Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Look Ma! No more blobs
Search
Aparna Chaudhary
April 27, 2013
Technology
1
2.3k
Look Ma! No more blobs
Binary storage using GridFS.
Aparna Chaudhary
April 27, 2013
Tweet
Share
More Decks by Aparna Chaudhary
See All by Aparna Chaudhary
Understanding JVM
aparnachaudhary
0
160
Esper - Complex Event Processing
aparnachaudhary
1
300
Other Decks in Technology
See All in Technology
[デモです] NotebookLM で作ったスライドの例
kongmingstrap
0
150
20251209_WAKECareer_生成AIを活用した設計・開発プロセス
syobochim
7
1.6k
評価駆動開発で不確実性を制御する - MLflow 3が支えるエージェント開発
databricksjapan
1
200
re:Invent 2025 ~何をする者であり、どこへいくのか~
tetutetu214
0
220
re:Inventで気になったサービスを10分でいけるところまでお話しします
yama3133
1
120
CARTAのAI CoE が挑む「事業を進化させる AI エンジニアリング」 / carta ai coe evolution business ai engineering
carta_engineering
0
1.6k
エンジニアリングマネージャー はじめての目標設定と評価
halkt
0
290
MapKitとオープンデータで実現する地図情報の拡張と可視化
zozotech
PRO
1
140
OCI Oracle Database Services新機能アップデート(2025/09-2025/11)
oracle4engineer
PRO
1
200
IAMユーザーゼロの運用は果たして可能なのか
yama3133
1
390
多様なデジタルアイデンティティを攻撃からどうやって守るのか / 20251212
ayokura
0
460
意外とあった SQL Server 関連アップデート + Database Savings Plans
stknohg
PRO
0
330
Featured
See All Featured
Visualization
eitanlees
150
16k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Building an army of robots
kneath
306
46k
Art, The Web, and Tiny UX
lynnandtonic
304
21k
The Illustrated Children's Guide to Kubernetes
chrisshort
51
51k
Writing Fast Ruby
sferik
630
62k
Site-Speed That Sticks
csswizardry
13
1k
How STYLIGHT went responsive
nonsquared
100
6k
Faster Mobile Websites
deanohume
310
31k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
Typedesign – Prime Four
hannesfritz
42
2.9k
Transcript
Look Ma! No more blobs Aparna Chaudhary NoSQL matters, @Cologne
Germany 2013
EMBRACE POLYGLOT PERSISTENCE! STOP RDBMS ABUSE! KNOW YOUR USE CASE
Parse Extract Store Read XML We don't do rocket science...
Use Case Runtime support for document types Metadata definition provided at runtime Document type names - max 50 char Look up content based on metadata RA
Challenges Storage of up to one million documents of 10KB
to 2GB per document type per year Write 1MB < x msec Retrieve 1MB < y msec ......and details RA But…the Numbers make it interesting...
How? File System MongoDB RDBMS JCR Document Management
if you want to store files, its logical to use
file system. ain't it? File System ✓ Ease of Use ✓ No special skill-set ✓ Backup and Recovery ✓ It’s free!
How do I name them? Support for metadata storage? Performance
with too many small files? Query - Administration? High Availability? Limitation on total number of files?
Relational database Integrity Consistency Durability Atomicity Joins Backups High Availability
You name it, We have it! RDBMS Aggregations
RDBMS Developer’s Perspective
Challenge #1 RA We need runtime support for document type.
RA We need runtime support for document type.
Challenge #1 DOC_1 DOC_2 DOC_3 DOC_4 DOC_5 DOC_6 Dynamic DDL
Generation DOC_1 DOC_2 DOC_3 DOC_4 DOC_5 DOC_6 Dynamic DDL Generation
Challenge #1 String concatenations are ugly… DEV String concatenations are
ugly… DEV
Challenge #1 Let's build a utility. DEV Let's build a
utility. DEV
Challenge #1 More Work More Work
Challenge #2 RA Document type is 50 char long RA
Document type is 50 char long
Challenge #2 TABLE NAME LIMITS Wait… SQL-92 says 128 Char
? We rule. Let's support only 30 char. TABLE NAME LIMITS Wait… SQL-92 says 128 Char ? We rule. Let's support only 30 char.
Challenge #2 DOC_TYPE_MAPPING Let's create a mapping table. DEV DOC_TYPE_MAPPING
Let's create a mapping table. DEV
Challenge #2 Ugly unreadable table names! Ugly unreadable table names!
So...finally... Read XML Dynamic DDL generation Document Type Alias DocumentType
Defined Yes No Extract Metadata Store Metadata Store Content Simple use case becomes complex...
Remember... Our Challenge QA Let's see if we are in
spec for response time. Aah..what about performance now? DEV
MongoDB Document Based GridFS B-Tree Dynamic Schema JSON BSON Query
Scalable http://www.10gen.com/presentations/storage-engine-internals Joins Complex Transaction
F1 F2 F3 F4 F5 ID1 ID2 ID3 ID4 ID5
F1 F1 F1 F1 F2 F2 F3 F4 F5 F6 F2 F3 F4 F5 Fx F8 F3 F9 F7 Concepts Database Collection Collection Collection Collection Collection Collection Database Collection Collection Collection Collection Collection Collection Database Collection Collection Collection Collection Collection Collection Database Collection Collection Collection Collection Collection Collection Table = Collection Column = Field Row = Document Database = Database
GridFS MongoDB divides the large content into chunks Stores Metadata
and Chunks separately http://docs.mongodb.org/manual/core/gridfs/
> mybucket.files { "_id" : ObjectId("514d5cb8c2e6ea4329646a5c"), "chunkSize" : NumberLong(262144), "length"
: NumberLong(103015), "md5" : "34d29a163276accc7304bd69c5520e55", "filename" : "health_record_2.xml", "contentType" : application/xml, "uploadDate" : ISODate("2013-03-23T07:41:44.907Z"), "aliases" : null, "metadata" : { "fname" : "Aparna", "lname" : "Chaudhary","country" : "Netherlands" } } ObjectId - 12 Byte BSON: 4 Byte - Seconds since Epoch 3 Byte - Machine Id 2 Byte - Process Id 3 Byte - Counter
> mybucket.chunks { "_id" : ObjectId("514d5cb8c2e6ea4329646a5d"), "files_id" : ObjectId("514d5cb8c2e6ea4329646a5c"), "n"
: 0, "data" : BinData(0,...) }
? I'm storing 10KB file, but would it use 256KB
on disk? Last Chunk = FileSize % 256 + Metadata overhead 256 1128KB 256 256 256 104 + x 10KB 10 + x Chunk is as big as it needs to be...
Challenge #1 DEV MongoDB supports Dynamic Schema. You can use
collection per docType and they are created dynamically. RA We need runtime support for document type.
Challenge #2 RA Document type is 50 char long DEV
MongoDB namespace can be up to 123 char.
So...finally... Simple use case remains simple...well becomes simpler... Read XML
Extract Metadata Store Metadata & Content
Remember... Our Challenge QA Let's see if we are in
spec for response time. DEV Performance test is part of our definition of 'DONE'
BEcause seeing is believing! Demo ‣ GridFS 2.4.0 ‣ PostgreSQL
9.2 ‣ Spring Data ‣ JMeter 2.7 ‣ Mac OS X 10.8.3 2.3GHz Quad-Core Intel Core i7, 16GB RAM https://github.com/aparnachaudhary/nosql-matters-demo
EMBRACE POLYGLOT PERSISTENCE! STOP RDBMS ABUSE! KNOW YOUR USE CASE
@aparnachaudhary
Java Developer, Data Lover Eindhoven, Netherlands http://blog.aparnachaudhary.com/ @aparnachaudhary Thank You!