Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
(読み会)Evaluating Factuality in Text Simplification
Search
ando
November 01, 2022
Research
1
190
(読み会)Evaluating Factuality in Text Simplification
komachi lab
ando
November 01, 2022
Tweet
Share
More Decks by ando
See All by ando
(Reading )Does BERT Know that the IS-A Relation Is Transitive?
ando55
0
100
博士論文公聴会資料
ando55
0
380
Is In-hospital Meta-information Useful for Abstractive Discharge Summary Generation?
ando55
0
220
(Reading) Relational Multi-Task Learning Modeling Relations between Data and Tasks
ando55
0
190
(Reading )Agreeing to Disagree: Annotating Offensive Language Datasets with Annotators’ Disagreement
ando55
0
170
(Reading) Preregistering NLP research
ando55
0
58
(Reading) Predictive Adversarial Learning from Positive and Unlabeled Data
ando55
0
140
Argument Invention from First Principles
ando55
2
340
Other Decks in Research
See All in Research
ローテーション別のサイドアウト戦略 ~なぜあのローテは回らないのか?~
vball_panda
0
280
2026.01ウェビナー資料
elith
0
170
【NICOGRAPH2025】Photographic Conviviality: ボディペイント・ワークショップによる 同時的かつ共生的な写真体験
toremolo72
0
140
AIスパコン「さくらONE」の オブザーバビリティ / Observability for AI Supercomputer SAKURAONE
yuukit
2
1.1k
病院向け生成AIプロダクト開発の実践と課題
hagino3000
0
520
AI Agentの精度改善に見るML開発との共通点 / commonalities in accuracy improvements in agentic era
shimacos
2
1k
LLM-jp-3 and beyond: Training Large Language Models
odashi
1
760
Tiaccoon: Unified Access Control with Multiple Transports in Container Networks
hiroyaonoe
0
520
An Open and Reproducible Deep Research Agent for Long-Form Question Answering
ikuyamada
0
240
ロボット学習における大規模検索技術の展開と応用
denkiwakame
1
200
自動運転におけるデータ駆動型AIに対する安全性の考え方 / Safety Engineering for Data-Driven AI in Autonomous Driving Systems
ishikawafyu
0
120
Agentic AI フレームワーク戦略白書 (2025年度版)
mickey_kubo
1
110
Featured
See All Featured
世界の人気アプリ100個を分析して見えたペイウォール設計の心得
akihiro_kokubo
PRO
66
36k
<Decoding/> the Language of Devs - We Love SEO 2024
nikkihalliwell
1
120
Sam Torres - BigQuery for SEOs
techseoconnect
PRO
0
170
Effective software design: The role of men in debugging patriarchy in IT @ Voxxed Days AMS
baasie
0
210
Agile that works and the tools we love
rasmusluckow
331
21k
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Navigating Team Friction
lara
192
16k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Marketing Yourself as an Engineer | Alaka | Gurzu
gurzu
0
120
First, design no harm
axbom
PRO
2
1.1k
Transcript
ACL Outstanding paper Ando
- simplificationは、⼊⼒テキストをより読みやすくすることを⽬的としている。 - しかし、オリジナルの⽂にない情報が挿⼊されたり、key informationが省略されたりし て、誤りが⽣じる危険性もある。 2 概要 - 読みやすいけど不正確な情報を提供することは、
simplificationを全く提供しないことよりも悪い - 要約モデルの⽂脈では、factual accuracyとい う問題が注⽬されているが、平易化されたテキ ストの事実性は調査されていない
- 最近の研究では、複雑な⽂章を単純化したものに「翻訳」するsequence-to-sequence モデルにより、⼤きく精度が向上した - 平易化において、出⼒が⼊⼒にfaithfulかどうかということであるという重要なことが⾒ 逃されている[Laban+, 2021] • 事実性の間違いを含むが読みやすいような医療情報を提⽰することは、平易⽂を全く提供しない ことよりも悪い[Devaraj+
,2021] • XSUMデータセットで学習したモデルでは、 70%以上のサマリーがhallucinationを含む[Maynez+, 2020] 3 Introduction
- Inserting︓ ༻ޠΛఆٛͨ͠Γɺઆ໌ͨ͠Γ͢Δͷʹ༗ޮ͕ͩɺແؔͳ༰ޡͬͨ༰ʢʮIBMMVDJOBUJPOʯʣ Λಋೖ͢Δ͜ͱΑ͘ͳ͍ʢྫʙʣ - Omitting︓ NBJOFOUJUZʹؔ࿈͢ΔใΛলུ͢Δͱɺจষͷཧղͷ͞Εํ͕มΘͬͯ͠·͏ʢྫʣ - Substitution︓ ໃ६͕ੜ͡ΔՄೳੑ͕͋Δʢྫʣ
4 [Xu+, 2015]の編集操作定義
(1) Information Insertion: ૠೖɺ৽͍͠ݻ༗໊ࢺʹݴٴ͢Δ͚ͩͷΑ͏ͳখ͞ͳͷ͔Βɺ৽͍͠ΞΠσΞΛಋೖ͢ΔΑ͏ͳେ ͖ͳͷ·Ͱ͋Δɻ ͜ͷΧςΰϦཁʹ͓͚ΔFYUSJOTJDIBMMVDJOBUJPOʹࣅ͍ͯΔ <.BZOF[ ><(PZBMBOE%VSSFUU > (2)
Information Deletion: "NJOPSFYBNQMFɿ&OUJUZ໊͕ࢺʹஔ͖ΘΔ (3) Information Substitution - 0︓なし/些細な変更、1︓trivialではないがメインアイデアは維持、2︓メインアイデア が維持されない、-1︓意味不明 - マルチラベルで付与 → レベルを新たに定義することでfactualityを測定 5 この研究での平易化操作の定義
- 平易化データセットそのもの(reference)と、モデル⽣成されたテキストMechanical Turkでアノテーションする。 - Newsela︓ WBMͱςετηοτ͔ΒͦΕͧΕͷจʢෳࡶจɼฏқจʣΛΞϊςʔγϣϯɽ - Wikilarge︓ WBMηοτ͔Βɼςετηοτ͔Βɽ 6
アノテーション モデルの種類
- 結果 - Agreement 7 Referenceの結果 Krippendorffのαを測定した (-1ラベルを3として最⼤の 厳しさを⽰す) 挿⼊のアノテーションは
moderate agreement (0.425)、削除のアノテー ションはsubstantial agreement(0.639)、置換 のアノテーションは fair agreement(0.200) • deletionエラーはinsertion エラーよりもはるかに多 • WikilargeはNewselaより も数が少ない。Newsela データセットを導⼊した動 機の1つは、短くて構⽂的 に複雑でない単純化が含ま れていることだったので、 これは当然 • どちらのデータセットでも、 置換エラーはほとんどない
- Transformerの3つのモデルは、WikilargeではRNNモデルよりも削除ミスが少なく、さ らにNewselaではT5が削除ミスを低く抑えている 8 モデル出⼒ RNN→ RNN→
- SARI is the most popular metric used to evaluate
text simplification models Xu et al. (2016). - As Table 7 reports, there is only a weak correlation - This parallels the case with ROUGE in summarization Falke et al. (2019a); Maynez et al. (2020); Wallace et al. (2021). 9 Relationship to SARI
- 意味的類似性尺度はdeletionエラーを⾮常によく捕らえる⼀⽅で、insertionエラーにつ いては中程度の指標であり、置換エラーについては⾮常に弱い - 含意関係では捉えられない 10 Measures of Semantic Similarity
and Factuality
- RoBERTaでFinetuning - Level 2 insertion と substitution errorsが少ない •
ૠೖޡΓΛൃੜͤ͞ΔͨΊʹɺݪจͷFOUJSZΛ໊ࢺʹஔ͖͑ͨΓɺϑϨʔζΛআͯ͠ର จΛ࡞͠ʢใআʣɺݪจͱରจΛೖΕସ͑ͯใૠೖΛൃੜͤͨ͞ɻ • ஔΛੜ͢ΔͨΊʹɺݪจͷࣈΛมߋͨ͠ΓɺจΛ൱ఆͨ͠Γɺ#&35ϚεΩϯάΛ༻͍ͯ จதͷใΛperturbationͨ͠Γͨ͠ɻ → (多分簡単になってる) - Level 1と2で良いF1スコア。 → トレーニング データセットにレベル 1 と 2 の削除エラーが多数含まれていたため。 - Insertionはsubstitutionよりも⼤幅に優れている →なぜ︖ 11 Automatic Factuality Assessment
おわり