Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Speaker Deck
PRO
Sign in
Sign up for free
多変量正規分布に従う確率変数の条件付き期待値・分散
axjack
January 11, 2022
Science
0
62
多変量正規分布に従う確率変数の条件付き期待値・分散
多変量正規分布に従う確率変数の条件付き期待値・分散
axjack
January 11, 2022
Tweet
Share
More Decks by axjack
See All by axjack
実験計画法_フィッシャーの3原則
axjack
0
23
統計学実践ワークブック 第16章 重回帰分析 pp.125-127
axjack
0
200
統計学実践ワークブック 第15章 確率過程の基礎 p.117のεiの分布を導出する
axjack
0
100
第14章マルコフ連鎖
axjack
0
32
修正項を用いて繰り返しのある二元配置分散分析の分散分析表を完成させる
axjack
0
59
Other Decks in Science
See All in Science
About ISEE NLFFF database (v1.1)
hsc_nagoya
0
1.4k
A Fresh Look at Genomics Data: Grammar-Based Visualization
ngehlenborg
0
120
CompilerGym CGO'22
chriscummins
0
260
Information law about COVID-19
yoshimine77
0
150
Classiが取り組んできた 機械学習の試行錯誤
tetsuroito
0
230
Pythonで学ぶSynthetic Difference in Differences
masa_asa
0
1k
AI最新論文読み会2021年11月
ecoopnet
0
220
深層学習による自然言語処理 輪読会#4 資料
tok41
0
470
深層学習による自然言語処理 輪読会#2 資料
tok41
0
500
OpenFAOM_pisoFoamによる2次元円柱周りの解析
kamakiri1225
0
740
データでスポーツを楽しもう! / Enjoy sports with data! (2021-11-30)
konakalab
0
140
アダプティブなカード
fukuyori
2
170
Featured
See All Featured
Design by the Numbers
sachag
271
17k
How GitHub (no longer) Works
holman
297
140k
Scaling GitHub
holman
451
140k
5 minutes of I Can Smell Your CMS
philhawksworth
196
18k
Web Components: a chance to create the future
zenorocha
303
40k
The Illustrated Children's Guide to Kubernetes
chrisshort
18
40k
Docker and Python
trallard
27
1.6k
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
12
940
Typedesign – Prime Four
hannesfritz
34
1.4k
VelocityConf: Rendering Performance Case Studies
addyosmani
316
22k
Raft: Consensus for Rubyists
vanstee
127
5.5k
What's in a price? How to price your products and services
michaelherold
229
9.4k
Transcript
ଟมྔਖ਼نʹै͏֬มͷ ͖݅ظɾࢄ 4BUPBLJ/PHVDIJ BYKBDL!HNBJMDPN  1
ͱ͠ɺ9ฏۉЖɾࢄڞࢄߦྻЄ ͷଟมྔਖ਼ن ʹै͏ͱ͢Δɻ ͜͜Ͱɺ ɹɾ9Λׂ̎ ɹɾЖΛׂ̎ ɹɾЄΛׂ̐ ͓ͯ͘͠ɻ ४උ Λ֬มϕΫτϧ
ΛظϕΫτϧ Λࢄڞࢄߦྻ Σ = ( Σ11 Σ12 Σ21 Σ22 ) X μ Σ X = ( X1 X2 ) μ = ( μ1 μ2 ) X ∼ N(μ, Σ) μi = E[Xi ] ͨͩ͠ Σij = Cov[Xi , Xj ] ͨͩ͠  2
ެࣜ ͖݅֬มͷ ظɾࢄ E[X1 |X2 = x2 ] = μ1
+ Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 X1 |X2 = x2 Λɺ9YͰ͚݅ͮͨ9ͷ֬มͱ͢Δɻ ͜ͷ࣌ɺ9c9YͷظɾࢄҎԼͰ͋Δɻ ˞ࢀߟɿʰຊ౷ܭֶձެࣜೝఆɹ౷ܭݕఆ̍ڃରԠɹ౷ܭֶʱຊ౷ܭֶձɹฤ Qఆཧ  3
ྫ ( X Y Z ) ∼ N (( 1
2 3 ) , ( 2 0 1 0 3 2 1 2 4 )) ( X Y Z ) ̏มྔ֬ม ̏มྔਖ਼ن ʹै͏ͱ͢Δɻ ͜ͷ࣌ɺ Z|X = x, Y = y X, Y|Z = z ʹ͓͚ΔɺظɾࢄΛٻΊΑɻ ˞ࢀߟ౷ܭݕఆ४̍ڃ݄  4
ͷղ μ = ( 3 1 2 ) Σ
= ( 4 1 2 1 2 0 2 0 3 ) μ1 = E[Z] μ2 = E[(X Y)′  ] Σ11 Σ12 Σ22 Σ21 ( X1 X2 ) ∼ N (( μ1 μ2 ), ( Σ11 Σ12 Σ21 Σ22 )) E[X1 |X2 = x2 ] = μ1 + Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 ( Z X Y ) ∼ N (( 3 1 2 ) , ( 4 1 2 1 2 0 2 0 3 )) ΑΓɺ E[Z|(X = x, Y = y)] = μ1 + Σ12 Σ22 −1 ( x − 1 y − 2) = 3 + (1 2) ( 2 0 0 3) −1 ( x − 1 y − 2) V[Z |(X = x, Y = y)] = Σ11 − Σ12 Σ22 −1Σ21 = 4 − (1 2) ( 2 0 0 3) −1 ( 1 2)  5
ͷղ μ = ( 1 2 3 ) Σ
= ( 2 0 1 0 3 2 1 2 4 ) μ1 = E[(X Y)′  ] μ2 = E[Z] Σ11 Σ12 Σ22 Σ21 ( X1 X2 ) ∼ N (( μ1 μ2 ), ( Σ11 Σ12 Σ21 Σ22 )) E[X1 |X2 = x2 ] = μ1 + Σ12 Σ22 −1(x2 − μ2 ) V[X1 |X2 = x2 ] = Σ11 − Σ12 Σ22 −1Σ21 ( X Y Z ) ∼ N (( 1 2 3 ) , ( 2 0 1 0 3 2 1 2 4 )) ΑΓɺ E[X, Y |Z = z] = ( 1 2) + ( 1 2) 4−1 (z − 3) V[X, Y |Z = z] = Σ11 − Σ12 Σ22 −1Σ21 = ( 2 0 0 3) − ( 1 2) 4−1 (1 2)  6