Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
多変量正規分布に従う確率変数の条件付き期待値・分散
Search
axjack
January 11, 2022
Science
0
850
多変量正規分布に従う確率変数の条件付き期待値・分散
多変量正規分布に従う確率変数の条件付き期待値・分散
axjack
January 11, 2022
Tweet
Share
More Decks by axjack
See All by axjack
実験計画法_フィッシャーの3原則
axjack
0
400
統計学実践ワークブック 第16章 重回帰分析 pp.125-127
axjack
0
2.8k
統計学実践ワークブック 第15章 確率過程の基礎 p.117のεiの分布を導出する
axjack
0
900
第14章マルコフ連鎖
axjack
0
130
修正項を用いて繰り返しのある二元配置分散分析の分散分析表を完成させる
axjack
0
290
Other Decks in Science
See All in Science
MoveItを使った産業用ロボット向け動作作成方法の紹介 / Introduction to creating motion for industrial robots using MoveIt
ry0_ka
0
480
地表面抽出の方法であるSMRFについて紹介
kentaitakura
1
710
Collective Predictive Coding Hypothesis and Beyond (@Japanese Association for Philosophy of Science, 26th October 2024)
tanichu
0
130
統計学入門講座 第2回スライド
techmathproject
0
130
2025-06-11-ai_belgium
sofievl
1
110
IWASAKI Hideo
genomethica
0
100
butterfly_effect/butterfly_effect_in-house
florets1
1
180
ほたるのひかり/RayTracingCamp10
kugimasa
1
710
Explanatory material
yuki1986
0
300
機械学習 - 決定木からはじめる機械学習
trycycle
PRO
0
940
モンテカルロDCF法による事業価値の算出(モンテカルロ法とベイズモデリング) / Business Valuation Using Monte Carlo DCF Method (Monte Carlo Simulation and Bayesian Modeling)
ikuma_w
0
160
機械学習 - DBSCAN
trycycle
PRO
0
870
Featured
See All Featured
Site-Speed That Sticks
csswizardry
10
630
Into the Great Unknown - MozCon
thekraken
39
1.8k
Facilitating Awesome Meetings
lara
54
6.4k
Writing Fast Ruby
sferik
628
61k
Faster Mobile Websites
deanohume
307
31k
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
35
2.3k
Scaling GitHub
holman
459
140k
Side Projects
sachag
454
42k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
The Language of Interfaces
destraynor
158
25k
Testing 201, or: Great Expectations
jmmastey
42
7.5k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
Transcript
ଟมྔਖ਼نʹै͏֬มͷ ͖݅ظɾࢄ 4BUPBLJ/PHVDIJ BYKBDL!HNBJMDPN  1
ͱ͠ɺ9ฏۉЖɾࢄڞࢄߦྻЄ ͷଟมྔਖ਼ن ʹै͏ͱ͢Δɻ ͜͜Ͱɺ ɹɾ9Λׂ̎ ɹɾЖΛׂ̎ ɹɾЄΛׂ̐ ͓ͯ͘͠ɻ ४උ Λ֬มϕΫτϧ
ΛظϕΫτϧ Λࢄڞࢄߦྻ Σ = ( Σ11 Σ12 Σ21 Σ22 ) X μ Σ X = ( X1 X2 ) μ = ( μ1 μ2 ) X ∼ N(μ, Σ) μi = E[Xi ] ͨͩ͠ Σij = Cov[Xi , Xj ] ͨͩ͠  2
ެࣜ ͖݅֬มͷ ظɾࢄ E[X1 |X2 = x2 ] = μ1
+ Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 X1 |X2 = x2 Λɺ9YͰ͚݅ͮͨ9ͷ֬มͱ͢Δɻ ͜ͷ࣌ɺ9c9YͷظɾࢄҎԼͰ͋Δɻ ˞ࢀߟɿʰຊ౷ܭֶձެࣜೝఆɹ౷ܭݕఆ̍ڃରԠɹ౷ܭֶʱຊ౷ܭֶձɹฤ Qఆཧ  3
ྫ ( X Y Z ) ∼ N (( 1
2 3 ) , ( 2 0 1 0 3 2 1 2 4 )) ( X Y Z ) ̏มྔ֬ม ̏มྔਖ਼ن ʹै͏ͱ͢Δɻ ͜ͷ࣌ɺ Z|X = x, Y = y X, Y|Z = z ʹ͓͚ΔɺظɾࢄΛٻΊΑɻ ˞ࢀߟ౷ܭݕఆ४̍ڃ݄  4
ͷղ μ = ( 3 1 2 ) Σ
= ( 4 1 2 1 2 0 2 0 3 ) μ1 = E[Z] μ2 = E[(X Y)′  ] Σ11 Σ12 Σ22 Σ21 ( X1 X2 ) ∼ N (( μ1 μ2 ), ( Σ11 Σ12 Σ21 Σ22 )) E[X1 |X2 = x2 ] = μ1 + Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 ( Z X Y ) ∼ N (( 3 1 2 ) , ( 4 1 2 1 2 0 2 0 3 )) ΑΓɺ E[Z|(X = x, Y = y)] = μ1 + Σ12 Σ22 −1 ( x − 1 y − 2) = 3 + (1 2) ( 2 0 0 3) −1 ( x − 1 y − 2) V[Z |(X = x, Y = y)] = Σ11 − Σ12 Σ22 −1Σ21 = 4 − (1 2) ( 2 0 0 3) −1 ( 1 2)  5
ͷղ μ = ( 1 2 3 ) Σ
= ( 2 0 1 0 3 2 1 2 4 ) μ1 = E[(X Y)′  ] μ2 = E[Z] Σ11 Σ12 Σ22 Σ21 ( X1 X2 ) ∼ N (( μ1 μ2 ), ( Σ11 Σ12 Σ21 Σ22 )) E[X1 |X2 = x2 ] = μ1 + Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 ( X Y Z ) ∼ N (( 1 2 3 ) , ( 2 0 1 0 3 2 1 2 4 )) ΑΓɺ E[X, Y |Z = z] = ( 1 2) + ( 1 2) 4−1 (z − 3) V[X, Y |Z = z] = Σ11 − Σ12 Σ22 −1Σ21 = ( 2 0 0 3) − ( 1 2) 4−1 (1 2)  6