Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
多変量正規分布に従う確率変数の条件付き期待値・分散
Search
axjack
January 11, 2022
Science
0
890
多変量正規分布に従う確率変数の条件付き期待値・分散
多変量正規分布に従う確率変数の条件付き期待値・分散
axjack
January 11, 2022
Tweet
Share
More Decks by axjack
See All by axjack
実験計画法_フィッシャーの3原則
axjack
0
410
統計学実践ワークブック 第16章 重回帰分析 pp.125-127
axjack
0
2.9k
統計学実践ワークブック 第15章 確率過程の基礎 p.117のεiの分布を導出する
axjack
0
920
第14章マルコフ連鎖
axjack
0
140
修正項を用いて繰り返しのある二元配置分散分析の分散分析表を完成させる
axjack
0
300
Other Decks in Science
See All in Science
データマイニング - グラフデータと経路
trycycle
PRO
1
210
動的トリートメント・レジームを推定するDynTxRegimeパッケージ
saltcooky12
0
170
AIに仕事を奪われる 最初の医師たちへ
ikora128
0
780
SciPyDataJapan 2025
schwalbe10
0
250
データベース09: 実体関連モデル上の一貫性制約
trycycle
PRO
0
980
Explanatory material
yuki1986
0
390
Hakonwa-Quaternion
hiranabe
1
120
mathematics of indirect reciprocity
yohm
1
160
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
140
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
930
白金鉱業Meetup Vol.16_【初学者向け発表】 数理最適化のはじめの一歩 〜身近な問題で学ぶ最適化の面白さ〜
brainpadpr
11
2.3k
データベース03: 関係データモデル
trycycle
PRO
1
250
Featured
See All Featured
What's in a price? How to price your products and services
michaelherold
246
12k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
8
890
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Balancing Empowerment & Direction
lara
2
580
Side Projects
sachag
455
43k
Raft: Consensus for Rubyists
vanstee
140
7.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Mobile First: as difficult as doing things right
swwweet
223
9.9k
The World Runs on Bad Software
bkeepers
PRO
70
11k
A better future with KSS
kneath
239
17k
Scaling GitHub
holman
462
140k
Transcript
ଟมྔਖ਼نʹै͏֬มͷ ͖݅ظɾࢄ 4BUPBLJ/PHVDIJ BYKBDL!HNBJMDPN  1
ͱ͠ɺ9ฏۉЖɾࢄڞࢄߦྻЄ ͷଟมྔਖ਼ن ʹै͏ͱ͢Δɻ ͜͜Ͱɺ ɹɾ9Λׂ̎ ɹɾЖΛׂ̎ ɹɾЄΛׂ̐ ͓ͯ͘͠ɻ ४උ Λ֬มϕΫτϧ
ΛظϕΫτϧ Λࢄڞࢄߦྻ Σ = ( Σ11 Σ12 Σ21 Σ22 ) X μ Σ X = ( X1 X2 ) μ = ( μ1 μ2 ) X ∼ N(μ, Σ) μi = E[Xi ] ͨͩ͠ Σij = Cov[Xi , Xj ] ͨͩ͠  2
ެࣜ ͖݅֬มͷ ظɾࢄ E[X1 |X2 = x2 ] = μ1
+ Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 X1 |X2 = x2 Λɺ9YͰ͚݅ͮͨ9ͷ֬มͱ͢Δɻ ͜ͷ࣌ɺ9c9YͷظɾࢄҎԼͰ͋Δɻ ˞ࢀߟɿʰຊ౷ܭֶձެࣜೝఆɹ౷ܭݕఆ̍ڃରԠɹ౷ܭֶʱຊ౷ܭֶձɹฤ Qఆཧ  3
ྫ ( X Y Z ) ∼ N (( 1
2 3 ) , ( 2 0 1 0 3 2 1 2 4 )) ( X Y Z ) ̏มྔ֬ม ̏มྔਖ਼ن ʹै͏ͱ͢Δɻ ͜ͷ࣌ɺ Z|X = x, Y = y X, Y|Z = z ʹ͓͚ΔɺظɾࢄΛٻΊΑɻ ˞ࢀߟ౷ܭݕఆ४̍ڃ݄  4
ͷղ μ = ( 3 1 2 ) Σ
= ( 4 1 2 1 2 0 2 0 3 ) μ1 = E[Z] μ2 = E[(X Y)′  ] Σ11 Σ12 Σ22 Σ21 ( X1 X2 ) ∼ N (( μ1 μ2 ), ( Σ11 Σ12 Σ21 Σ22 )) E[X1 |X2 = x2 ] = μ1 + Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 ( Z X Y ) ∼ N (( 3 1 2 ) , ( 4 1 2 1 2 0 2 0 3 )) ΑΓɺ E[Z|(X = x, Y = y)] = μ1 + Σ12 Σ22 −1 ( x − 1 y − 2) = 3 + (1 2) ( 2 0 0 3) −1 ( x − 1 y − 2) V[Z |(X = x, Y = y)] = Σ11 − Σ12 Σ22 −1Σ21 = 4 − (1 2) ( 2 0 0 3) −1 ( 1 2)  5
ͷղ μ = ( 1 2 3 ) Σ
= ( 2 0 1 0 3 2 1 2 4 ) μ1 = E[(X Y)′  ] μ2 = E[Z] Σ11 Σ12 Σ22 Σ21 ( X1 X2 ) ∼ N (( μ1 μ2 ), ( Σ11 Σ12 Σ21 Σ22 )) E[X1 |X2 = x2 ] = μ1 + Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 ( X Y Z ) ∼ N (( 1 2 3 ) , ( 2 0 1 0 3 2 1 2 4 )) ΑΓɺ E[X, Y |Z = z] = ( 1 2) + ( 1 2) 4−1 (z − 3) V[X, Y |Z = z] = Σ11 − Σ12 Σ22 −1Σ21 = ( 2 0 0 3) − ( 1 2) 4−1 (1 2)  6