Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
120
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
100
UKARA 1.0 Challenge Track 1
aliakbars
1
95
Introduction to Artificial Intelligence
aliakbars
2
390
Feature Selection & Extraction
aliakbars
0
180
Introduction to Natural Language Processing
aliakbars
0
77
Machine Learning for Healthcare
aliakbars
0
69
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
120
How Technology Can Change Food Logistics
aliakbars
0
150
Data Science for Business
aliakbars
2
140
Other Decks in Education
See All in Education
Design Guidelines and Models - Lecture 5 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.3k
悩める リーダー達に 届けたい書籍|レジリエントマネジメント 書籍イントロダクション-260126
mimoza60
0
170
あなたの言葉に力を与える、演繹的なアプローチ
logica0419
1
270
都市の形成要因と 「都市の余白」のあり方
sakamon
0
150
【ベテランCTOからのメッセージ】AIとか組織とかキャリアとか気になることはあるけどさ、個人の技術力から目を背けないでやっていきましょうよ
netmarkjp
2
2k
子どものためのプログラミング道場『CoderDojo』〜法人提携例〜 / Partnership with CoderDojo Japan
coderdojojapan
PRO
4
18k
JAPAN AI CUP Prediction Tutorial
upura
1
550
1014
cbtlibrary
0
520
Requirements Analysis and Prototyping - Lecture 3 - Human-Computer Interaction (1023841ANR)
signer
PRO
0
1.4k
1125
cbtlibrary
0
170
ロータリー国際大会について~国際大会に参加しよう~:古賀 真由美 会員(2720 Japan O.K. ロータリーEクラブ・(有)誠邦産業 取締役)
2720japanoke
1
770
Web 2.0 Patterns and Technologies - Lecture 8 - Web Technologies (1019888BNR)
signer
PRO
0
3k
Featured
See All Featured
The AI Revolution Will Not Be Monopolized: How open-source beats economies of scale, even for LLMs
inesmontani
PRO
3
3k
Git: the NoSQL Database
bkeepers
PRO
432
66k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
57
50k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
190
Thoughts on Productivity
jonyablonski
74
5k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
150
Why Your Marketing Sucks and What You Can Do About It - Sophie Logan
marketingsoph
0
72
SEO for Brand Visibility & Recognition
aleyda
0
4.2k
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
The State of eCommerce SEO: How to Win in Today's Products SERPs - #SEOweek
aleyda
2
9.5k
How to optimise 3,500 product descriptions for ecommerce in one day using ChatGPT
katarinadahlin
PRO
0
3.4k
The Limits of Empathy - UXLibs8
cassininazir
1
210
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you