Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
120
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
100
UKARA 1.0 Challenge Track 1
aliakbars
1
94
Introduction to Artificial Intelligence
aliakbars
2
390
Feature Selection & Extraction
aliakbars
0
180
Introduction to Natural Language Processing
aliakbars
0
75
Machine Learning for Healthcare
aliakbars
0
69
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
110
How Technology Can Change Food Logistics
aliakbars
0
140
Data Science for Business
aliakbars
2
140
Other Decks in Education
See All in Education
Design Guidelines and Models - Lecture 5 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.2k
Security, Privacy and Trust - Lecture 11 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
DIP_1_Introduction
hachama
0
330
RGBでも蛍光を!? / RayTracingCamp11
kugimasa
1
250
Présentation_1ère_Spé_2025.pdf
bernhardsvt
0
450
2025年度伊藤正彦ゼミ紹介
imash
0
130
バケットポリシーの記述を誤りマネコンからS3バケットを操作できなくなりそうになった話
amarelo_n24
1
140
ThingLink
matleenalaakso
28
4.2k
附属科学技術高等学校の概要|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
2.8k
Introduction - Lecture 1 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
2.7k
Web Search and SEO - Lecture 10 - Web Technologies (1019888BNR)
signer
PRO
2
3k
Презентация "Знаю Россию"
spilsart
0
370
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
970
Art, The Web, and Tiny UX
lynnandtonic
303
21k
The Pragmatic Product Professional
lauravandoore
37
7.1k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Automating Front-end Workflow
addyosmani
1371
200k
Why You Should Never Use an ORM
jnunemaker
PRO
61
9.6k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Raft: Consensus for Rubyists
vanstee
141
7.2k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
RailsConf 2023
tenderlove
30
1.3k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you