Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Schemas and Databases in an Agile World
Search
Andrew Godwin
April 24, 2014
Programming
4
270
Schemas and Databases in an Agile World
A talk I gave at CRAFT 2014 in Budapest
Andrew Godwin
April 24, 2014
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
350
Django Through The Years
andrewgodwin
0
260
Writing Maintainable Software At Scale
andrewgodwin
0
470
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
380
Async, Python, and the Future
andrewgodwin
2
700
How To Break Django: With Async
andrewgodwin
1
760
Taking Django's ORM Async
andrewgodwin
0
760
The Long Road To Asynchrony
andrewgodwin
0
720
The Scientist & The Engineer
andrewgodwin
1
800
Other Decks in Programming
See All in Programming
Canon EOS R50 V と R5 Mark II 購入でみえてきた最近のデジイチ VR180 事情、そして VR180 静止画に活路を見出すまで
karad
0
130
sbt 2
xuwei_k
0
300
ZOZOにおけるAI活用の現在 ~モバイルアプリ開発でのAI活用状況と事例~
zozotech
PRO
9
5.8k
Findy AI+の開発、運用におけるMCP活用事例
starfish719
0
1.4k
手が足りない!兼業データエンジニアに必要だったアーキテクチャと立ち回り
zinkosuke
0
780
堅牢なフロントエンドテスト基盤を構築するために行った取り組み
shogo4131
8
2.4k
Github Copilotのチャット履歴ビューワーを作りました~WPF、dotnet10もあるよ~ #clrh111
katsuyuzu
0
120
これならできる!個人開発のすゝめ
tinykitten
PRO
0
120
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
370
【Streamlit x Snowflake】データ基盤からアプリ開発・AI活用まで、すべてをSnowflake内で実現
ayumu_yamaguchi
1
120
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
8
3.1k
Go コードベースの構成と AI コンテキスト定義
andpad
0
130
Featured
See All Featured
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
400
Neural Spatial Audio Processing for Sound Field Analysis and Control
skoyamalab
0
120
What's in a price? How to price your products and services
michaelherold
246
13k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Un-Boring Meetings
codingconduct
0
160
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
120
Practical Orchestrator
shlominoach
190
11k
Claude Code のすすめ
schroneko
65
200k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Money Talks: Using Revenue to Get Sh*t Done
nikkihalliwell
0
120
Hiding What from Whom? A Critical Review of the History of Programming languages for Music
tomoyanonymous
0
290
Transcript
Andrew Godwin @andrewgodwin DATABASES SCHEMAS in an agile world &
Andrew Godwin Core Developer Senior Engineer
Schemas Explicit & Implicit
Explicit Schema ID int Name text Weight uint 1 2
3 Alice Bob Charles 76 84 65 Implicit Schema { "id": 342, "name": "David", "weight": 44, }
Silent Failure { "id": 342, "name": "David", "weight": 74, }
{ "id": 342, "name": "Ellie", "weight": "85kg", } { "id": 342, "nom": "Frankie", "weight": 77, } { "id": 342, "name": "Frankie", "weight": -67, }
Schemas inform Storage
PostgreSQL
Adding NULLable columns: instant But must be at end of
table
CREATE INDEX CONCURRENTLY Slower, and only one at a time
Constraints after column addition This is more general advice
MySQL Locks whole table Rewrites entire storage No DDL transactions
Oracle / MSSQL / etc. Look into their strengths
Workflows Databases aren't code...
You can't put your database in a VCS You can
put your schema in a VCS But your data won't always survive.
Django Migrations Codified schema change format
None
Migrations aren't enough You can't automate away a social problem!
What if we got rid of the schema? That pesky,
pesky schema.
The Nesting Problem { "id": 123, "name": "Andrew", "friends": [
{"id": 456, "name": "David"}, {"id": 789, "name": "Mazz"}, ], "likes": [ {"id": 22, "liker": {"id": 789, "name", "Mazz"}}, ], }
You don't have to use a document DB (like CouchDB,
MongoDB, etc.)
Schemaless Columns ID int Name text Weight uint Data json
1 Alice 76 { "nickname": "Al", "bgcolor": "#ff0033" }
But that must be slower... Right?
Comparison (never trust benchmarks) Loading 1.2 million records PostgreSQL MongoDB
76 sec 8 min Sequential scan PostgreSQL MongoDB 980 ms 980 ms Index scan (Postgres GINhash) PostgreSQL MongoDB 0.7 ms 1 ms
Reasonable queries SELECT id, title FROM articles WHERE attributes->'author'->>'first_name' =
'cory'
A hybrid solution Normal columns for more static data (e.g.
id, title) Schemaless blobs for variable data (e.g. styling)
Lessons
Schemas are your friend Explicit definitions or checks will save
you
Read only mode It makes DB downtime more palatable
Work to your DBs strengths It's not just a dumb
data store
Coordinate your team A little coorindation pays big dividends
Try hybrid schemas Particularly good for CMSs or enterprise software
Thanks! Andrew Godwin @andrewgodwin eventbrite.com/jobs are hiring: