Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
(読み会)Evaluating Factuality in Text Simplification
Search
ando
November 01, 2022
Research
1
160
(読み会)Evaluating Factuality in Text Simplification
komachi lab
ando
November 01, 2022
Tweet
Share
More Decks by ando
See All by ando
(Reading )Does BERT Know that the IS-A Relation Is Transitive?
ando55
0
74
博士論文公聴会資料
ando55
0
150
Is In-hospital Meta-information Useful for Abstractive Discharge Summary Generation?
ando55
0
130
(Reading) Relational Multi-Task Learning Modeling Relations between Data and Tasks
ando55
0
150
(Reading )Agreeing to Disagree: Annotating Offensive Language Datasets with Annotators’ Disagreement
ando55
0
140
(Reading) Preregistering NLP research
ando55
0
53
(Reading) Predictive Adversarial Learning from Positive and Unlabeled Data
ando55
0
110
Argument Invention from First Principles
ando55
2
270
Other Decks in Research
See All in Research
Zipf 白色化:タイプとトークンの区別がもたらす良質な埋め込み空間と損失関数
eumesy
PRO
5
640
文書画像のデータ化における VLM活用 / Use of VLM in document image data conversion
sansan_randd
2
190
テキストマイニングことはじめー基本的な考え方からメディアディスコース研究への応用まで
langstat
1
120
ニュースメディアにおける事前学習済みモデルの可能性と課題 / IBIS2024
upura
3
510
2024/10/30 産総研AIセミナー発表資料
keisuke198619
1
330
新規のC言語処理系を実装することによる 組込みシステム研究にもたらす価値 についての考察
zacky1972
0
110
Weekly AI Agents News! 8月号 論文のアーカイブ
masatoto
1
180
MetricSifter:クラウドアプリケーションにおける故障箇所特定の効率化のための多変量時系列データの特徴量削減 / FIT 2024
yuukit
2
120
論文紹介/Expectations over Unspoken Alternatives Predict Pragmatic Inferences
chemical_tree
1
260
論文読み会 SNLP2024 Instruction-tuned Language Models are Better Knowledge Learners. In: ACL 2024
s_mizuki_nlp
1
350
Language is primarily a tool for communication rather than thought
ryou0634
4
740
[ECCV2024読み会] 衛星画像からの地上画像生成
elith
1
660
Featured
See All Featured
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
27
840
BBQ
matthewcrist
85
9.3k
Producing Creativity
orderedlist
PRO
341
39k
Making Projects Easy
brettharned
115
5.9k
Being A Developer After 40
akosma
86
590k
Automating Front-end Workflow
addyosmani
1366
200k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Designing on Purpose - Digital PM Summit 2013
jponch
115
7k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
6
410
Product Roadmaps are Hard
iamctodd
PRO
49
11k
How STYLIGHT went responsive
nonsquared
95
5.2k
Transcript
ACL Outstanding paper Ando
- simplificationは、⼊⼒テキストをより読みやすくすることを⽬的としている。 - しかし、オリジナルの⽂にない情報が挿⼊されたり、key informationが省略されたりし て、誤りが⽣じる危険性もある。 2 概要 - 読みやすいけど不正確な情報を提供することは、
simplificationを全く提供しないことよりも悪い - 要約モデルの⽂脈では、factual accuracyとい う問題が注⽬されているが、平易化されたテキ ストの事実性は調査されていない
- 最近の研究では、複雑な⽂章を単純化したものに「翻訳」するsequence-to-sequence モデルにより、⼤きく精度が向上した - 平易化において、出⼒が⼊⼒にfaithfulかどうかということであるという重要なことが⾒ 逃されている[Laban+, 2021] • 事実性の間違いを含むが読みやすいような医療情報を提⽰することは、平易⽂を全く提供しない ことよりも悪い[Devaraj+
,2021] • XSUMデータセットで学習したモデルでは、 70%以上のサマリーがhallucinationを含む[Maynez+, 2020] 3 Introduction
- Inserting︓ ༻ޠΛఆٛͨ͠Γɺઆ໌ͨ͠Γ͢Δͷʹ༗ޮ͕ͩɺແؔͳ༰ޡͬͨ༰ʢʮIBMMVDJOBUJPOʯʣ Λಋೖ͢Δ͜ͱΑ͘ͳ͍ʢྫʙʣ - Omitting︓ NBJOFOUJUZʹؔ࿈͢ΔใΛলུ͢Δͱɺจষͷཧղͷ͞Εํ͕มΘͬͯ͠·͏ʢྫʣ - Substitution︓ ໃ६͕ੜ͡ΔՄೳੑ͕͋Δʢྫʣ
4 [Xu+, 2015]の編集操作定義
(1) Information Insertion: ૠೖɺ৽͍͠ݻ༗໊ࢺʹݴٴ͢Δ͚ͩͷΑ͏ͳখ͞ͳͷ͔Βɺ৽͍͠ΞΠσΞΛಋೖ͢ΔΑ͏ͳେ ͖ͳͷ·Ͱ͋Δɻ ͜ͷΧςΰϦཁʹ͓͚ΔFYUSJOTJDIBMMVDJOBUJPOʹࣅ͍ͯΔ <.BZOF[ ><(PZBMBOE%VSSFUU > (2)
Information Deletion: "NJOPSFYBNQMFɿ&OUJUZ໊͕ࢺʹஔ͖ΘΔ (3) Information Substitution - 0︓なし/些細な変更、1︓trivialではないがメインアイデアは維持、2︓メインアイデア が維持されない、-1︓意味不明 - マルチラベルで付与 → レベルを新たに定義することでfactualityを測定 5 この研究での平易化操作の定義
- 平易化データセットそのもの(reference)と、モデル⽣成されたテキストMechanical Turkでアノテーションする。 - Newsela︓ WBMͱςετηοτ͔ΒͦΕͧΕͷจʢෳࡶจɼฏқจʣΛΞϊςʔγϣϯɽ - Wikilarge︓ WBMηοτ͔Βɼςετηοτ͔Βɽ 6
アノテーション モデルの種類
- 結果 - Agreement 7 Referenceの結果 Krippendorffのαを測定した (-1ラベルを3として最⼤の 厳しさを⽰す) 挿⼊のアノテーションは
moderate agreement (0.425)、削除のアノテー ションはsubstantial agreement(0.639)、置換 のアノテーションは fair agreement(0.200) • deletionエラーはinsertion エラーよりもはるかに多 • WikilargeはNewselaより も数が少ない。Newsela データセットを導⼊した動 機の1つは、短くて構⽂的 に複雑でない単純化が含ま れていることだったので、 これは当然 • どちらのデータセットでも、 置換エラーはほとんどない
- Transformerの3つのモデルは、WikilargeではRNNモデルよりも削除ミスが少なく、さ らにNewselaではT5が削除ミスを低く抑えている 8 モデル出⼒ RNN→ RNN→
- SARI is the most popular metric used to evaluate
text simplification models Xu et al. (2016). - As Table 7 reports, there is only a weak correlation - This parallels the case with ROUGE in summarization Falke et al. (2019a); Maynez et al. (2020); Wallace et al. (2021). 9 Relationship to SARI
- 意味的類似性尺度はdeletionエラーを⾮常によく捕らえる⼀⽅で、insertionエラーにつ いては中程度の指標であり、置換エラーについては⾮常に弱い - 含意関係では捉えられない 10 Measures of Semantic Similarity
and Factuality
- RoBERTaでFinetuning - Level 2 insertion と substitution errorsが少ない •
ૠೖޡΓΛൃੜͤ͞ΔͨΊʹɺݪจͷFOUJSZΛ໊ࢺʹஔ͖͑ͨΓɺϑϨʔζΛআͯ͠ର จΛ࡞͠ʢใআʣɺݪจͱରจΛೖΕସ͑ͯใૠೖΛൃੜͤͨ͞ɻ • ஔΛੜ͢ΔͨΊʹɺݪจͷࣈΛมߋͨ͠ΓɺจΛ൱ఆͨ͠Γɺ#&35ϚεΩϯάΛ༻͍ͯ จதͷใΛperturbationͨ͠Γͨ͠ɻ → (多分簡単になってる) - Level 1と2で良いF1スコア。 → トレーニング データセットにレベル 1 と 2 の削除エラーが多数含まれていたため。 - Insertionはsubstitutionよりも⼤幅に優れている →なぜ︖ 11 Automatic Factuality Assessment
おわり