dP A ∈ A (5) ࣜ (5) 〽〿ɺq/p 〤 P 〠ؔ『 Qa 〣ີ〝〟〾ɺ〒ぁぇ dQ dP 〝ॻ。ɻ֬ ଌ P 〠ؔ『 q/p 〣ੑ࣭〠〣〴ؔ৺⿴〔〶ɺp = 0 〠々 q/p 〤ٞ 「〟⿶ɻఆٛ〽〿ɺີ dQ dP 〤 P-a.s. 〣ҙຯ〜Ұҙ〜⿴ɻ ্ه〣આ໌ ҙ〣Մଌू߹ A 〠ର「〛 Qa(A) = ∫ A q p dP = ∫ A r dP 〟ີ r ଘࡏ「〔〝『〝ɺੵ〣ઢܗੑ〽〿 ∫ A ( q p − r ) dP = 0 〜⿴ 〾ɺq/p = r P-a.e. 〜〿ཱ〙ɻ9 9໋ (ੵ〣ੑ࣭)ɿ(Ω, A, P ) ぇଌۭؒ〝「ɺf ぇՄଌؔ〝『ɻҙ〣Մଌू߹ A 〠ؔ「 〛 ∫ A f dP = 0 〿ཱ〙〝 ɺf = 0 P -a.e. 〜〿ཱ〙ɻ 12 / 28
ぇՄଌू߹〝『〝 ɺҎԼ〿ཱ〙ɿ P(A) = 0 ⇐⇒ p(x) = 0 for µ-almost all x ∈ A. (6) ࣜ (6) 〣ূ໌ P 〤 µ 〠ؔ「〛ີ p ぇ〷〙〈〝〾 P(A) = ∫ A p dµ 〜⿴〿ɺ P(A) = 0 ⇐⇒ ∫ Ω A p dµ = 0 ⇐⇒ A p = 0 µ-a.e. ⇐⇒ p(x) = 0 for µ-almost all x ∈ A. ( Remark: A p (x) = { p(x) (x ∈ A) 0 (x / ∈ A) . ) 〒〈〜ɺP(A) = 0 〜⿴〽⿸〟Մଌू߹ A ぇҙ〠〝ɻ〈〣〝 ɺࣜ (6) 〝ଌྵू߹〣ఆٛ〾ɺ µ (A ∩ {p > 0}) = 0. (7) 18 / 28
= ∫ Ω f dQ dP dP (10) 〤〿ཱ〔〟⿶ɻҙ〣Մଌؔ f 〠〙⿶〛ࣜ (10) 〿ཱ〙〔〶〠〤ɺQ P 〠ؔ「〛ઈର࿈ଓ〜〟々ぁ〥〟〾〟⿶ɻ ҰํɺҰൠ〣 (ઈର࿈ଓ〝〤ݶ〾〟⿶) ଌ P, Qɺ〽〨ඇෛؔ f 〠ର「 〛ɺҎԼ〿ཱ〙ɻ ∫ Ω f dQ ≥ ∫ {p>0} fq dµ = ∫ {p>0} f q p p dµ = ∫ Ω f dQ dP dP. (11) ෆࣜ (11) 〤ࠓޙஅ〿〟「〠༻⿶〾ぁɻ〳〔ɺ{p = 0} 〠⿶〛 dQ dP 〤ఆٛ 《ぁ〟⿶〔〶ɺෆࣜ (11) 〤߸〿ཱ〔〟⿶Մೳੑ⿴ɻ11 11”The algebraic identity dQ = (dQ/dP )dP is false, because the notation dQ/dP is used as shorthand for dQa/dP , then we are not implicity assuming that Q ≪ P.” ([1] p.85 〽〿Ҿ༻ɻ) 25 / 28