Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Look Ma! No more blobs
Search
Aparna Chaudhary
April 27, 2013
Technology
1
2.2k
Look Ma! No more blobs
Binary storage using GridFS.
Aparna Chaudhary
April 27, 2013
Tweet
Share
More Decks by Aparna Chaudhary
See All by Aparna Chaudhary
Understanding JVM
aparnachaudhary
0
140
Esper - Complex Event Processing
aparnachaudhary
1
260
Other Decks in Technology
See All in Technology
Eventual Detection Engineering
ken5scal
0
970
Oracle Database 23ai 新機能 #3 Oracle Globally Distributed Database(GDD)
oracle4engineer
PRO
1
170
AWS SAW を広めたい @四国クラウドお遍路
kazzpapa3
0
200
【Λ(らむだ)最近のアプデ情報 / RPALT20240904
lambda
0
180
Envoy External AuthZとgRPC Extensionを利用した「頑張らない」Microservices認証認可基盤
andoshin11
0
200
リクルート新人研修2024 テキスト生成AI活用
recruitengineers
PRO
10
480
The XZ Backdoor Story
fr0gger
0
2.5k
CRTO/CRTL/OSEPの比較・勉強法とAV/EDRの検知実験
chayakonanaika
1
970
Namespace, Now and Then
tagomoris
0
170
Zero Data Loss Autonomous Recovery Service サービス概要
oracle4engineer
PRO
0
3.2k
Monitor GraalVM Native Apps with OpenTelemetry
logico_jp
0
110
音声AIエージェントの世界とRetell AI入門 / Introduction to the World of Voice AI Agents and Retell AI
rkaga
4
840
Featured
See All Featured
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
22
1.7k
Web development in the modern age
philhawksworth
204
10k
It's Worth the Effort
3n
182
27k
The Invisible Customer
myddelton
119
13k
Fashionably flexible responsive web design (full day workshop)
malarkey
401
65k
Gamification - CAS2011
davidbonilla
79
4.9k
Become a Pro
speakerdeck
PRO
22
4.9k
From Idea to $5000 a Month in 5 Months
shpigford
378
46k
Git: the NoSQL Database
bkeepers
PRO
425
64k
The Brand Is Dead. Long Live the Brand.
mthomps
53
37k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
157
15k
CSS Pre-Processors: Stylus, Less & Sass
bermonpainter
354
29k
Transcript
Look Ma! No more blobs Aparna Chaudhary NoSQL matters, @Cologne
Germany 2013
EMBRACE POLYGLOT PERSISTENCE! STOP RDBMS ABUSE! KNOW YOUR USE CASE
Parse Extract Store Read XML We don't do rocket science...
Use Case Runtime support for document types Metadata definition provided at runtime Document type names - max 50 char Look up content based on metadata RA
Challenges Storage of up to one million documents of 10KB
to 2GB per document type per year Write 1MB < x msec Retrieve 1MB < y msec ......and details RA But…the Numbers make it interesting...
How? File System MongoDB RDBMS JCR Document Management
if you want to store files, its logical to use
file system. ain't it? File System ✓ Ease of Use ✓ No special skill-set ✓ Backup and Recovery ✓ It’s free!
How do I name them? Support for metadata storage? Performance
with too many small files? Query - Administration? High Availability? Limitation on total number of files?
Relational database Integrity Consistency Durability Atomicity Joins Backups High Availability
You name it, We have it! RDBMS Aggregations
RDBMS Developer’s Perspective
Challenge #1 RA We need runtime support for document type.
RA We need runtime support for document type.
Challenge #1 DOC_1 DOC_2 DOC_3 DOC_4 DOC_5 DOC_6 Dynamic DDL
Generation DOC_1 DOC_2 DOC_3 DOC_4 DOC_5 DOC_6 Dynamic DDL Generation
Challenge #1 String concatenations are ugly… DEV String concatenations are
ugly… DEV
Challenge #1 Let's build a utility. DEV Let's build a
utility. DEV
Challenge #1 More Work More Work
Challenge #2 RA Document type is 50 char long RA
Document type is 50 char long
Challenge #2 TABLE NAME LIMITS Wait… SQL-92 says 128 Char
? We rule. Let's support only 30 char. TABLE NAME LIMITS Wait… SQL-92 says 128 Char ? We rule. Let's support only 30 char.
Challenge #2 DOC_TYPE_MAPPING Let's create a mapping table. DEV DOC_TYPE_MAPPING
Let's create a mapping table. DEV
Challenge #2 Ugly unreadable table names! Ugly unreadable table names!
So...finally... Read XML Dynamic DDL generation Document Type Alias DocumentType
Defined Yes No Extract Metadata Store Metadata Store Content Simple use case becomes complex...
Remember... Our Challenge QA Let's see if we are in
spec for response time. Aah..what about performance now? DEV
MongoDB Document Based GridFS B-Tree Dynamic Schema JSON BSON Query
Scalable http://www.10gen.com/presentations/storage-engine-internals Joins Complex Transaction
F1 F2 F3 F4 F5 ID1 ID2 ID3 ID4 ID5
F1 F1 F1 F1 F2 F2 F3 F4 F5 F6 F2 F3 F4 F5 Fx F8 F3 F9 F7 Concepts Database Collection Collection Collection Collection Collection Collection Database Collection Collection Collection Collection Collection Collection Database Collection Collection Collection Collection Collection Collection Database Collection Collection Collection Collection Collection Collection Table = Collection Column = Field Row = Document Database = Database
GridFS MongoDB divides the large content into chunks Stores Metadata
and Chunks separately http://docs.mongodb.org/manual/core/gridfs/
> mybucket.files { "_id" : ObjectId("514d5cb8c2e6ea4329646a5c"), "chunkSize" : NumberLong(262144), "length"
: NumberLong(103015), "md5" : "34d29a163276accc7304bd69c5520e55", "filename" : "health_record_2.xml", "contentType" : application/xml, "uploadDate" : ISODate("2013-03-23T07:41:44.907Z"), "aliases" : null, "metadata" : { "fname" : "Aparna", "lname" : "Chaudhary","country" : "Netherlands" } } ObjectId - 12 Byte BSON: 4 Byte - Seconds since Epoch 3 Byte - Machine Id 2 Byte - Process Id 3 Byte - Counter
> mybucket.chunks { "_id" : ObjectId("514d5cb8c2e6ea4329646a5d"), "files_id" : ObjectId("514d5cb8c2e6ea4329646a5c"), "n"
: 0, "data" : BinData(0,...) }
? I'm storing 10KB file, but would it use 256KB
on disk? Last Chunk = FileSize % 256 + Metadata overhead 256 1128KB 256 256 256 104 + x 10KB 10 + x Chunk is as big as it needs to be...
Challenge #1 DEV MongoDB supports Dynamic Schema. You can use
collection per docType and they are created dynamically. RA We need runtime support for document type.
Challenge #2 RA Document type is 50 char long DEV
MongoDB namespace can be up to 123 char.
So...finally... Simple use case remains simple...well becomes simpler... Read XML
Extract Metadata Store Metadata & Content
Remember... Our Challenge QA Let's see if we are in
spec for response time. DEV Performance test is part of our definition of 'DONE'
BEcause seeing is believing! Demo ‣ GridFS 2.4.0 ‣ PostgreSQL
9.2 ‣ Spring Data ‣ JMeter 2.7 ‣ Mac OS X 10.8.3 2.3GHz Quad-Core Intel Core i7, 16GB RAM https://github.com/aparnachaudhary/nosql-matters-demo
EMBRACE POLYGLOT PERSISTENCE! STOP RDBMS ABUSE! KNOW YOUR USE CASE
@aparnachaudhary
Java Developer, Data Lover Eindhoven, Netherlands http://blog.aparnachaudhary.com/ @aparnachaudhary Thank You!