/JSA EMFT 2025
jsaseminar
0
140
Sanapilvet opetuksessa
matleenalaakso
0
34k
Featured
See All Featured
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
The Invisible Side of Design
smashingmag
302
51k
We Are The Robots
honzajavorek
0
130
Applied NLP in the Age of Generative AI
inesmontani
PRO
3
2k
Between Models and Reality
mayunak
0
150
Jess Joyce - The Pitfalls of Following Frameworks
techseoconnect
PRO
1
34
How GitHub (no longer) Works
holman
316
140k
Building AI with AI
inesmontani
PRO
1
590
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
54
48k
First, design no harm
axbom
PRO
1
1.1k
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
10
770
How STYLIGHT went responsive
nonsquared
100
6k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you