Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
110
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
89
UKARA 1.0 Challenge Track 1
aliakbars
1
77
Introduction to Artificial Intelligence
aliakbars
2
330
Feature Selection & Extraction
aliakbars
0
120
Introduction to Natural Language Processing
aliakbars
0
60
Machine Learning for Healthcare
aliakbars
0
56
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
71
How Technology Can Change Food Logistics
aliakbars
0
76
Data Science for Business
aliakbars
2
110
Other Decks in Education
See All in Education
Medidas en informática
irocho
0
1.1k
1127
cbtlibrary
0
180
リバースバケットリスト 〜 「死ぬまでにやることリスト」の欠点と対処法
takibi333
0
120
Padlet opetuksessa
matleenalaakso
4
13k
ISMS審査準備ブック_サンプル【LRM 情報セキュリティお役立ち資料】
lrm
0
1.1k
Security, Privacy and Trust - Lecture 11 - Web Technologies (1019888BNR)
signer
PRO
0
2.7k
Sanapilvet opetuksessa
matleenalaakso
0
31k
MySmartSTEAM2425
cbtlibrary
0
120
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
2.6k
5 Things Every L&D Pro Should Steal from Marketing
tmiket
0
150
Ch4_-_Cours_1.pdf
bernhardsvt
0
150
HCL Notes/Domino 14.5 EAP Drop1
harunakano
1
160
Featured
See All Featured
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
jQuery: Nuts, Bolts and Bling
dougneiner
63
7.6k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
Making the Leap to Tech Lead
cromwellryan
133
9.1k
The Myth of the Modular Monolith - Day 2 Keynote - Rails World 2024
eileencodes
21
2.5k
Measuring & Analyzing Core Web Vitals
bluesmoon
6
240
The Invisible Side of Design
smashingmag
299
50k
Site-Speed That Sticks
csswizardry
4
380
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
114
50k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
100
18k
GitHub's CSS Performance
jonrohan
1030
460k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
12
960
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you