Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Look Ma! No more blobs
Search
Aparna Chaudhary
April 27, 2013
Technology
1
2.3k
Look Ma! No more blobs
Binary storage using GridFS.
Aparna Chaudhary
April 27, 2013
Tweet
Share
More Decks by Aparna Chaudhary
See All by Aparna Chaudhary
Understanding JVM
aparnachaudhary
0
140
Esper - Complex Event Processing
aparnachaudhary
1
260
Other Decks in Technology
See All in Technology
マルチモーダル / AI Agent / LLMOps 3つの技術トレンドで理解するLLMの今後の展望
hirosatogamo
37
12k
Lambda10周年!Lambdaは何をもたらしたか
smt7174
2
110
オープンソースAIとは何か? --「オープンソースAIの定義 v1.0」詳細解説
shujisado
6
670
20241120_JAWS_東京_ランチタイムLT#17_AWS認定全冠の先へ
tsumita
2
240
なぜ今 AI Agent なのか _近藤憲児
kenjikondobai
4
1.3k
SSMRunbook作成の勘所_20241120
koichiotomo
2
130
Amazon CloudWatch Network Monitor のススメ
yuki_ink
1
200
Evangelismo técnico: ¿qué, cómo y por qué?
trishagee
0
360
これまでの計測・開発・デプロイ方法全部見せます! / Findy ISUCON 2024-11-14
tohutohu
3
370
元旅行会社の情シス部員が教えるおすすめなre:Inventへの行き方 / What is the most efficient way to re:Invent
naospon
2
340
【若手エンジニア応援LT会】ソフトウェアを学んできた私がインフラエンジニアを目指した理由
kazushi_ohata
0
150
ドメインの本質を掴む / Get the essence of the domain
sinsoku
2
150
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
27
840
Measuring & Analyzing Core Web Vitals
bluesmoon
4
120
Designing for Performance
lara
604
68k
The Power of CSS Pseudo Elements
geoffreycrofte
73
5.3k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
364
24k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
665
120k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5k
Designing for humans not robots
tammielis
250
25k
Writing Fast Ruby
sferik
627
61k
Visualization
eitanlees
145
15k
Transcript
Look Ma! No more blobs Aparna Chaudhary NoSQL matters, @Cologne
Germany 2013
EMBRACE POLYGLOT PERSISTENCE! STOP RDBMS ABUSE! KNOW YOUR USE CASE
Parse Extract Store Read XML We don't do rocket science...
Use Case Runtime support for document types Metadata definition provided at runtime Document type names - max 50 char Look up content based on metadata RA
Challenges Storage of up to one million documents of 10KB
to 2GB per document type per year Write 1MB < x msec Retrieve 1MB < y msec ......and details RA But…the Numbers make it interesting...
How? File System MongoDB RDBMS JCR Document Management
if you want to store files, its logical to use
file system. ain't it? File System ✓ Ease of Use ✓ No special skill-set ✓ Backup and Recovery ✓ It’s free!
How do I name them? Support for metadata storage? Performance
with too many small files? Query - Administration? High Availability? Limitation on total number of files?
Relational database Integrity Consistency Durability Atomicity Joins Backups High Availability
You name it, We have it! RDBMS Aggregations
RDBMS Developer’s Perspective
Challenge #1 RA We need runtime support for document type.
RA We need runtime support for document type.
Challenge #1 DOC_1 DOC_2 DOC_3 DOC_4 DOC_5 DOC_6 Dynamic DDL
Generation DOC_1 DOC_2 DOC_3 DOC_4 DOC_5 DOC_6 Dynamic DDL Generation
Challenge #1 String concatenations are ugly… DEV String concatenations are
ugly… DEV
Challenge #1 Let's build a utility. DEV Let's build a
utility. DEV
Challenge #1 More Work More Work
Challenge #2 RA Document type is 50 char long RA
Document type is 50 char long
Challenge #2 TABLE NAME LIMITS Wait… SQL-92 says 128 Char
? We rule. Let's support only 30 char. TABLE NAME LIMITS Wait… SQL-92 says 128 Char ? We rule. Let's support only 30 char.
Challenge #2 DOC_TYPE_MAPPING Let's create a mapping table. DEV DOC_TYPE_MAPPING
Let's create a mapping table. DEV
Challenge #2 Ugly unreadable table names! Ugly unreadable table names!
So...finally... Read XML Dynamic DDL generation Document Type Alias DocumentType
Defined Yes No Extract Metadata Store Metadata Store Content Simple use case becomes complex...
Remember... Our Challenge QA Let's see if we are in
spec for response time. Aah..what about performance now? DEV
MongoDB Document Based GridFS B-Tree Dynamic Schema JSON BSON Query
Scalable http://www.10gen.com/presentations/storage-engine-internals Joins Complex Transaction
F1 F2 F3 F4 F5 ID1 ID2 ID3 ID4 ID5
F1 F1 F1 F1 F2 F2 F3 F4 F5 F6 F2 F3 F4 F5 Fx F8 F3 F9 F7 Concepts Database Collection Collection Collection Collection Collection Collection Database Collection Collection Collection Collection Collection Collection Database Collection Collection Collection Collection Collection Collection Database Collection Collection Collection Collection Collection Collection Table = Collection Column = Field Row = Document Database = Database
GridFS MongoDB divides the large content into chunks Stores Metadata
and Chunks separately http://docs.mongodb.org/manual/core/gridfs/
> mybucket.files { "_id" : ObjectId("514d5cb8c2e6ea4329646a5c"), "chunkSize" : NumberLong(262144), "length"
: NumberLong(103015), "md5" : "34d29a163276accc7304bd69c5520e55", "filename" : "health_record_2.xml", "contentType" : application/xml, "uploadDate" : ISODate("2013-03-23T07:41:44.907Z"), "aliases" : null, "metadata" : { "fname" : "Aparna", "lname" : "Chaudhary","country" : "Netherlands" } } ObjectId - 12 Byte BSON: 4 Byte - Seconds since Epoch 3 Byte - Machine Id 2 Byte - Process Id 3 Byte - Counter
> mybucket.chunks { "_id" : ObjectId("514d5cb8c2e6ea4329646a5d"), "files_id" : ObjectId("514d5cb8c2e6ea4329646a5c"), "n"
: 0, "data" : BinData(0,...) }
? I'm storing 10KB file, but would it use 256KB
on disk? Last Chunk = FileSize % 256 + Metadata overhead 256 1128KB 256 256 256 104 + x 10KB 10 + x Chunk is as big as it needs to be...
Challenge #1 DEV MongoDB supports Dynamic Schema. You can use
collection per docType and they are created dynamically. RA We need runtime support for document type.
Challenge #2 RA Document type is 50 char long DEV
MongoDB namespace can be up to 123 char.
So...finally... Simple use case remains simple...well becomes simpler... Read XML
Extract Metadata Store Metadata & Content
Remember... Our Challenge QA Let's see if we are in
spec for response time. DEV Performance test is part of our definition of 'DONE'
BEcause seeing is believing! Demo ‣ GridFS 2.4.0 ‣ PostgreSQL
9.2 ‣ Spring Data ‣ JMeter 2.7 ‣ Mac OS X 10.8.3 2.3GHz Quad-Core Intel Core i7, 16GB RAM https://github.com/aparnachaudhary/nosql-matters-demo
EMBRACE POLYGLOT PERSISTENCE! STOP RDBMS ABUSE! KNOW YOUR USE CASE
@aparnachaudhary
Java Developer, Data Lover Eindhoven, Netherlands http://blog.aparnachaudhary.com/ @aparnachaudhary Thank You!