Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
(読み会)Evaluating Factuality in Text Simplification
Search
ando
November 01, 2022
Research
1
190
(読み会)Evaluating Factuality in Text Simplification
komachi lab
ando
November 01, 2022
Tweet
Share
More Decks by ando
See All by ando
(Reading )Does BERT Know that the IS-A Relation Is Transitive?
ando55
0
99
博士論文公聴会資料
ando55
0
280
Is In-hospital Meta-information Useful for Abstractive Discharge Summary Generation?
ando55
0
200
(Reading) Relational Multi-Task Learning Modeling Relations between Data and Tasks
ando55
0
180
(Reading )Agreeing to Disagree: Annotating Offensive Language Datasets with Annotators’ Disagreement
ando55
0
170
(Reading) Preregistering NLP research
ando55
0
57
(Reading) Predictive Adversarial Learning from Positive and Unlabeled Data
ando55
0
130
Argument Invention from First Principles
ando55
2
320
Other Decks in Research
See All in Research
Galileo: Learning Global & Local Features of Many Remote Sensing Modalities
satai
3
400
まずはここから:Overleaf共同執筆・CopilotでAIコーディング入門・Codespacesで独立環境
matsui_528
2
670
財務諸表監査のための逐次検定
masakat0
0
160
Integrating Static Optimization and Dynamic Nature in JavaScript (GPCE 2025)
tadd
0
110
多言語カスタマーインタビューの“壁”を越える~PMと生成AIの共創~ 株式会社ジグザグ 松野 亘
watarumatsuno
0
140
IMC の細かすぎる話 2025
smly
2
710
When Learned Data Structures Meet Computer Vision
matsui_528
1
160
Generative Models 2025
takahashihiroshi
25
14k
大学見本市2025 JSTさきがけ事業セミナー「顔の見えないセンシング技術:多様なセンサにもとづく個人情報に配慮した人物状態推定」
miso2024
0
170
情報技術の社会実装に向けた応用と課題:ニュースメディアの事例から / appmech-jsce 2025
upura
0
240
[論文紹介] Intuitive Fine-Tuning
ryou0634
0
130
20250605_新交通システム推進議連_熊本都市圏「車1割削減、渋滞半減、公共交通2倍」から考える地方都市交通政策
trafficbrain
0
920
Featured
See All Featured
How to Ace a Technical Interview
jacobian
280
24k
Building a Scalable Design System with Sketch
lauravandoore
463
33k
We Have a Design System, Now What?
morganepeng
53
7.9k
Raft: Consensus for Rubyists
vanstee
140
7.2k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.7k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Building Applications with DynamoDB
mza
96
6.7k
Balancing Empowerment & Direction
lara
5
710
Bash Introduction
62gerente
615
210k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
jQuery: Nuts, Bolts and Bling
dougneiner
65
7.9k
BBQ
matthewcrist
89
9.9k
Transcript
ACL Outstanding paper Ando
- simplificationは、⼊⼒テキストをより読みやすくすることを⽬的としている。 - しかし、オリジナルの⽂にない情報が挿⼊されたり、key informationが省略されたりし て、誤りが⽣じる危険性もある。 2 概要 - 読みやすいけど不正確な情報を提供することは、
simplificationを全く提供しないことよりも悪い - 要約モデルの⽂脈では、factual accuracyとい う問題が注⽬されているが、平易化されたテキ ストの事実性は調査されていない
- 最近の研究では、複雑な⽂章を単純化したものに「翻訳」するsequence-to-sequence モデルにより、⼤きく精度が向上した - 平易化において、出⼒が⼊⼒にfaithfulかどうかということであるという重要なことが⾒ 逃されている[Laban+, 2021] • 事実性の間違いを含むが読みやすいような医療情報を提⽰することは、平易⽂を全く提供しない ことよりも悪い[Devaraj+
,2021] • XSUMデータセットで学習したモデルでは、 70%以上のサマリーがhallucinationを含む[Maynez+, 2020] 3 Introduction
- Inserting︓ ༻ޠΛఆٛͨ͠Γɺઆ໌ͨ͠Γ͢Δͷʹ༗ޮ͕ͩɺແؔͳ༰ޡͬͨ༰ʢʮIBMMVDJOBUJPOʯʣ Λಋೖ͢Δ͜ͱΑ͘ͳ͍ʢྫʙʣ - Omitting︓ NBJOFOUJUZʹؔ࿈͢ΔใΛলུ͢Δͱɺจষͷཧղͷ͞Εํ͕มΘͬͯ͠·͏ʢྫʣ - Substitution︓ ໃ६͕ੜ͡ΔՄೳੑ͕͋Δʢྫʣ
4 [Xu+, 2015]の編集操作定義
(1) Information Insertion: ૠೖɺ৽͍͠ݻ༗໊ࢺʹݴٴ͢Δ͚ͩͷΑ͏ͳখ͞ͳͷ͔Βɺ৽͍͠ΞΠσΞΛಋೖ͢ΔΑ͏ͳେ ͖ͳͷ·Ͱ͋Δɻ ͜ͷΧςΰϦཁʹ͓͚ΔFYUSJOTJDIBMMVDJOBUJPOʹࣅ͍ͯΔ <.BZOF[ ><(PZBMBOE%VSSFUU > (2)
Information Deletion: "NJOPSFYBNQMFɿ&OUJUZ໊͕ࢺʹஔ͖ΘΔ (3) Information Substitution - 0︓なし/些細な変更、1︓trivialではないがメインアイデアは維持、2︓メインアイデア が維持されない、-1︓意味不明 - マルチラベルで付与 → レベルを新たに定義することでfactualityを測定 5 この研究での平易化操作の定義
- 平易化データセットそのもの(reference)と、モデル⽣成されたテキストMechanical Turkでアノテーションする。 - Newsela︓ WBMͱςετηοτ͔ΒͦΕͧΕͷจʢෳࡶจɼฏқจʣΛΞϊςʔγϣϯɽ - Wikilarge︓ WBMηοτ͔Βɼςετηοτ͔Βɽ 6
アノテーション モデルの種類
- 結果 - Agreement 7 Referenceの結果 Krippendorffのαを測定した (-1ラベルを3として最⼤の 厳しさを⽰す) 挿⼊のアノテーションは
moderate agreement (0.425)、削除のアノテー ションはsubstantial agreement(0.639)、置換 のアノテーションは fair agreement(0.200) • deletionエラーはinsertion エラーよりもはるかに多 • WikilargeはNewselaより も数が少ない。Newsela データセットを導⼊した動 機の1つは、短くて構⽂的 に複雑でない単純化が含ま れていることだったので、 これは当然 • どちらのデータセットでも、 置換エラーはほとんどない
- Transformerの3つのモデルは、WikilargeではRNNモデルよりも削除ミスが少なく、さ らにNewselaではT5が削除ミスを低く抑えている 8 モデル出⼒ RNN→ RNN→
- SARI is the most popular metric used to evaluate
text simplification models Xu et al. (2016). - As Table 7 reports, there is only a weak correlation - This parallels the case with ROUGE in summarization Falke et al. (2019a); Maynez et al. (2020); Wallace et al. (2021). 9 Relationship to SARI
- 意味的類似性尺度はdeletionエラーを⾮常によく捕らえる⼀⽅で、insertionエラーにつ いては中程度の指標であり、置換エラーについては⾮常に弱い - 含意関係では捉えられない 10 Measures of Semantic Similarity
and Factuality
- RoBERTaでFinetuning - Level 2 insertion と substitution errorsが少ない •
ૠೖޡΓΛൃੜͤ͞ΔͨΊʹɺݪจͷFOUJSZΛ໊ࢺʹஔ͖͑ͨΓɺϑϨʔζΛআͯ͠ର จΛ࡞͠ʢใআʣɺݪจͱରจΛೖΕସ͑ͯใૠೖΛൃੜͤͨ͞ɻ • ஔΛੜ͢ΔͨΊʹɺݪจͷࣈΛมߋͨ͠ΓɺจΛ൱ఆͨ͠Γɺ#&35ϚεΩϯάΛ༻͍ͯ จதͷใΛperturbationͨ͠Γͨ͠ɻ → (多分簡単になってる) - Level 1と2で良いF1スコア。 → トレーニング データセットにレベル 1 と 2 の削除エラーが多数含まれていたため。 - Insertionはsubstitutionよりも⼤幅に優れている →なぜ︖ 11 Automatic Factuality Assessment
おわり