Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
110
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
93
UKARA 1.0 Challenge Track 1
aliakbars
1
89
Introduction to Artificial Intelligence
aliakbars
2
350
Feature Selection & Extraction
aliakbars
0
150
Introduction to Natural Language Processing
aliakbars
0
69
Machine Learning for Healthcare
aliakbars
0
64
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
91
How Technology Can Change Food Logistics
aliakbars
0
99
Data Science for Business
aliakbars
2
130
Other Decks in Education
See All in Education
2025年度春学期 統計学 第2回 統計資料の収集と読み方(講義前配付用) (2025. 4. 17)
akiraasano
PRO
0
140
AIの時代こそ、考える知的学習術
yum3
2
160
OpenSourceSummitJapanを運営してみた話
kujiraitakahiro
0
680
2025年度春学期 統計学 第3回 クロス集計と感度・特異度,データの可視化 (2025. 4. 24)
akiraasano
PRO
0
120
ANS-C01_2回不合格から合格までの道程
amarelo_n24
1
240
予習動画
takenawa
0
4k
SkimaTalk Teacher Guidelines Summary
skimatalk
0
780k
View Manipulation and Reduction - Lecture 9 - Information Visualisation (4019538FNR)
signer
PRO
1
2k
人になにかを教えるときに考えていること(2025-05版 / VRC-LT #18)
sksat
4
1k
第1回大学院理工学系説明会|東京科学大学(Science Tokyo)
sciencetokyo
PRO
0
3.7k
Constructing a Custom TeX Ecosystem for Educational Institutions—Beyond Academic Typesetting
doratex
1
8.4k
OJTに夢を見すぎていませんか? ロールプレイ研修の試行錯誤/tryanderror-in-roleplaying-training
takipone
1
140
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.7k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
No one is an island. Learnings from fostering a developers community.
thoeni
21
3.3k
Embracing the Ebb and Flow
colly
86
4.7k
Become a Pro
speakerdeck
PRO
28
5.4k
The Cult of Friendly URLs
andyhume
79
6.4k
KATA
mclloyd
29
14k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
53
2.8k
Gamification - CAS2011
davidbonilla
81
5.3k
Code Review Best Practice
trishagee
68
18k
We Have a Design System, Now What?
morganepeng
52
7.6k
Statistics for Hackers
jakevdp
799
220k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you