Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Schemas and Databases in an Agile World
Search
Andrew Godwin
April 24, 2014
Programming
4
240
Schemas and Databases in an Agile World
A talk I gave at CRAFT 2014 in Budapest
Andrew Godwin
April 24, 2014
Tweet
Share
More Decks by Andrew Godwin
See All by Andrew Godwin
Reconciling Everything
andrewgodwin
1
270
Django Through The Years
andrewgodwin
0
170
Writing Maintainable Software At Scale
andrewgodwin
0
400
A Newcomer's Guide To Airflow's Architecture
andrewgodwin
0
320
Async, Python, and the Future
andrewgodwin
2
620
How To Break Django: With Async
andrewgodwin
1
690
Taking Django's ORM Async
andrewgodwin
0
680
The Long Road To Asynchrony
andrewgodwin
0
600
The Scientist & The Engineer
andrewgodwin
1
710
Other Decks in Programming
See All in Programming
Amazon Bedrock Multi Agentsを試してきた
tm2
1
290
さいきょうのレイヤードアーキテクチャについて考えてみた
yahiru
3
750
Pulsar2 を雰囲気で使ってみよう
anoken
0
240
PHPのバージョンアップ時にも役立ったAST
matsuo_atsushi
0
110
社内フレームワークとその依存性解決 / in-house framework and its dependency management
vvakame
1
560
dbt Pythonモデルで実現するSnowflake活用術
trsnium
0
150
Amazon S3 TablesとAmazon S3 Metadataを触ってみた / 20250201-jawsug-tochigi-s3tables-s3metadata
kasacchiful
0
160
苦しいTiDBへの移行を乗り越えて快適な運用を目指す
leveragestech
0
580
Honoをフロントエンドで使う 3つのやり方
yusukebe
7
3.3k
DROBEの生成AI活用事例 with AWS
ippey
0
130
sappoRo.R #12 初心者セッション
kosugitti
0
250
『テスト書いた方が開発が早いじゃん』を解き明かす #phpcon_nagoya
o0h
PRO
2
210
Featured
See All Featured
Optimizing for Happiness
mojombo
376
70k
BBQ
matthewcrist
87
9.5k
Adopting Sorbet at Scale
ufuk
74
9.2k
Producing Creativity
orderedlist
PRO
344
39k
Code Review Best Practice
trishagee
67
18k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
Scaling GitHub
holman
459
140k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.4k
Designing on Purpose - Digital PM Summit 2013
jponch
117
7.1k
Product Roadmaps are Hard
iamctodd
PRO
50
11k
Into the Great Unknown - MozCon
thekraken
35
1.6k
GraphQLの誤解/rethinking-graphql
sonatard
68
10k
Transcript
Andrew Godwin @andrewgodwin DATABASES SCHEMAS in an agile world &
Andrew Godwin Core Developer Senior Engineer
Schemas Explicit & Implicit
Explicit Schema ID int Name text Weight uint 1 2
3 Alice Bob Charles 76 84 65 Implicit Schema { "id": 342, "name": "David", "weight": 44, }
Silent Failure { "id": 342, "name": "David", "weight": 74, }
{ "id": 342, "name": "Ellie", "weight": "85kg", } { "id": 342, "nom": "Frankie", "weight": 77, } { "id": 342, "name": "Frankie", "weight": -67, }
Schemas inform Storage
PostgreSQL
Adding NULLable columns: instant But must be at end of
table
CREATE INDEX CONCURRENTLY Slower, and only one at a time
Constraints after column addition This is more general advice
MySQL Locks whole table Rewrites entire storage No DDL transactions
Oracle / MSSQL / etc. Look into their strengths
Workflows Databases aren't code...
You can't put your database in a VCS You can
put your schema in a VCS But your data won't always survive.
Django Migrations Codified schema change format
None
Migrations aren't enough You can't automate away a social problem!
What if we got rid of the schema? That pesky,
pesky schema.
The Nesting Problem { "id": 123, "name": "Andrew", "friends": [
{"id": 456, "name": "David"}, {"id": 789, "name": "Mazz"}, ], "likes": [ {"id": 22, "liker": {"id": 789, "name", "Mazz"}}, ], }
You don't have to use a document DB (like CouchDB,
MongoDB, etc.)
Schemaless Columns ID int Name text Weight uint Data json
1 Alice 76 { "nickname": "Al", "bgcolor": "#ff0033" }
But that must be slower... Right?
Comparison (never trust benchmarks) Loading 1.2 million records PostgreSQL MongoDB
76 sec 8 min Sequential scan PostgreSQL MongoDB 980 ms 980 ms Index scan (Postgres GINhash) PostgreSQL MongoDB 0.7 ms 1 ms
Reasonable queries SELECT id, title FROM articles WHERE attributes->'author'->>'first_name' =
'cory'
A hybrid solution Normal columns for more static data (e.g.
id, title) Schemaless blobs for variable data (e.g. styling)
Lessons
Schemas are your friend Explicit definitions or checks will save
you
Read only mode It makes DB downtime more palatable
Work to your DBs strengths It's not just a dumb
data store
Coordinate your team A little coorindation pays big dividends
Try hybrid schemas Particularly good for CMSs or enterprise software
Thanks! Andrew Godwin @andrewgodwin eventbrite.com/jobs are hiring: