Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
120
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
99
UKARA 1.0 Challenge Track 1
aliakbars
1
92
Introduction to Artificial Intelligence
aliakbars
2
380
Feature Selection & Extraction
aliakbars
0
170
Introduction to Natural Language Processing
aliakbars
0
73
Machine Learning for Healthcare
aliakbars
0
66
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
100
How Technology Can Change Food Logistics
aliakbars
0
120
Data Science for Business
aliakbars
2
140
Other Decks in Education
See All in Education
[Segah 2025] Gamified Interventions for Composting Behavior in the Workplace
ezefranca
0
210
2026 g0v 零時政府年會啟動提案 / g0v Summit 2026 Kickstart
rschiang
0
400
JavaScript - Lecture 6 - Web Technologies (1019888BNR)
signer
PRO
0
3k
DIP_1_Introduction
hachama
0
270
Transición del Management al Neuromanagement
jvpcubias
0
240
授業レポート:共感と協調のリーダーシップ(2025年上期)
jibunal
1
130
Node-REDで広がるプログラミング教育の可能性
ueponx
0
160
附属科学技術高等学校の概要|Science Tokyo(東京科学大学)
sciencetokyo
PRO
0
1.6k
仏教の源流からの奈良県中南和_奈良まほろば館‗飛鳥・藤原DAO/asuka-fujiwara_Saraswati
tkimura12
0
150
今までのやり方でやってみよう!?~今までのやり方でやってみよう!?~
kanamitsu
0
200
吉岡研究室紹介(2025年度)
kentaroy47
0
470
自分だけの、誰も想像できないキャリアの育て方 〜偶然から始めるキャリアプラン〜 / Career planning starting by luckly v2
vtryo
1
250
Featured
See All Featured
Facilitating Awesome Meetings
lara
57
6.6k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
140
34k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
359
30k
Faster Mobile Websites
deanohume
310
31k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
KATA
mclloyd
PRO
32
15k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
23
1.5k
The Pragmatic Product Professional
lauravandoore
36
7k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
116
20k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you