Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Look Ma! No more blobs
Search
Aparna Chaudhary
April 27, 2013
Technology
1
2.3k
Look Ma! No more blobs
Binary storage using GridFS.
Aparna Chaudhary
April 27, 2013
Tweet
Share
More Decks by Aparna Chaudhary
See All by Aparna Chaudhary
Understanding JVM
aparnachaudhary
0
150
Esper - Complex Event Processing
aparnachaudhary
1
290
Other Decks in Technology
See All in Technology
From Natural Language to K8s Operations: The MCP Architecture and Practice of kubectl-ai
appleboy
0
370
Dify on AWS 環境構築手順
yosse95ai
0
170
AI連携の新常識! 話題のMCPをはじめて学ぶ!
makoakiba
0
160
実践マルチモーダル検索!
shibuiwilliam
1
420
猫でもわかるAmazon Q Developer CLI 解体新書
kentapapa
1
150
Raycast AI APIを使ってちょっと便利なAI拡張機能を作ってみた
kawamataryo
0
150
20251027_findyさん_音声エージェントLT
almondo_event
2
500
オブザーバビリティが育むシステム理解と好奇心
maruloop
3
1.6k
OpenCensusと歩んだ7年間
bgpat
0
230
RemoteFunctionを使ったコロケーション
mkazutaka
1
150
Amazon Athena で JSON・Parquet・Iceberg のデータを検索し、性能を比較してみた
shigeruoda
1
240
dbtとAIエージェントを組み合わせて見えたデータ調査の新しい形
10xinc
7
1.5k
Featured
See All Featured
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
10
890
YesSQL, Process and Tooling at Scale
rocio
173
15k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
The Invisible Side of Design
smashingmag
302
51k
Optimising Largest Contentful Paint
csswizardry
37
3.5k
The Power of CSS Pseudo Elements
geoffreycrofte
80
6k
Fireside Chat
paigeccino
41
3.7k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.5k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
2.9k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Designing Experiences People Love
moore
142
24k
Product Roadmaps are Hard
iamctodd
PRO
55
11k
Transcript
Look Ma! No more blobs Aparna Chaudhary NoSQL matters, @Cologne
Germany 2013
EMBRACE POLYGLOT PERSISTENCE! STOP RDBMS ABUSE! KNOW YOUR USE CASE
Parse Extract Store Read XML We don't do rocket science...
Use Case Runtime support for document types Metadata definition provided at runtime Document type names - max 50 char Look up content based on metadata RA
Challenges Storage of up to one million documents of 10KB
to 2GB per document type per year Write 1MB < x msec Retrieve 1MB < y msec ......and details RA But…the Numbers make it interesting...
How? File System MongoDB RDBMS JCR Document Management
if you want to store files, its logical to use
file system. ain't it? File System ✓ Ease of Use ✓ No special skill-set ✓ Backup and Recovery ✓ It’s free!
How do I name them? Support for metadata storage? Performance
with too many small files? Query - Administration? High Availability? Limitation on total number of files?
Relational database Integrity Consistency Durability Atomicity Joins Backups High Availability
You name it, We have it! RDBMS Aggregations
RDBMS Developer’s Perspective
Challenge #1 RA We need runtime support for document type.
RA We need runtime support for document type.
Challenge #1 DOC_1 DOC_2 DOC_3 DOC_4 DOC_5 DOC_6 Dynamic DDL
Generation DOC_1 DOC_2 DOC_3 DOC_4 DOC_5 DOC_6 Dynamic DDL Generation
Challenge #1 String concatenations are ugly… DEV String concatenations are
ugly… DEV
Challenge #1 Let's build a utility. DEV Let's build a
utility. DEV
Challenge #1 More Work More Work
Challenge #2 RA Document type is 50 char long RA
Document type is 50 char long
Challenge #2 TABLE NAME LIMITS Wait… SQL-92 says 128 Char
? We rule. Let's support only 30 char. TABLE NAME LIMITS Wait… SQL-92 says 128 Char ? We rule. Let's support only 30 char.
Challenge #2 DOC_TYPE_MAPPING Let's create a mapping table. DEV DOC_TYPE_MAPPING
Let's create a mapping table. DEV
Challenge #2 Ugly unreadable table names! Ugly unreadable table names!
So...finally... Read XML Dynamic DDL generation Document Type Alias DocumentType
Defined Yes No Extract Metadata Store Metadata Store Content Simple use case becomes complex...
Remember... Our Challenge QA Let's see if we are in
spec for response time. Aah..what about performance now? DEV
MongoDB Document Based GridFS B-Tree Dynamic Schema JSON BSON Query
Scalable http://www.10gen.com/presentations/storage-engine-internals Joins Complex Transaction
F1 F2 F3 F4 F5 ID1 ID2 ID3 ID4 ID5
F1 F1 F1 F1 F2 F2 F3 F4 F5 F6 F2 F3 F4 F5 Fx F8 F3 F9 F7 Concepts Database Collection Collection Collection Collection Collection Collection Database Collection Collection Collection Collection Collection Collection Database Collection Collection Collection Collection Collection Collection Database Collection Collection Collection Collection Collection Collection Table = Collection Column = Field Row = Document Database = Database
GridFS MongoDB divides the large content into chunks Stores Metadata
and Chunks separately http://docs.mongodb.org/manual/core/gridfs/
> mybucket.files { "_id" : ObjectId("514d5cb8c2e6ea4329646a5c"), "chunkSize" : NumberLong(262144), "length"
: NumberLong(103015), "md5" : "34d29a163276accc7304bd69c5520e55", "filename" : "health_record_2.xml", "contentType" : application/xml, "uploadDate" : ISODate("2013-03-23T07:41:44.907Z"), "aliases" : null, "metadata" : { "fname" : "Aparna", "lname" : "Chaudhary","country" : "Netherlands" } } ObjectId - 12 Byte BSON: 4 Byte - Seconds since Epoch 3 Byte - Machine Id 2 Byte - Process Id 3 Byte - Counter
> mybucket.chunks { "_id" : ObjectId("514d5cb8c2e6ea4329646a5d"), "files_id" : ObjectId("514d5cb8c2e6ea4329646a5c"), "n"
: 0, "data" : BinData(0,...) }
? I'm storing 10KB file, but would it use 256KB
on disk? Last Chunk = FileSize % 256 + Metadata overhead 256 1128KB 256 256 256 104 + x 10KB 10 + x Chunk is as big as it needs to be...
Challenge #1 DEV MongoDB supports Dynamic Schema. You can use
collection per docType and they are created dynamically. RA We need runtime support for document type.
Challenge #2 RA Document type is 50 char long DEV
MongoDB namespace can be up to 123 char.
So...finally... Simple use case remains simple...well becomes simpler... Read XML
Extract Metadata Store Metadata & Content
Remember... Our Challenge QA Let's see if we are in
spec for response time. DEV Performance test is part of our definition of 'DONE'
BEcause seeing is believing! Demo ‣ GridFS 2.4.0 ‣ PostgreSQL
9.2 ‣ Spring Data ‣ JMeter 2.7 ‣ Mac OS X 10.8.3 2.3GHz Quad-Core Intel Core i7, 16GB RAM https://github.com/aparnachaudhary/nosql-matters-demo
EMBRACE POLYGLOT PERSISTENCE! STOP RDBMS ABUSE! KNOW YOUR USE CASE
@aparnachaudhary
Java Developer, Data Lover Eindhoven, Netherlands http://blog.aparnachaudhary.com/ @aparnachaudhary Thank You!