Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Machine Learning 101
Search
Ali Akbar S.
December 18, 2017
Education
1
110
Machine Learning 101
Ali Akbar S.
December 18, 2017
Tweet
Share
More Decks by Ali Akbar S.
See All by Ali Akbar S.
Pattern Recognition in Industry
aliakbars
0
89
UKARA 1.0 Challenge Track 1
aliakbars
1
77
Introduction to Artificial Intelligence
aliakbars
2
330
Feature Selection & Extraction
aliakbars
0
120
Introduction to Natural Language Processing
aliakbars
0
60
Machine Learning for Healthcare
aliakbars
0
56
Pemanfaatan Big Data dalam Ekonomi Indonesia Berbasis Digital
aliakbars
0
72
How Technology Can Change Food Logistics
aliakbars
0
78
Data Science for Business
aliakbars
2
110
Other Decks in Education
See All in Education
Web Search and SEO - Lecture 10 - Web Technologies (1019888BNR)
signer
PRO
2
2.6k
Ch4_-_Cours_1.pdf
bernhardsvt
0
170
Adobe Express
matleenalaakso
1
7.8k
統計学に必要な数学(線形代数含む)
kosugitti
0
290
MySmartSTEAM2425
cbtlibrary
0
120
ThingLink
matleenalaakso
28
3.9k
アジャイルやっていきを醸成する内製講座
nomuson
1
260
ISMS審査準備ブック_サンプル【LRM 情報セキュリティお役立ち資料】
lrm
0
1.1k
ハワイアン航空 ステータスへの道 #HAairstudy
maroon1st
0
110
Padlet opetuksessa
matleenalaakso
4
13k
ニュースメディアにおける生成 AI の活用と開発 / UTokyo Lecture Business Introduction
upura
0
240
Introduction - Lecture 1 - Advanced Topics in Big Data (4023256FNR)
signer
PRO
1
1.7k
Featured
See All Featured
Rails Girls Zürich Keynote
gr2m
94
13k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
175
52k
The Cost Of JavaScript in 2023
addyosmani
47
7.4k
Site-Speed That Sticks
csswizardry
4
420
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
30
2.3k
4 Signs Your Business is Dying
shpigford
183
22k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.4k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
30
4.6k
How to Ace a Technical Interview
jacobian
276
23k
Building Your Own Lightsaber
phodgson
104
6.2k
Building a Modern Day E-commerce SEO Strategy
aleyda
38
7.1k
Done Done
chrislema
182
16k
Transcript
Machine Learning 101 Ali Akbar Septiandri Universitas Al Azhar Indonesia
Previously...
Cross Industry Standard Process for Data Mining (CRISP-DM)
Data Science Venn Diagram
What is the role of machine learning algorithms?
“Fundamentally, machine learning involves building mathematical models to help understand
data.” - Jake VanderPlas
Tasks in Machine Learning 1. Predicting stock price 2. Differentiating
cat vs. dog pictures 3. Spam identification 4. Community detection 5. Mimicking famous painting style 6. Mastering the game of go and chess 7. etc.
Task Categories 1. Supervised learning a. Predicting stock price b.
Differentiating cat vs. dog pictures c. Spam identification 2. Unsupervised learning a. Community detection b. Mimicking famous painting style 3. Reinforcement learning a. Mastering the game of go and chess
- Iris Dataset - by R.A. Fisher (1936) - 4
attributes: sepal length, sepal width, petal length, petal width - 3 labels: Iris Setosa, Iris Versicolour, Iris Virginica Let’s take an example dataset...
None
None
None
None
None
Nearest Neighbour - Finding the closest reference - What does
it mean by “closest”? - Humans comprehend visualisations very well - Can computers do the same?
At the lowest level, computers only understand 0 or 1
Euclidean Distance
Euclidean Distance
Are you sure?
1. Find some k closest references 2. Use majority vote
3. We need to compute pairwise distances k-Nearest Neighbours
None
Conventional statistics can not do that
We need high computational power
What if we only want to see the subgroups in
the data?
Clustering - Finding subgroups in the data - Your neighbours
in the same housing complex regardless of their class - Unsupervised learning
None
k-Means Clustering
k-Means Clustering 1. Uses Euclidean distance as well 2. k
= number of clusters 3. Centroids to represent clusters
None
None
None
Deep Learning
None
Digit Recognition MNIST Dataset
Classifying objects from pictures [Krizhevsky, 2009]
None
None
A neural network [Nielsen, 2016]
Logistic Regression y = σ(w 0 + w 1 x
1 )
Predicting traffic jams from CCTV pictures
Mimicking famous paintings
None
Other Machine Learning Algorithms
Naive Bayes
Decision trees
Linear regression with polynomial basis functions
“No free lunch”
Thank you