Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Schemas and Databases in an Agile World
Search
Andrew Godwin
April 24, 2014
Programming
4
270
Schemas and Databases in an Agile World
A talk I gave at CRAFT 2014 in Budapest
Andrew Godwin
April 24, 2014
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
360
Django Through The Years
andrewgodwin
0
270
Writing Maintainable Software At Scale
andrewgodwin
0
480
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
380
Async, Python, and the Future
andrewgodwin
2
710
How To Break Django: With Async
andrewgodwin
1
770
Taking Django's ORM Async
andrewgodwin
0
760
The Long Road To Asynchrony
andrewgodwin
0
720
The Scientist & The Engineer
andrewgodwin
1
810
Other Decks in Programming
See All in Programming
AI時代を生き抜く 新卒エンジニアの生きる道
coconala_engineer
1
530
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
220
Cap'n Webについて
yusukebe
0
170
PostgreSQLで手軽にDuckDBを使う!DuckDB&pg_duckdb入門/osc25hi-duckdb
takahashiikki
0
250
Data-Centric Kaggle
isax1015
2
470
AI 駆動開発ライフサイクル(AI-DLC):ソフトウェアエンジニアリングの再構築 / AI-DLC Introduction
kanamasa
11
5.4k
JETLS.jl ─ A New Language Server for Julia
abap34
2
480
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
140
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
490
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
230
CSC307 Lecture 04
javiergs
PRO
0
640
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
780
Featured
See All Featured
Odyssey Design
rkendrick25
PRO
0
460
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.8k
コードの90%をAIが書く世界で何が待っているのか / What awaits us in a world where 90% of the code is written by AI
rkaga
58
41k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
287
14k
Chrome DevTools: State of the Union 2024 - Debugging React & Beyond
addyosmani
9
1k
Agile that works and the tools we love
rasmusluckow
331
21k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
2
80
Leo the Paperboy
mayatellez
3
1.3k
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
160
Code Review Best Practice
trishagee
74
19k
Believing is Seeing
oripsolob
1
29
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
130
Transcript
Andrew Godwin @andrewgodwin DATABASES SCHEMAS in an agile world &
Andrew Godwin Core Developer Senior Engineer
Schemas Explicit & Implicit
Explicit Schema ID int Name text Weight uint 1 2
3 Alice Bob Charles 76 84 65 Implicit Schema { "id": 342, "name": "David", "weight": 44, }
Silent Failure { "id": 342, "name": "David", "weight": 74, }
{ "id": 342, "name": "Ellie", "weight": "85kg", } { "id": 342, "nom": "Frankie", "weight": 77, } { "id": 342, "name": "Frankie", "weight": -67, }
Schemas inform Storage
PostgreSQL
Adding NULLable columns: instant But must be at end of
table
CREATE INDEX CONCURRENTLY Slower, and only one at a time
Constraints after column addition This is more general advice
MySQL Locks whole table Rewrites entire storage No DDL transactions
Oracle / MSSQL / etc. Look into their strengths
Workflows Databases aren't code...
You can't put your database in a VCS You can
put your schema in a VCS But your data won't always survive.
Django Migrations Codified schema change format
None
Migrations aren't enough You can't automate away a social problem!
What if we got rid of the schema? That pesky,
pesky schema.
The Nesting Problem { "id": 123, "name": "Andrew", "friends": [
{"id": 456, "name": "David"}, {"id": 789, "name": "Mazz"}, ], "likes": [ {"id": 22, "liker": {"id": 789, "name", "Mazz"}}, ], }
You don't have to use a document DB (like CouchDB,
MongoDB, etc.)
Schemaless Columns ID int Name text Weight uint Data json
1 Alice 76 { "nickname": "Al", "bgcolor": "#ff0033" }
But that must be slower... Right?
Comparison (never trust benchmarks) Loading 1.2 million records PostgreSQL MongoDB
76 sec 8 min Sequential scan PostgreSQL MongoDB 980 ms 980 ms Index scan (Postgres GINhash) PostgreSQL MongoDB 0.7 ms 1 ms
Reasonable queries SELECT id, title FROM articles WHERE attributes->'author'->>'first_name' =
'cory'
A hybrid solution Normal columns for more static data (e.g.
id, title) Schemaless blobs for variable data (e.g. styling)
Lessons
Schemas are your friend Explicit definitions or checks will save
you
Read only mode It makes DB downtime more palatable
Work to your DBs strengths It's not just a dumb
data store
Coordinate your team A little coorindation pays big dividends
Try hybrid schemas Particularly good for CMSs or enterprise software
Thanks! Andrew Godwin @andrewgodwin eventbrite.com/jobs are hiring: