Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習図鑑の眺め方
Search
Asei Sugiyama
August 08, 2019
Technology
2
1.3k
機械学習図鑑の眺め方
みんなのPython勉強会#48 - connpass
https://startpython.connpass.com/event/124253/
で発表する資料です
Asei Sugiyama
August 08, 2019
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
Eval-Centric AI: Agent 開発におけるベストプラクティスの探求
asei
0
130
AI工学特論: MLOps・継続的評価
asei
11
2.5k
生成AIを用いるサービス開発の原則
asei
1
60
基調講演: 生成AIを活用したアプリケーションの開発手法とは?
asei
2
490
Eval-Centric AI: GenAI における継続的改善の実現
asei
2
160
AI の活用における課題と現状、今後の期待
asei
4
750
MLOps の現場から
asei
10
1.1k
LLMOps: Eval-Centric を前提としたMLOps
asei
7
1k
The Rise of LLMOps
asei
14
3.3k
Other Decks in Technology
See All in Technology
生成AI導入の効果を最大化する データ活用戦略
ham0215
0
160
PL/pgSQLの基本と使い所
tameguro
2
160
Google Agentspaceを実際に導入した効果と今後の展望
mixi_engineers
PRO
3
710
JAWS AI/ML #30 AI コーディング IDE "Kiro" を触ってみよう
inariku
3
370
Claude Codeは仕様駆動の夢を見ない
gotalab555
23
6.6k
マルチプロダクト×マルチテナントを支えるモジュラモノリスを中心としたアソビューのアーキテクチャ
disc99
1
560
結局QUICで通信は速くなるの?
kota_yata
7
7.1k
Amazon Inspector コードセキュリティで手軽に実現するシフトレフト
maimyyym
0
120
LTに影響を受けてテンプレリポジトリを作った話
hol1kgmg
0
370
大規模イベントに向けた ABEMA アーキテクチャの遍歴 ~ Platform Strategy 詳細解説 ~
nagapad
0
230
Claude Codeが働くAI中心の業務システム構築の挑戦―AIエージェント中心の働き方を目指して
os1ma
9
2.6k
S3 Glacier のデータを Athena からクエリしようとしたらどうなるのか/try-to-query-s3-glacier-from-athena
emiki
0
220
Featured
See All Featured
Done Done
chrislema
185
16k
Producing Creativity
orderedlist
PRO
347
40k
Mobile First: as difficult as doing things right
swwweet
223
9.9k
We Have a Design System, Now What?
morganepeng
53
7.7k
Build The Right Thing And Hit Your Dates
maggiecrowley
37
2.8k
4 Signs Your Business is Dying
shpigford
184
22k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
18
1.1k
Six Lessons from altMBA
skipperchong
28
3.9k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
1k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
GraphQLの誤解/rethinking-graphql
sonatard
71
11k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
8
760
Transcript
ػցֶशਤؑͷோΊํ ΈΜͳͷ Python ษڧձ#48 - connpass
࣍ 1.ॻ੶Ͱѻ͏ΞϧΰϦζϜͷશମ૾ 2.ྨ 3.ճؼ 4.ΫϥελϦϯά 5.࣍ݩݮ 6.࠷ޙʹ
ࣗݾհ • ਿࢁ Ѩ • Software Engineer @Repro • ػցֶशͱ͔౷ܭͱ͔։ൃͱ͔
• ػցֶशਤؑ ڞஶ
ΞϧΰϦζϜͷղઆํ 1.Πϝʔδ͕ΘΔΑ͏ʹ͢Δ • Web ΤϯδχΞ͕งғؾΛΘ͔Δ • ݫີ͞ΑΓΘ͔Γ͢͞ 2.ࣜΛ༻͍ͨৄࡉͳهड़ߦΘͳ͍ • ຊޠͱਤͰؤுΔ
• ຊࢿྉͷਤͷେຊ͔ΒҾ༻
հ͢ΔΞϧΰϦζϜ ͷબఆج४ • ػցֶशΞϧΰϦζϜΛ၆ᛌͰ͖ΔΑ ͏ʹબఆ • scikit-learn ͷ Choosing the
right estimator Λࢀߟʹબఆ
None
None
ྨ (Classification) • ࢄΛ༧ଌ͢Δ ! y -1 0 0 0
1 1 2 ? 3 1
ྨͷྫ • ΞϠϝͷྨ͕༗໊ • ΨΫย (sepal) ͱՖห (petal) ͷ ͞ͱ෯͔ΒΞϠϝͷछྨΛ༧ଌ
• σʔλ͔Βܾఆڥք (ڥ) Λֶश
ྨʹద༻Ͱ͖ΔΞϧΰϦζϜ • ϩδεςΟοΫճؼ • αϙʔτϕΫτϧϚγϯ • φΠʔϒϕΠζ • ϥϯμϜϑΥϨετ •
χϡʔϥϧωοτϫʔΫ • kNN
αϙʔτϕΫτϧϚγϯ • ΞϧΰϦζϜϋΠύʔύϥϝʔλʔʹ Αֶͬͯश͢Δܾఆڥքͷܗ͕ҟͳΔ • ಉ͡σʔλΛ༻͍ͯɺαϙʔτϕΫτϧ ϚγϯͷΧʔωϧؔΛมֶ͑ͯश͞ ͤͨ݁Ռ͕ӈਤ
None
༩͑ํʹΑͬͯΑ͘Θ͔Βͳ͍ܗʹͳΔ
None
ճؼ (Regression) • ࿈ଓΛ༧ଌ͢Δ ! ! y 1 0 1
1 1 2 2 2 ? 2 3 5
ճؼͷྫ • ϘετϯͷॅՁ֨༧ଌ͕༗໊ • ΑΓ؆୯ͳσʔλͱͯ͠ΞϯείϜ ͷσʔληοτ͕͋Δ (ӈਤ) • ͜ΕΒͷΛ͏·ۙ͘ࣅ͢ΔΑ͏ͳۂ ઢ
(ઢΛؚΉ) Λֶश͢Δ
ճؼʹద༻Ͱ͖ΔΞϧΰϦζϜ • ઢܗճؼ • αϙʔτϕΫτϧϚγϯ • ϥϯμϜϑΥϨετ • χϡʔϥϧωοτϫʔΫ •
kNN
ΞϯείϜͷσʔληοτ • ՄࢹԽͷॏཁੑΛࣔ͢σʔληοτ • 4 ͭͷσʔληοτʹ͍ͭͯɺ࣍ͷ ͕΄΅ಉ͡ 1.ฏۉ 2.ࢄ 3.૬ؔ
4.ճؼઢͷยͱ͖ • ࢦඪΛ༻͍ͨධՁՄࢹԽ྆ํॏཁ
None
ΫϥελϦϯά • ͜Ε·Ͱڭࢣ͋Γ • ͋ΔมͷΛ༧ଌ͢Δ • ͔͜͜Βڭࢣͳ͠ • σʔλͦͷͷ͔Βֶश͢Δ •
ΫϥελϦϯά • ࣅͨͷಉ࢜ͷσʔλΛΫϥελͱ ͯ͠·ͱΊΔख๏ • ࠨͷਤͷσʔλΛӈͷਤͷΑ͏ʹ σʔλΛׂ͢Δ
ΫϥελϦϯάΛߦ͏ΞϧΰϦζϜ • k-means ๏ • ࠞ߹Ψε (Λ༻͍ͨΫϥελϦϯά) • etc.
k-means ๏ͷֶशͷ༷ࢠ • Ϋϥελͷॏ৺ΛదʹܾΊΔ (ΫϥελࣗͰܾΊΔ) • σʔλΛ͍ۙ΄͏ͷʹྨ͠ɺฏۉΛٻΊΔ͜ͱΛ܁Γฦ͢
None
࣍ݩݮ • ՄࢹԽେࣄ (ΞϯείϜͷσʔληοτ) • σʔλΛՄࢹԽ͢Δ͜ͱࠔͳ͜ͱ͕ଟ͍ • ΞϠϝσʔλͰΨΫย͞ͱ෯ɺՖหͷ͞ͱ෯Λߟ͑Δ ͱ 4
࣍ݩͳͷͰͦͷ··ͰՄࢹԽͰ͖ͳ͍ • σʔλͷߏΛอͬͨ··͏·࣍͘ݩΛམͱ͍ͨ͠ • σʔλͷഎܠʹͳ͍ͬͯΔใΛ͏·͘நग़͍ͨ͠
࣍ݩݮͷྫ • 3 ࣍ݩ͔Β 2 ࣍ݩʹ࣍ݩݮͨ͠ྫ • (a) ݩσʔλ •
(b) LLE Ͱ࣍ݩݮ • (c) PCA Ͱ࣍ݩݮ • LLE ͷํ͕ݩͷߏΛอͬͨ··ల։ Ͱ͖͍ͯΔ
࣍ݩݮΞϧΰϦζϜ • PCA • LSA • NMF • LDA •
t-SNE • etc.
खॻ͖จࣈσʔλͷ࣍ݩݮ
࠷ޙʹ • ΞϧΰϦζϜ͕ͯ͢Ͱͳ͍ • ͦΕҎ֎ʹେมͳͱ͜Ζ͕͋Δ
An Extended Version Of The Scikit-Learn Cheat Sheet1 • ๏໘େৎʁ
• σʔλʹΞΫηεͰ͖Δʁ • σʔλͷதཧղͨ͠ʁ • σʔλ͖Ε͍ʁ • ՝໌֬ʁ 1 https://medium.com/@chris_bour/an-extended-version-of-the- scikit-learn-cheat-sheet-5f46efc6cbb
Recap ࣍ ༰ 1. ॻ੶Ͱѻ͏ΞϧΰϦζϜͷશମ૾ ྨɾճؼɾΫϥελϦϯάɾ࣍ݩݮΛѻ͏ 2. ྨ ࢄΛ༧ଌ͢Δ 3.
ճؼ ࿈ଓΛ༧ଌ͢Δ 4. ΫϥελϦϯά ࣅͨͷಉ࢜ͷσʔλΛ·ͱΊΔ 5. ࣍ݩݮ ෳࡶͳߏͷσʔλΛγϯϓϧʹ͢Δ 6. ࠷ޙʹ ݱ࣮ෳࡶͳͷͰΞϧΰϦζϜҎ֎େ