Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習図鑑の眺め方
Search
Asei Sugiyama
August 08, 2019
Technology
2
1.2k
機械学習図鑑の眺め方
みんなのPython勉強会#48 - connpass
https://startpython.connpass.com/event/124253/
で発表する資料です
Asei Sugiyama
August 08, 2019
Tweet
Share
More Decks by Asei Sugiyama
See All by Asei Sugiyama
The Rise of LLMOps
asei
7
1.7k
生成AIの活用パターンと継続的評価
asei
14
2.1k
最近の Citadel AI の取り組みのご紹介 (Nov, 2024)
asei
2
51
仕事で取り組む 生成 AI 時代の対話の品質評価
asei
2
52
MLOps の処方箋ができるまで
asei
3
510
LLM を現場で評価する
asei
5
920
生成 AI の評価方法
asei
8
2k
対話品質の評価に向き合う
asei
4
410
Kubeflow Pipelines v2 で変わる機械学習パイプライン開発
asei
7
1.3k
Other Decks in Technology
See All in Technology
アジャイルでの品質の進化 Agile in Motion vol.1/20241118 Hiroyuki Sato
shift_evolve
0
170
Incident Response Practices: Waroom's Features and Future Challenges
rrreeeyyy
0
160
【Startup CTO of the Year 2024 / Audience Award】アセンド取締役CTO 丹羽健
niwatakeru
0
1.3k
ノーコードデータ分析ツールで体験する時系列データ分析超入門
negi111111
0
420
ドメインの本質を掴む / Get the essence of the domain
sinsoku
2
160
Amplify Gen2 Deep Dive / バックエンドの型をいかにしてフロントエンドへ伝えるか #TSKaigi #TSKaigiKansai #AWSAmplifyJP
tacck
PRO
0
390
New Relicを活用したSREの最初のステップ / NRUG OKINAWA VOL.3
isaoshimizu
3
630
リンクアンドモチベーション ソフトウェアエンジニア向け紹介資料 / Introduction to Link and Motivation for Software Engineers
lmi
4
300k
TypeScript、上達の瞬間
sadnessojisan
46
13k
エンジニア人生の拡張性を高める 「探索型キャリア設計」の提案
tenshoku_draft
1
130
心が動くエンジニアリング ── 私が夢中になる理由
16bitidol
0
100
rootlessコンテナのすゝめ - 研究室サーバーでもできる安全なコンテナ管理
kitsuya0828
3
390
Featured
See All Featured
Embracing the Ebb and Flow
colly
84
4.5k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Building Better People: How to give real-time feedback that sticks.
wjessup
364
19k
It's Worth the Effort
3n
183
27k
The Language of Interfaces
destraynor
154
24k
Why Our Code Smells
bkeepers
PRO
334
57k
StorybookのUI Testing Handbookを読んだ
zakiyama
27
5.3k
Mobile First: as difficult as doing things right
swwweet
222
8.9k
Become a Pro
speakerdeck
PRO
25
5k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
Intergalactic Javascript Robots from Outer Space
tanoku
269
27k
Transcript
ػցֶशਤؑͷோΊํ ΈΜͳͷ Python ษڧձ#48 - connpass
࣍ 1.ॻ੶Ͱѻ͏ΞϧΰϦζϜͷશମ૾ 2.ྨ 3.ճؼ 4.ΫϥελϦϯά 5.࣍ݩݮ 6.࠷ޙʹ
ࣗݾհ • ਿࢁ Ѩ • Software Engineer @Repro • ػցֶशͱ͔౷ܭͱ͔։ൃͱ͔
• ػցֶशਤؑ ڞஶ
ΞϧΰϦζϜͷղઆํ 1.Πϝʔδ͕ΘΔΑ͏ʹ͢Δ • Web ΤϯδχΞ͕งғؾΛΘ͔Δ • ݫີ͞ΑΓΘ͔Γ͢͞ 2.ࣜΛ༻͍ͨৄࡉͳهड़ߦΘͳ͍ • ຊޠͱਤͰؤுΔ
• ຊࢿྉͷਤͷେຊ͔ΒҾ༻
հ͢ΔΞϧΰϦζϜ ͷબఆج४ • ػցֶशΞϧΰϦζϜΛ၆ᛌͰ͖ΔΑ ͏ʹબఆ • scikit-learn ͷ Choosing the
right estimator Λࢀߟʹબఆ
None
None
ྨ (Classification) • ࢄΛ༧ଌ͢Δ ! y -1 0 0 0
1 1 2 ? 3 1
ྨͷྫ • ΞϠϝͷྨ͕༗໊ • ΨΫย (sepal) ͱՖห (petal) ͷ ͞ͱ෯͔ΒΞϠϝͷछྨΛ༧ଌ
• σʔλ͔Βܾఆڥք (ڥ) Λֶश
ྨʹద༻Ͱ͖ΔΞϧΰϦζϜ • ϩδεςΟοΫճؼ • αϙʔτϕΫτϧϚγϯ • φΠʔϒϕΠζ • ϥϯμϜϑΥϨετ •
χϡʔϥϧωοτϫʔΫ • kNN
αϙʔτϕΫτϧϚγϯ • ΞϧΰϦζϜϋΠύʔύϥϝʔλʔʹ Αֶͬͯश͢Δܾఆڥքͷܗ͕ҟͳΔ • ಉ͡σʔλΛ༻͍ͯɺαϙʔτϕΫτϧ ϚγϯͷΧʔωϧؔΛมֶ͑ͯश͞ ͤͨ݁Ռ͕ӈਤ
None
༩͑ํʹΑͬͯΑ͘Θ͔Βͳ͍ܗʹͳΔ
None
ճؼ (Regression) • ࿈ଓΛ༧ଌ͢Δ ! ! y 1 0 1
1 1 2 2 2 ? 2 3 5
ճؼͷྫ • ϘετϯͷॅՁ֨༧ଌ͕༗໊ • ΑΓ؆୯ͳσʔλͱͯ͠ΞϯείϜ ͷσʔληοτ͕͋Δ (ӈਤ) • ͜ΕΒͷΛ͏·ۙ͘ࣅ͢ΔΑ͏ͳۂ ઢ
(ઢΛؚΉ) Λֶश͢Δ
ճؼʹద༻Ͱ͖ΔΞϧΰϦζϜ • ઢܗճؼ • αϙʔτϕΫτϧϚγϯ • ϥϯμϜϑΥϨετ • χϡʔϥϧωοτϫʔΫ •
kNN
ΞϯείϜͷσʔληοτ • ՄࢹԽͷॏཁੑΛࣔ͢σʔληοτ • 4 ͭͷσʔληοτʹ͍ͭͯɺ࣍ͷ ͕΄΅ಉ͡ 1.ฏۉ 2.ࢄ 3.૬ؔ
4.ճؼઢͷยͱ͖ • ࢦඪΛ༻͍ͨධՁՄࢹԽ྆ํॏཁ
None
ΫϥελϦϯά • ͜Ε·Ͱڭࢣ͋Γ • ͋ΔมͷΛ༧ଌ͢Δ • ͔͜͜Βڭࢣͳ͠ • σʔλͦͷͷ͔Βֶश͢Δ •
ΫϥελϦϯά • ࣅͨͷಉ࢜ͷσʔλΛΫϥελͱ ͯ͠·ͱΊΔख๏ • ࠨͷਤͷσʔλΛӈͷਤͷΑ͏ʹ σʔλΛׂ͢Δ
ΫϥελϦϯάΛߦ͏ΞϧΰϦζϜ • k-means ๏ • ࠞ߹Ψε (Λ༻͍ͨΫϥελϦϯά) • etc.
k-means ๏ͷֶशͷ༷ࢠ • Ϋϥελͷॏ৺ΛదʹܾΊΔ (ΫϥελࣗͰܾΊΔ) • σʔλΛ͍ۙ΄͏ͷʹྨ͠ɺฏۉΛٻΊΔ͜ͱΛ܁Γฦ͢
None
࣍ݩݮ • ՄࢹԽେࣄ (ΞϯείϜͷσʔληοτ) • σʔλΛՄࢹԽ͢Δ͜ͱࠔͳ͜ͱ͕ଟ͍ • ΞϠϝσʔλͰΨΫย͞ͱ෯ɺՖหͷ͞ͱ෯Λߟ͑Δ ͱ 4
࣍ݩͳͷͰͦͷ··ͰՄࢹԽͰ͖ͳ͍ • σʔλͷߏΛอͬͨ··͏·࣍͘ݩΛམͱ͍ͨ͠ • σʔλͷഎܠʹͳ͍ͬͯΔใΛ͏·͘நग़͍ͨ͠
࣍ݩݮͷྫ • 3 ࣍ݩ͔Β 2 ࣍ݩʹ࣍ݩݮͨ͠ྫ • (a) ݩσʔλ •
(b) LLE Ͱ࣍ݩݮ • (c) PCA Ͱ࣍ݩݮ • LLE ͷํ͕ݩͷߏΛอͬͨ··ల։ Ͱ͖͍ͯΔ
࣍ݩݮΞϧΰϦζϜ • PCA • LSA • NMF • LDA •
t-SNE • etc.
खॻ͖จࣈσʔλͷ࣍ݩݮ
࠷ޙʹ • ΞϧΰϦζϜ͕ͯ͢Ͱͳ͍ • ͦΕҎ֎ʹେมͳͱ͜Ζ͕͋Δ
An Extended Version Of The Scikit-Learn Cheat Sheet1 • ๏໘େৎʁ
• σʔλʹΞΫηεͰ͖Δʁ • σʔλͷதཧղͨ͠ʁ • σʔλ͖Ε͍ʁ • ՝໌֬ʁ 1 https://medium.com/@chris_bour/an-extended-version-of-the- scikit-learn-cheat-sheet-5f46efc6cbb
Recap ࣍ ༰ 1. ॻ੶Ͱѻ͏ΞϧΰϦζϜͷશମ૾ ྨɾճؼɾΫϥελϦϯάɾ࣍ݩݮΛѻ͏ 2. ྨ ࢄΛ༧ଌ͢Δ 3.
ճؼ ࿈ଓΛ༧ଌ͢Δ 4. ΫϥελϦϯά ࣅͨͷಉ࢜ͷσʔλΛ·ͱΊΔ 5. ࣍ݩݮ ෳࡶͳߏͷσʔλΛγϯϓϧʹ͢Δ 6. ࠷ޙʹ ݱ࣮ෳࡶͳͷͰΞϧΰϦζϜҎ֎େ