Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
多変量正規分布に従う確率変数の条件付き期待値・分散
Search
axjack
January 11, 2022
Science
0
980
多変量正規分布に従う確率変数の条件付き期待値・分散
多変量正規分布に従う確率変数の条件付き期待値・分散
axjack
January 11, 2022
Tweet
Share
More Decks by axjack
See All by axjack
実験計画法_フィッシャーの3原則
axjack
0
460
統計学実践ワークブック 第16章 重回帰分析 pp.125-127
axjack
0
3k
統計学実践ワークブック 第15章 確率過程の基礎 p.117のεiの分布を導出する
axjack
0
960
第14章マルコフ連鎖
axjack
0
150
修正項を用いて繰り返しのある二元配置分散分析の分散分析表を完成させる
axjack
0
330
Other Decks in Science
See All in Science
次代のデータサイエンティストへ~スキルチェックリスト、タスクリスト更新~
datascientistsociety
PRO
2
24k
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
170
コンピュータビジョンによるロボットの視覚と判断:宇宙空間での適応と課題
hf149
1
490
風の力で振れ幅が大きくなる振り子!? 〜タコマナローズ橋はなぜ落ちたのか〜
syotasasaki593876
1
190
白金鉱業Vol.21【初学者向け発表枠】身近な例から学ぶ数理最適化の基礎 / Learning the Basics of Mathematical Optimization Through Everyday Examples
brainpadpr
1
530
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
400
データベース12: 正規化(2/2) - データ従属性に基づく正規化
trycycle
PRO
0
1.1k
Algorithmic Aspects of Quiver Representations
tasusu
0
150
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
0
130
知能とはなにかーヒトとAIのあいだー
tagtag
PRO
0
130
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
370
Featured
See All Featured
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
How GitHub (no longer) Works
holman
316
140k
Embracing the Ebb and Flow
colly
88
4.9k
Ruling the World: When Life Gets Gamed
codingconduct
0
120
Ethics towards AI in product and experience design
skipperchong
1
170
Technical Leadership for Architectural Decision Making
baasie
0
200
A Soul's Torment
seathinner
4
2.1k
A brief & incomplete history of UX Design for the World Wide Web: 1989–2019
jct
1
270
Product Roadmaps are Hard
iamctodd
PRO
55
12k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
74
Transcript
ଟมྔਖ਼نʹै͏֬มͷ ͖݅ظɾࢄ 4BUPBLJ/PHVDIJ BYKBDL!HNBJMDPN  1
ͱ͠ɺ9ฏۉЖɾࢄڞࢄߦྻЄ ͷଟมྔਖ਼ن ʹै͏ͱ͢Δɻ ͜͜Ͱɺ ɹɾ9Λׂ̎ ɹɾЖΛׂ̎ ɹɾЄΛׂ̐ ͓ͯ͘͠ɻ ४උ Λ֬มϕΫτϧ
ΛظϕΫτϧ Λࢄڞࢄߦྻ Σ = ( Σ11 Σ12 Σ21 Σ22 ) X μ Σ X = ( X1 X2 ) μ = ( μ1 μ2 ) X ∼ N(μ, Σ) μi = E[Xi ] ͨͩ͠ Σij = Cov[Xi , Xj ] ͨͩ͠  2
ެࣜ ͖݅֬มͷ ظɾࢄ E[X1 |X2 = x2 ] = μ1
+ Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 X1 |X2 = x2 Λɺ9YͰ͚݅ͮͨ9ͷ֬มͱ͢Δɻ ͜ͷ࣌ɺ9c9YͷظɾࢄҎԼͰ͋Δɻ ˞ࢀߟɿʰຊ౷ܭֶձެࣜೝఆɹ౷ܭݕఆ̍ڃରԠɹ౷ܭֶʱຊ౷ܭֶձɹฤ Qఆཧ  3
ྫ ( X Y Z ) ∼ N (( 1
2 3 ) , ( 2 0 1 0 3 2 1 2 4 )) ( X Y Z ) ̏มྔ֬ม ̏มྔਖ਼ن ʹै͏ͱ͢Δɻ ͜ͷ࣌ɺ Z|X = x, Y = y X, Y|Z = z ʹ͓͚ΔɺظɾࢄΛٻΊΑɻ ˞ࢀߟ౷ܭݕఆ४̍ڃ݄  4
ͷղ μ = ( 3 1 2 ) Σ
= ( 4 1 2 1 2 0 2 0 3 ) μ1 = E[Z] μ2 = E[(X Y)′  ] Σ11 Σ12 Σ22 Σ21 ( X1 X2 ) ∼ N (( μ1 μ2 ), ( Σ11 Σ12 Σ21 Σ22 )) E[X1 |X2 = x2 ] = μ1 + Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 ( Z X Y ) ∼ N (( 3 1 2 ) , ( 4 1 2 1 2 0 2 0 3 )) ΑΓɺ E[Z|(X = x, Y = y)] = μ1 + Σ12 Σ22 −1 ( x − 1 y − 2) = 3 + (1 2) ( 2 0 0 3) −1 ( x − 1 y − 2) V[Z |(X = x, Y = y)] = Σ11 − Σ12 Σ22 −1Σ21 = 4 − (1 2) ( 2 0 0 3) −1 ( 1 2)  5
ͷղ μ = ( 1 2 3 ) Σ
= ( 2 0 1 0 3 2 1 2 4 ) μ1 = E[(X Y)′  ] μ2 = E[Z] Σ11 Σ12 Σ22 Σ21 ( X1 X2 ) ∼ N (( μ1 μ2 ), ( Σ11 Σ12 Σ21 Σ22 )) E[X1 |X2 = x2 ] = μ1 + Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 ( X Y Z ) ∼ N (( 1 2 3 ) , ( 2 0 1 0 3 2 1 2 4 )) ΑΓɺ E[X, Y |Z = z] = ( 1 2) + ( 1 2) 4−1 (z − 3) V[X, Y |Z = z] = Σ11 − Σ12 Σ22 −1Σ21 = ( 2 0 0 3) − ( 1 2) 4−1 (1 2)  6