Upgrade to Pro — share decks privately, control downloads, hide ads and more …

The Cannon: Data-Driven Spectral Modeling in th...

Anna Ho
March 17, 2016

The Cannon: Data-Driven Spectral Modeling in the Era of Large Stellar Surveys

as presented at the Gemini Observatory Workshop on March 17, 2016

Anna Ho

March 17, 2016
Tweet

More Decks by Anna Ho

Other Decks in Science

Transcript

  1. Gemini Observatory Workshop March 17, 2016 The Cannon: Data-Driven Spectral

    Modeling in the Era of Large Stellar Surveys Anna Ho, Caltech with Melissa Ness (MPIA), David W. Hogg (NYU), and Hans-Walter Rix (MPIA) [email protected]
  2. We know labels* for some subset of those spectra. We

    have a large set of uniformly-observed stellar spectra. *parameters and abundances, e.g. Teff, logg, [Fe/H], … 3 2 Anna Ho, Caltech /
  3. How can we infer labels for all the spectra? We

    have a large set of uniformly-observed stellar spectra. We know labels* for some subset of those spectra. *parameters and abundances, e.g. Teff, logg, [Fe/H], … 2 Anna Ho, Caltech /
  4. How can we infer labels for all the spectra? We

    have a large set of uniformly-observed stellar spectra. We know labels* for some subset of those spectra. The Cannon* is a data-driven method for transferring labels from one dataset to another. 2 Anna Ho, Caltech /
  5. How can we infer labels for all the spectra? We

    have a large set of uniformly-observed stellar spectra. * We know labels* for some subset of those spectra. 2 Anna Ho, Caltech / The Cannon* is a data-driven method for transferring labels from one dataset to another.
  6. Anna Ho, Caltech / 3 A suite of large-scale surveys

    are systematically measuring spectra for stars in the Milky Way.
  7. Anna Ho, Caltech / 3 RA (degrees) Dec (degrees) 100

    50 150 200 250 300 350 0 -100 -50 0 50 100 APOGEE Survey: 150,000 near-IR spectra, R ~ 22,500 (Figure adapted from Melissa Ness) A suite of large-scale surveys are systematically measuring spectra for stars in the Milky Way.
  8. Anna Ho, Caltech / RA (degrees) Dec (degrees) 100 50

    150 200 250 300 350 0 -100 -50 0 50 100 APOGEE-2: 300,000 near-IR spectra, R ~ 22,500 (Figure adapted from Melissa Ness) A suite of large-scale surveys are systematically measuring spectra for stars in the Milky Way. 3
  9. Anna Ho, Caltech / RA (degrees) Dec (degrees) 100 50

    150 200 250 300 350 0 -100 -50 0 50 100 APOGEE Survey: 150,000 near-IR spectra, R ~ 22,500 GALAH: 1 million spectra, R ~ 28,000, 4710-7900 Å (Figure adapted from Melissa Ness) A suite of large-scale surveys are systematically measuring spectra for stars in the Milky Way. 3
  10. Anna Ho, Caltech / RA (degrees) Dec (degrees) 100 50

    150 200 250 300 350 0 -100 -50 0 50 100 APOGEE Survey: 150,000 near-IR spectra, R ~ 22,500 Gaia-ESO: 100,000 spectra, R > 20,000, 5800-8700 Å (Figure adapted from Melissa Ness) A suite of large-scale surveys are systematically measuring spectra for stars in the Milky Way. 3
  11. Anna Ho, Caltech / LAMOST A suite of large-scale surveys

    are systematically measuring spectra for stars in the Milky Way. 4
  12. Anna Ho, Caltech / LAMOST A suite of large-scale surveys

    are systematically measuring spectra for stars in the Milky Way. • Goal of these surveys: By dissecting the Milky Way into individual stars, we learn about the galaxy as a whole. 4
  13. Anna Ho, Caltech / The Milky Way is a very

    “ordinary” galaxy. (Figure adapted from Hans-Walter Rix) 5
  14. Anna Ho, Caltech / The Milky Way is a very

    “ordinary” galaxy. (Figure adapted from Hans-Walter Rix) The MW can be a “Rosetta Stone” for galaxy formation and evolution. 5
  15. Anna Ho, Caltech / Survey A Survey B The diversity

    of surveys is also an obstacle. 6
  16. Anna Ho, Caltech / Survey A Survey B The diversity

    of surveys is also an obstacle. 6
  17. Anna Ho, Caltech / “Labels”: {M, L, Teff, logg, [Fe/H],

    [α/Fe], [X/H], …} Survey A Survey B The diversity of surveys is also an obstacle. 6
  18. Anna Ho, Caltech / Survey A Survey B Labels from

    the Survey A pipeline Labels from the Survey B pipeline The diversity of surveys is also an obstacle. 6
  19. Anna Ho, Caltech / Survey A Survey B The diversity

    of surveys is also an obstacle. Labels from the Survey A pipeline Labels from the Survey B pipeline The Cannon can bring surveys onto the same footing. 6
  20. Anna Ho, Caltech / Overview of the remainder of the

    talk • Assumptions & methodology 7
  21. Anna Ho, Caltech / Overview of the remainder of the

    talk • Assumptions & methodology • Highlights 7
  22. Anna Ho, Caltech / Overview of the remainder of the

    talk • Assumptions & methodology • Highlights – Proof of concept: reproduce APOGEE DR10 (Ness et al. 2015) A 7
  23. Anna Ho, Caltech / Overview of the remainder of the

    talk • Assumptions & methodology • Highlights – Proof of concept: reproduce APOGEE DR10 (Ness et al. 2015) – Cross-calibrate APOGEE and LAMOST (Ho et al. 2016) A L A 7
  24. Anna Ho, Caltech / Overview of the remainder of the

    talk • Assumptions & methodology • Highlights – Proof of concept: reproduce APOGEE DR10 (Ness et al. 2015) – Cross-calibrate APOGEE and LAMOST (Ho et al. 2016) – The largest global age map of the Milky Way (Ness et al. 2016, Martig et al. 2016) A L A K A 7
  25. Anna Ho, Caltech / Overview of the remainder of the

    talk • Assumptions & methodology • Highlights – Proof of concept: reproduce APOGEE DR10 (Ness et al. 2015) – Cross-calibrate APOGEE and LAMOST (Ho et al. 2016) – The largest global age map of the Milky Way (Ness et al. 2016, Martig et al. 2016) • Limitations & advantages A A L K A 7
  26. Anna Ho, Caltech / There are two key assumptions underlying

    The Cannon. • Assumptions: – Stars with near-identical labels have near-identical spectra 8
  27. Anna Ho, Caltech / • Assumptions: – Stars with near-identical

    labels have near-identical spectra – A spectrum is a smooth function of the star’s labels There are two key assumptions underlying The Cannon. 8
  28. Anna Ho, Caltech / • Assumptions: – Stars with near-identical

    labels have near-identical spectra – A spectrum is a smooth function of the star’s labels There are two key assumptions underlying The Cannon. 8
  29. Anna Ho, Caltech / • Assumptions: – Stars with near-identical

    labels have near-identical spectra – A spectrum is a smooth function of the star’s labels fn = g ( `n |✓ ) + noise There are two key assumptions underlying The Cannon. 8
  30. Anna Ho, Caltech / • Assumptions: – Stars with near-identical

    labels have near-identical spectra – A spectrum is a smooth function of the star’s labels There are two key assumptions underlying The Cannon. 8 fn = ✓T · `n + noise
  31. Anna Ho, Caltech / Overview of The Cannon methodology •

    Assumptions: – Stars with near-identical labels have near-identical spectra – A spectrum is a smooth function of the star’s labels Survey A B 8
  32. Anna Ho, Caltech / • Assumptions: – Stars with near-identical

    labels have near-identical spectra – A spectrum is a smooth function of the star’s labels 1. Training Step: fit a model 2. Test Step: infer labels Overview of The Cannon methodology Survey A B 8
  33. Anna Ho, Caltech / • Assumptions: – Stars with near-identical

    labels have near-identical spectra – A spectrum is a smooth function of the star’s labels 1. Training Step: fit a model Overview of The Cannon methodology Survey A B 2. Test Step: infer labels fn = ✓T · `n + noise 8
  34. Anna Ho, Caltech / • Assumptions: – Stars with near-identical

    labels have near-identical spectra – A spectrum is a smooth function of the star’s labels 1. Training Step: fit a model 2. Test Step: infer labels Overview of The Cannon methodology Survey A B fn = ✓T · `n + noise fn = ✓T · `n + noise 8
  35. Anna Ho, Caltech / Proof of Concept: Reproduce APOGEE DR10

    APOGEE DR10 (55,000 stars) Ness, Rix, Hogg, Ho, Zasowski (2015) 9
  36. Anna Ho, Caltech / Proof of Concept: Reproduce APOGEE DR10

    APOGEE DR10 (55,000 stars) Ness, Rix, Hogg, Ho, Zasowski (2015) Calibration clusters (542 stars) 9
  37. Anna Ho, Caltech / Proof of Concept: Reproduce APOGEE DR10

    Labels from high-resolution optical spectroscopy Spectra from APOGEE APOGEE DR10 (55,000 stars) Ness, Rix, Hogg, Ho, Zasowski (2015) 9 Calibration clusters (542 stars)
  38. Anna Ho, Caltech / Proof of Concept: Reproduce APOGEE DR10

    APOGEE DR10 (55,000 stars) Training Step: fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + (quadratic terms) + scatter Ness, Rix, Hogg, Ho, Zasowski (2015) 9 Calibration clusters (542 stars)
  39. Anna Ho, Caltech / Proof of Concept: Reproduce APOGEE DR10

    APOGEE DR10 (55,000 stars) Training Step: fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + (quadratic terms) + scatter Test Step: fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + (quadratic terms) + scatter Ness, Rix, Hogg, Ho, Zasowski (2015) 9 Calibration clusters (542 stars)
  40. Anna Ho, Caltech / Cross-validation, for a field not included

    in training Cannon values ASPCAP values Teff (K) logg (dex) [Fe/H] (dex) 4000 4500 5000 5500 3500 4000 4500 5000 5500 4 5 3 2 1 0 -1 1 3 5 RMS < 63 K RMS < 0.16 dex RMS < 0.06 dex Field: 4255 (l,b) = (60.0, -8.0) 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -2.0 -1.0 0.0 1.0 Ness, Rix, Hogg, Ho, Zasowski (2015) 10
  41. Anna Ho, Caltech / The spectral model matches the data.

    Ness, Rix, Hogg, Ho, Zasowski (2015) Normalized Flux Wavelength (Å) Wavelength (Å) 1.0 0.6 1.0 0.6 0.8 0.8 1.0 0.8 0.6 1.0 0.8 0.6 15660 15700 15740 16160 15780 16200 16240 16280 11
  42. Anna Ho, Caltech / Ness, Rix, Hogg, Ho, Zasowski (2015)

    Teff (K) from The Cannon logg (dex) from The Cannon 4000 3500 5000 4500 5500 5 4 3 2 1 0 -1 12 The Cannon model can reproduce APOGEE DR10.
  43. Anna Ho, Caltech / The Cannon model can reproduce APOGEE

    DR10. Ness, Rix, Hogg, Ho, Zasowski (2015) Teff (K) from The Cannon logg (dex) from The Cannon 4000 3500 5000 4500 5500 5 4 3 2 1 0 -1 12 • Far faster than physical modeling • Labels lie near sensible isochrones, despite there being no priors on isochrones except the values of the original training set • Can do this at lower S/N
  44. Anna Ho, Caltech / Cross-Calibration: APOGEE & LAMOST Ho, Ness,

    Hogg, Rix, Liu, Yang (2016) Overlap: ~10,000 giants APOGEE LAMOST 14
  45. Anna Ho, Caltech / Cross-Calibration: APOGEE & LAMOST Ho, Ness,

    Hogg, Rix, Liu, Yang (2016) Overlap: ~10,000 giants APOGEE LAMOST Labels: {Teff, logg, [Fe/H], [α/Fe]} 14
  46. Anna Ho, Caltech / Cross-Calibration: APOGEE & LAMOST Ho, Ness,

    Hogg, Rix, Liu, Yang (2016) Overlap: ~10,000 giants APOGEE LAMOST APOGEE DR12: R ~ 22,500 15200-16900 Å 4 parameters (Teff, logg, [M/H], [alpha/M]), radial velocity, 15 element abundances ~100,000 giants Labels: {Teff, logg, [Fe/H], [α/Fe]} 14
  47. Anna Ho, Caltech / Cross-Calibration: APOGEE & LAMOST Ho, Ness,

    Hogg, Rix, Liu, Yang (2016) Overlap: ~10,000 giants APOGEE LAMOST LAMOST DR2: R ~ 1,800 3700-9000 Å 3 parameters (Teff, logg, [Fe/H]), radial velocity 2.2 million stars Labels: {Teff, logg, [Fe/H], [α/Fe]} 14 APOGEE DR12: R ~ 22,500 15200-16900 Å 4 parameters (Teff, logg, [M/H], [alpha/M]), radial velocity, 15 element abundances ~100,000 giants
  48. Anna Ho, Caltech / Cross-Calibration: APOGEE & LAMOST Ho, Ness,

    Hogg, Rix, Liu, Yang (2016) Overlap: ~10,000 giants APOGEE LAMOST Labels: {Teff, logg, [Fe/H], [α/Fe]} 14 APOGEE DR12: R ~ 22,500 15200-16900 Å 4 parameters (Teff, logg, [M/H], [alpha/M]), radial velocity, 15 element abundances ~100,000 giants LAMOST DR2: R ~ 1,800 3700-9000 Å 3 parameters (Teff, logg, [Fe/H]), radial velocity 2.2 million stars
  49. Anna Ho, Caltech / Cross-Calibration: APOGEE & LAMOST Ho, Ness,

    Hogg, Rix, Liu, Yang (2016) Overlap: ~10,000 giants APOGEE LAMOST A B Labels: {Teff, logg, [Fe/H], [α/Fe]} 14 APOGEE DR12: R ~ 22,500 15200-16900 Å 4 parameters (Teff, logg, [M/H], [alpha/M]), radial velocity, 15 element abundances ~100,000 giants LAMOST DR2: R ~ 1,800 3700-9000 Å 3 parameters (Teff, logg, [Fe/H]), radial velocity 2.2 million stars
  50. Anna Ho, Caltech / Cross-Calibration: APOGEE & LAMOST Ho, Ness,

    Hogg, Rix, Liu, Yang (2016) Overlap: ~10,000 giants APOGEE LAMOST Spectra Labels A B Labels: {Teff, logg, [Fe/H], [α/Fe]} 14
  51. Anna Ho, Caltech / Cross-Calibration: APOGEE & LAMOST Ho, Ness,

    Hogg, Rix, Liu, Yang (2016) Overlap: ~10,000 giants APOGEE LAMOST Spectra Labels fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + e ([ ↵/Fe ])n + (quadratic terms) + scatter Training Step: A B Labels: {Teff, logg, [Fe/H], [α/Fe]} 14
  52. Anna Ho, Caltech / Cross-Calibration: APOGEE & LAMOST Ho, Ness,

    Hogg, Rix, Liu, Yang (2016) Overlap: ~10,000 giants APOGEE LAMOST Spectra Labels fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + e ([ ↵/Fe ])n + (quadratic terms) + scatter fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + e ([ ↵/Fe ])n + (quadratic terms) + scatter Training Step: Test Step: A B Labels: {Teff, logg, [Fe/H], [α/Fe]} 14
  53. Anna Ho, Caltech / APOGEE and LAMOST measure inconsistent labels.

    Ho, Ness, Hogg, Rix, Liu, Yang (2016) Values from APOGEE DR12 Values from LAMOST, S/N > 60 logg (dex) [Fe/H] (dex) 4000 4400 4800 5200 1.0 1.5 2.0 2.5 3.0 3.5 1.0 1.5 2.0 2.5 3.0 3.5 4000 4400 4800 5200 -1.2 -0.8 -0.4 0.0 0.4 -1.0 -0.5 0.0 0.5 Teff (K) 15 APOGEE 0.05 dex LAMOST 0.15 dex
  54. Anna Ho, Caltech / The Cannon can bring surveys onto

    the same scale. Ho, Ness, Hogg, Rix, Liu, Yang (2016) 4000 4000 -1.0 -0.5 0.0 0.5 4500 5000 5500 4500 5000 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 -1.5 -2.0 -2.0 -1.0 0.0 Values from APOGEE DR12 Values from The Cannon, S/N > 60 Teff (K) logg (dex) [Fe/H] (dex) 16
  55. Anna Ho, Caltech / The Cannon can bring surveys onto

    the same scale. Ho, Ness, Hogg, Rix, Liu, Yang (2016) Teff (K) logg (dex) Teff (K) 4000 4000 5000 5000 1 2 3 4 LAMOST APOGEE 17
  56. Anna Ho, Caltech / The Cannon can bring surveys onto

    the same scale. Ho, Ness, Hogg, Rix, Liu, Yang (2016) Teff (K) logg (dex) Teff (K) Teff (K) 4000 4000 4000 5000 5000 5000 1 2 3 4 LAMOST LAMOST + Cannon APOGEE 17
  57. Anna Ho, Caltech / The Cannon can transfer labels from

    one survey to another. Ho, Ness, Hogg, Rix, Liu, Yang (2016) 0.3 0.2 0.1 0.0 -0.1 0.0 0.1 0.2 0.3 Values from The Cannon, S/N > 60 [α/M] (dex) 18 4000 4000 -1.0 -0.5 0.0 0.5 4500 5000 5500 4500 5000 1.0 2.0 3.0 4.0 1.0 2.0 3.0 4.0 -1.5 -2.0 -2.0 -1.0 0.0 Values from APOGEE DR12 Teff (K) logg (dex) [Fe/H] (dex)
  58. Anna Ho, Caltech / The Cannon can transfer labels from

    one survey to another. Ho, Ness, Hogg, Rix, Liu, Yang (2016) [Fe/H] (dex) from Cannon/LAMOST [α/Fe] (dex) 0.3 0.2 0.4 0.5 0.1 0.0 -0.1 -0.2 -2.0 -1.5 -1.0 -0.5 0.0 0.5 450,000 LAMOST giants 19
  59. Anna Ho, Caltech / The largest age map of the

    Milky Way Ness, Hogg, Rix, Martig, Pinsonneault, Ho (2016) Overlap: ~1600 giants Kepler APOGEE 21
  60. Anna Ho, Caltech / The largest age map of the

    Milky Way Overlap: ~1600 giants Kepler APOGEE Spectra Labels 21 Ness, Hogg, Rix, Martig, Pinsonneault, Ho (2016)
  61. Anna Ho, Caltech / The largest age map of the

    Milky Way Overlap: ~1600 giants Kepler APOGEE Spectra Labels 21 Labels: {Teff, logg, [Fe/H], [α/Fe], M} Ness, Hogg, Rix, Martig, Pinsonneault, Ho (2016)
  62. Anna Ho, Caltech / The largest age map of the

    Milky Way Overlap: ~1600 giants Kepler APOGEE Spectra Labels fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + e ([ ↵/Fe ])n + f ( M )n + (quadratic terms) + sca fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + e ([ ↵/Fe ])n + f ( M )n + (quadratic terms) + scatter Training Step: Labels: {Teff, logg, [Fe/H], [α/Fe], M} 21 Ness, Hogg, Rix, Martig, Pinsonneault, Ho (2016)
  63. Anna Ho, Caltech / The largest age map of the

    Milky Way Overlap: ~1600 giants Kepler APOGEE Spectra Labels fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + e ([ ↵/Fe ])n + f ( M )n + (quadratic terms) + sca fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + e ([ ↵/Fe ])n + f ( M )n + (quadratic terms) + scatter Training Step: Test Step: fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + e ([ ↵/Fe ])n + g ( M )n + (quadratic terms) + sca fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + e ([ ↵/Fe ])n + g ( M )n + (quadratic terms) + scatter 21 Labels: {Teff, logg, [Fe/H], [α/Fe], M} Ness, Hogg, Rix, Martig, Pinsonneault, Ho (2016)
  64. Anna Ho, Caltech / The largest age map of the

    Milky Way Overlap: ~1600 giants Kepler APOGEE fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + e ([ ↵/Fe ])n + f ( M )n + (quadratic terms) + sca fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + e ([ ↵/Fe ])n + f ( M )n + (quadratic terms) + scatter Training Step: Test Step: fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + e ([ ↵/Fe ])n + g ( M )n + (quadratic terms) + sca fn = a + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + e ([ ↵/Fe ])n + g ( M )n + (quadratic terms) + scatter 21 Labels: {Teff, logg, [Fe/H], [α/Fe], M} Ness, Hogg, Rix, Martig, Pinsonneault, Ho (2016)
  65. Anna Ho, Caltech / 4000 4500 5000 TeffASPCAP 4000 4500

    5000 The Cannon Labels Teff (K) 1.5 2.0 2.5 3.0 3.5 loggKEPLER 1.5 2.0 2.5 3.0 3.5 log g (dex) 1.0 0.5 0.0 0.5 [Fe/H]ASPCAP 1.0 0.5 0.0 0.5 [Fe/H] (dex) 0.1 0.0 0.1 0.2 0.3 [↵/Fe]ASPCAP 0.1 0.0 0.1 0.2 0.3 [↵/Fe] (dex) 0. log10 0.2 0.0 0.2 0.4 0.6 log 200 100 0 100 200 Teff 0 50 100 150 200 250 300 350 Number of Stars bias = 0.5 rms = 26.6 0.5 0.0 0.5 logg 0 50 100 150 200 250 300 350 400 bias = 0.007 rms = 0.06 0.2 0.1 0.0 0.1 0.2 [Fe/H] 0 50 100 150 200 250 300 350 bias = -0.0 rms = 0.02 0.1 0.0 0.1 ↵/Fe 0 50 100 150 200 250 300 350 bias = 0.0 rms = 0.02 0.4 0 50 100 150 200 250 300 bias rms 4000 4500 5000 TeffASPCAP 4000 4500 5000 The Cannon Labels Teff (K) 1.5 2.0 2.5 3.0 3.5 loggKEPLER 1.5 2.0 2.5 3.0 3.5 log g (dex) 1.0 0.5 0.0 0.5 [Fe/H]ASPCAP 1.0 0.5 0.0 0.5 [Fe/H] (dex) 0.1 0.0 0.1 0.2 0.3 [↵/Fe]ASPCAP 0.1 0.0 0.1 0.2 0.3 [↵/Fe] (dex) lo 0.2 0.0 0.2 0.4 0.6 200 100 0 100 200 Teff 0 50 100 150 200 250 300 350 Number of Stars bias = 0.5 rms = 26.6 0.5 0.0 0.5 logg 0 50 100 150 200 250 300 350 400 bias = 0.007 rms = 0.06 0.2 0.1 0.0 0.1 0.2 [Fe/H] 0 50 100 150 200 250 300 350 bias = -0.0 rms = 0.02 0.1 0.0 0.1 ↵/Fe 0 50 100 150 200 250 300 350 bias = 0.0 rms = 0.02 0 50 100 150 200 250 300 4000 4500 5000 TeffASPCAP 4000 4500 5000 The Cannon Labels Teff (K) 1.5 2.0 2.5 3.0 3.5 loggKEPLER 1.5 2.0 2.5 3.0 3.5 log g (dex) 1.0 0.5 0.0 0.5 [Fe/H]ASPCAP 1.0 0.5 0.0 0.5 [Fe/H] (dex) 0.1 0.0 0.1 0.2 0 [↵/Fe]ASPCA 0.1 0.0 0.1 0.2 0.3 [↵/Fe] (dex) 200 100 0 100 200 Teff 0 50 100 150 200 250 300 350 Number of Stars bias = 0.5 rms = 26.6 0.5 0.0 0.5 logg 0 50 100 150 200 250 300 350 400 bias = 0.007 rms = 0.06 0.2 0.1 0.0 0.1 0.2 [Fe/H] 0 50 100 150 200 250 300 350 bias = -0.0 rms = 0.02 0.1 0.0 0.1 ↵/Fe 0 50 100 150 200 250 300 350 bias = 0.0 rms = 0.02 0.5 0.0 0.5 Fe/H]ASPCAP [Fe/H] (dex) 0.1 0.0 0.1 0.2 0.3 [↵/Fe]ASPCAP 0.1 0.0 0.1 0.2 0.3 [↵/Fe] (dex) 0.2 0.0 0.2 0.4 0.6 log10 massKEPLER 0.2 0.0 0.2 0.4 0.6 log10 mass (M ) 0.5 0.0 0.5 1.0 1.5 log10 ageKEPLER 0.5 0.0 0.5 1.0 1.5 Derived log10 age (Gyr) as = -0.0 ms = 0.02 300 350 bias = 0.0 rms = 0.02 250 300 bias = 0.0 rms = 0.07 300 350 bias = 0.02 rms = 0.21 10 2 10 1 100 Number of Stars 1.0 0.5 0.0 0.5 [Fe/H]ASPCAP 1.0 0.5 0.0 0.5 [Fe/H] (dex) 0.1 0.0 0.1 0.2 0.3 [↵/Fe]ASPCAP 0.1 0.0 0.1 0.2 0.3 [↵/Fe] (dex) 0.2 0.0 0.2 0.4 0.6 log10 massKEPLER 0.2 0.0 0.2 0.4 0.6 log10 mass (M ) 0.5 0.0 0.5 1.0 1.5 log10 ageKEPLER 0.5 0.0 0.5 1.0 1.5 Derived log10 age (Gyr) 300 350 bias = -0.0 rms = 0.02 300 350 bias = 0.0 rms = 0.02 250 300 bias = 0.0 rms = 0.07 300 350 bias = 0.02 rms = 0.21 10 2 10 1 100 Number of Stars Values from The Cannon Teff (K) logg (dex) [Fe/H] (dex) [α/Fe] (dex) log10 mass (M⊙ ) ASPCAP ASPCAP Kepler Kepler ASPCAP ±27 K ±0.06 dex ±0.02 dex ±0.02 dex ±0.07 dex (20%) 22 -0.1 0.0 0.1 0.2 0.3 4000 -1.0 -0.5 0.0 0.5 4500 5000 2.0 3.0 2.5 1.5 3.5 Ness, Hogg, Rix, Martig, Pinsonneault, Ho (2016) 4000 4500 5000 1.5 2.5 3.5 -0.5 0.0 0.5 0.2 0.0 -0.2 0.4 0.6 0.1 0.3 -0.2 0.2 0.6 Cross validation with the APOKASC sample
  66. Anna Ho, Caltech / 4000 4500 5000 TeffASPCAP 4000 4500

    5000 The Cannon Labels Teff (K) 1.5 2.0 2.5 3.0 3.5 loggKEPLER 1.5 2.0 2.5 3.0 3.5 log g (dex) 1.0 0.5 0.0 0.5 [Fe/H]ASPCAP 1.0 0.5 0.0 0.5 [Fe/H] (dex) 0.1 0.0 0.1 0.2 0.3 [↵/Fe]ASPCAP 0.1 0.0 0.1 0.2 0.3 [↵/Fe] (dex) 0. log10 0.2 0.0 0.2 0.4 0.6 log 200 100 0 100 200 Teff 0 50 100 150 200 250 300 350 Number of Stars bias = 0.5 rms = 26.6 0.5 0.0 0.5 logg 0 50 100 150 200 250 300 350 400 bias = 0.007 rms = 0.06 0.2 0.1 0.0 0.1 0.2 [Fe/H] 0 50 100 150 200 250 300 350 bias = -0.0 rms = 0.02 0.1 0.0 0.1 ↵/Fe 0 50 100 150 200 250 300 350 bias = 0.0 rms = 0.02 0.4 0 50 100 150 200 250 300 bias rms 4000 4500 5000 TeffASPCAP 4000 4500 5000 The Cannon Labels Teff (K) 1.5 2.0 2.5 3.0 3.5 loggKEPLER 1.5 2.0 2.5 3.0 3.5 log g (dex) 1.0 0.5 0.0 0.5 [Fe/H]ASPCAP 1.0 0.5 0.0 0.5 [Fe/H] (dex) 0.1 0.0 0.1 0.2 0.3 [↵/Fe]ASPCAP 0.1 0.0 0.1 0.2 0.3 [↵/Fe] (dex) lo 0.2 0.0 0.2 0.4 0.6 200 100 0 100 200 Teff 0 50 100 150 200 250 300 350 Number of Stars bias = 0.5 rms = 26.6 0.5 0.0 0.5 logg 0 50 100 150 200 250 300 350 400 bias = 0.007 rms = 0.06 0.2 0.1 0.0 0.1 0.2 [Fe/H] 0 50 100 150 200 250 300 350 bias = -0.0 rms = 0.02 0.1 0.0 0.1 ↵/Fe 0 50 100 150 200 250 300 350 bias = 0.0 rms = 0.02 0 50 100 150 200 250 300 4000 4500 5000 TeffASPCAP 4000 4500 5000 The Cannon Labels Teff (K) 1.5 2.0 2.5 3.0 3.5 loggKEPLER 1.5 2.0 2.5 3.0 3.5 log g (dex) 1.0 0.5 0.0 0.5 [Fe/H]ASPCAP 1.0 0.5 0.0 0.5 [Fe/H] (dex) 0.1 0.0 0.1 0.2 0 [↵/Fe]ASPCA 0.1 0.0 0.1 0.2 0.3 [↵/Fe] (dex) 200 100 0 100 200 Teff 0 50 100 150 200 250 300 350 Number of Stars bias = 0.5 rms = 26.6 0.5 0.0 0.5 logg 0 50 100 150 200 250 300 350 400 bias = 0.007 rms = 0.06 0.2 0.1 0.0 0.1 0.2 [Fe/H] 0 50 100 150 200 250 300 350 bias = -0.0 rms = 0.02 0.1 0.0 0.1 ↵/Fe 0 50 100 150 200 250 300 350 bias = 0.0 rms = 0.02 0.5 0.0 0.5 Fe/H]ASPCAP [Fe/H] (dex) 0.1 0.0 0.1 0.2 0.3 [↵/Fe]ASPCAP 0.1 0.0 0.1 0.2 0.3 [↵/Fe] (dex) 0.2 0.0 0.2 0.4 0.6 log10 massKEPLER 0.2 0.0 0.2 0.4 0.6 log10 mass (M ) 0.5 0.0 0.5 1.0 1.5 log10 ageKEPLER 0.5 0.0 0.5 1.0 1.5 Derived log10 age (Gyr) as = -0.0 ms = 0.02 300 350 bias = 0.0 rms = 0.02 250 300 bias = 0.0 rms = 0.07 300 350 bias = 0.02 rms = 0.21 10 2 10 1 100 Number of Stars 1.0 0.5 0.0 0.5 [Fe/H]ASPCAP 1.0 0.5 0.0 0.5 [Fe/H] (dex) 0.1 0.0 0.1 0.2 0.3 [↵/Fe]ASPCAP 0.1 0.0 0.1 0.2 0.3 [↵/Fe] (dex) 0.2 0.0 0.2 0.4 0.6 log10 massKEPLER 0.2 0.0 0.2 0.4 0.6 log10 mass (M ) 0.5 0.0 0.5 1.0 1.5 log10 ageKEPLER 0.5 0.0 0.5 1.0 1.5 Derived log10 age (Gyr) 300 350 bias = -0.0 rms = 0.02 300 350 bias = 0.0 rms = 0.02 250 300 bias = 0.0 rms = 0.07 300 350 bias = 0.02 rms = 0.21 10 2 10 1 100 Number of Stars 5 3.0 3.5 PLER dex) 1.0 0.5 0.0 0.5 [Fe/H]ASPCAP 1.0 0.5 0.0 0.5 [Fe/H] (dex) 0.1 0.0 0.1 0.2 0.3 [↵/Fe]ASPCAP 0.1 0.0 0.1 0.2 0.3 [↵/Fe] (dex) 0.2 0.0 0.2 0.4 0.6 log10 massKEPLER 0.2 0.0 0.2 0.4 0.6 log10 mass (M ) 0.5 0.0 0.5 1.0 1.5 log10 ageKEPLER 0.5 0.0 0.5 1.0 1.5 Derived log10 age (Gyr) 300 350 bias = -0.0 rms = 0.02 300 350 bias = 0.0 rms = 0.02 250 300 bias = 0.0 rms = 0.07 300 350 bias = 0.02 rms = 0.21 10 2 10 1 100 Number of Stars Cross validation with the APOKASC sample Values from The Cannon Teff (K) logg (dex) [Fe/H] (dex) [α/Fe] (dex) log10 mass (M⊙ ) log10 age (Gyr) ASPCAP ASPCAP Kepler Kepler Kepler ASPCAP derived ±27 K ±0.06 dex ±0.02 dex ±0.02 dex ±0.07 dex (20%) ±0.21 dex (40%) 22 -0.1 0.0 0.1 0.2 0.3 4000 -1.0 -0.5 0.0 0.5 4500 5000 2.0 3.0 2.5 1.5 3.5 Ness, Hogg, Rix, Martig, Pinsonneault, Ho (2016) 4000 4500 5000 1.5 2.5 3.5 -0.5 0.0 0.5 0.2 0.0 -0.2 0.4 0.6 0.1 0.3 -0.2 0.2 0.6 0.0 -0.5 0.5 1.5 1.0 0.5 1.5
  67. Anna Ho, Caltech / Galactic Centre 73 Galactic Radius (kpc)

    Galactic Height (kpc) -5 0 5 10 15 20 -6 -4 -2 0 2 4 6 Mean Age (Gyr) 9.6 3.2 6.4 4.8 8.0 The largest age map of the Milky Way Anna Ho, Caltech / 23 Ness, Hogg, Rix, Martig, Pinsonneault, Ho (2016)
  68. Anna Ho, Caltech / Limitations & advantages • Limitations –

    The training set – Treating the pixels as independent – No partial or noisy labels – Quadratic order polynomial 24 • Strengths – Data-driven (no physical models required) – Fast – Performs well at low-SNR – Can handle noise and missing data in spectra – Model is interpretable
  69. Anna Ho, Caltech / Limitations & advantages fn = a

    + b ( Te↵)n + c (log g )n + d ([ Fe/H ])n + e ([ ↵/Fe ])n + (quadratic terms) + scatter 24 • Strengths – Data-driven (no physical models required) – Fast – Performs well at low-SNR – Can handle noise and missing data in spectra – Model is interpretable
  70. The code is open source and available: pip install TheCannon

    Documentation & Tutorial: https://annayqho.github.io/TheCannon/ 25 Anna Ho, Caltech / Read more: Ness et al. 2015, arXiv: 1501.07604 Ness et al. 2016, arXiv:1511.08204 Hogg et al. 2016, arXiv:1601.05413 Ho et al. 2016, arXiv:1602.00303 Casey et al. 2016, arXiv:1603.03040 Original paper on The Cannon and APOGEE Spectroscopic masses & ages Chemical tagging APOGEE/LAMOST cross-calibration The Cannon 2: compressed sensing & detailed element abundances [email protected]
  71. Anna Ho, Caltech / Where is logg encoded in an

    APOGEE spectrum? 25 Figure from Melissa Ness
  72. Anna Ho, Caltech / Where is mass encoded in an

    APOGEE spectrum? 25 Figure from Melissa Ness
  73. Anna Ho, Caltech / Where is info encoded in a

    LAMOST spectrum? 25 4000 Å 5000 Å 6000 Å 7000 Å 8000 Å 9000 Å