Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
110
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
89
UKARA 1.0 Challenge Track 1
aliakbars
1
77
Introduction to Artificial Intelligence
aliakbars
2
330
Feature Selection & Extraction
aliakbars
0
110
Introduction to Natural Language Processing
aliakbars
0
59
Machine Learning for Healthcare
aliakbars
0
56
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
69
How Technology Can Change Food Logistics
aliakbars
0
70
Data Science for Business
aliakbars
2
100
Other Decks in Education
See All in Education
Comment aborder et contribuer sereinement à un projet open source ? (Masterclass Université Toulouse III)
pylapp
0
3.3k
Kaggle 班ができるまで
abap34
1
240
勉強したらどうなるの?
mineo_matsuya
10
6.9k
Ilman kirjautumista toimivia sovelluksia
matleenalaakso
1
20k
Web Application Frameworks - Lecture 4 - Web Technologies (1019888BNR)
signer
PRO
0
2.7k
2024年度秋学期 統計学 第12回 分布の平均を推測する - 区間推定 (2024. 12. 11)
akiraasano
PRO
0
100
A Chatbot is Not a Search Engine (it's more like a roleplaying game)
dsalo
0
110
Образцы вооружения и техники ВС РФ
obzr
0
120
AWS Well-Architected Labを活用してつよつよAWSエンジニアになろう!!! #jawsug_tokyo
masakiokuda
0
280
BrightonSEO, San Diego, CA 2024
mchowning
0
120
ThingLink
matleenalaakso
28
3.8k
1106
cbtlibrary
0
440
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
27
1.5k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
226
22k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
132
33k
Designing Experiences People Love
moore
139
23k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
192
16k
Docker and Python
trallard
43
3.2k
GraphQLとの向き合い方2022年版
quramy
44
13k
Java REST API Framework Comparison - PWX 2021
mraible
28
8.3k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
The Cost Of JavaScript in 2023
addyosmani
46
7.2k
Stop Working from a Prison Cell
hatefulcrawdad
267
20k
Building Better People: How to give real-time feedback that sticks.
wjessup
366
19k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you