Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第14章マルコフ連鎖
Search
axjack
March 21, 2022
Science
0
140
第14章マルコフ連鎖
統計学実践ワークブックpp.108-109
の第14章マルコフ連鎖に出てくる、
・確率変数
・状態
・状態空間
・時点
・未来/現在/過去(の履歴)
・斉次的
・遷移確率
をまとめたものである。
axjack
March 21, 2022
Tweet
Share
More Decks by axjack
See All by axjack
実験計画法_フィッシャーの3原則
axjack
0
440
統計学実践ワークブック 第16章 重回帰分析 pp.125-127
axjack
0
2.9k
統計学実践ワークブック 第15章 確率過程の基礎 p.117のεiの分布を導出する
axjack
0
950
多変量正規分布に従う確率変数の条件付き期待値・分散
axjack
0
930
修正項を用いて繰り返しのある二元配置分散分析の分散分析表を完成させる
axjack
0
310
Other Decks in Science
See All in Science
統計的因果探索: 背景知識とデータにより因果仮説を探索する
sshimizu2006
4
1.1k
SciPyDataJapan 2025
schwalbe10
0
270
知能とはなにかーヒトとAIのあいだー
tagtag
0
150
2025-06-11-ai_belgium
sofievl
1
170
Agent開発フレームワークのOverviewとW&B Weaveとのインテグレーション
siyoo
0
370
サイゼミ用因果推論
lw
1
7.6k
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.5k
CV_3_Keypoints
hachama
0
210
テンソル分解による糖尿病の組織特異的遺伝子発現の統合解析を用いた関連疾患の予測
tagtag
2
280
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
210
mOrganic™ Holdings, LLC.
hyperlocalnetwork
0
120
「美は世界を救う」を心理学で実証したい~クラファンを通じた新しい研究方法
jimpe_hitsuwari
1
170
Featured
See All Featured
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Building Flexible Design Systems
yeseniaperezcruz
329
39k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Build your cross-platform service in a week with App Engine
jlugia
234
18k
Done Done
chrislema
185
16k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Raft: Consensus for Rubyists
vanstee
140
7.2k
Building Better People: How to give real-time feedback that sticks.
wjessup
370
20k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
190
55k
Practical Orchestrator
shlominoach
190
11k
Transcript
ୈষϚϧίϑ࿈ ౷ܭֶ࣮ફϫʔΫϒοΫ QQ
͜ΕԿ ౷ܭֶ࣮ફϫʔΫϒοΫQQ ͷୈষϚϧίϑ࿈ʹग़ͯ͘Δɺ ɹɾ֬ม ɹɾঢ়ଶ ɹɾঢ়ଶۭؒ ɹɾ࣌ ɹɾະདྷݱࡏաڈ ͷཤྺ
ɹɾ੪࣍త ɹɾભҠ֬ Λ·ͱΊͨͷͰ͋Δɻ
Ϛϧίϑ࿈ʹೖΔલʹ Xn ֬ม9Oʮঢ়ଶʯͱ͍͏ΛऔΔͷͰ͋Δɻ ঢ়ଶΛूΊͨͷΛঢ়ଶۭؒͱ͍͏ɻ ঢ়ଶۭؒΛ4ͱ͢Δɻ ঢ়ଶۭؒू߹Ͱ͋Δɻ ఴࣈOʮ࣌ʯͱݺΕΔɻ ͨͱ͑9࣌ͷ֬ม͢ͳΘͪঢ়ଶͰ͋Δɻ ͨͱ͑9࣌ͷ֬ม͢ͳΘͪঢ়ଶͰ͋Δɻ ͨͱ͑9U࣌Uͷ֬ม͢ͳΘͪঢ়ଶͰ͋Δɻ
͍ͯ͠Δ࣌Λ࣌Uͱͯ͠ɺ ɾ࣌U U ɹˠɹաڈ ͷཤྺ ɾ࣌Uɹˠɹݱࡏ ɾ࣌U U ɹˠະདྷ ͱೝࣝ͢Δͱ ཧղ͍͢͠తͳҙຯͰ Α͍ɻ
Ϛϧίϑ࿈ʹೖΔલʹ p(n) m (x, B) := P(Xn+m ∈ B|Xn =
x), x ∈ S B ∈ 𝒮 ঢ়ଶۭؒ4ͷ෦ू߹ΛूΊͨू߹ 𝒮 ঢ়ଶۭؒ4ͷ෦ू߹ΛूΊͨू߹ͷཁૉ ࣌OͰͷ Nεςοϓޙͷ ભҠ֬ ࣌OͰঢ়ଶY ू߹#ͷཁૉ͕ঢ় ଶΛूΊͨͷ ࣌O NͰͷ ֬ม ͭ·Γ ঢ়ଶΛද͢ ू߹#ͷཁૉͷͲ Ε͔ΛऔΔ ࣌OͰঢ়ଶۭؒ4ͷ ͳ͔ͷཁૉYΛऔΔ
Ϛϧίϑ࿈Ͱͳ͍
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ P(Xt+1 = 1|Xt , Xt−1 , Xt−2 , ⋯, X0 ) ະདྷͷঢ়ଶɺݱࡏͷঢ়ଶͱաڈͷཤྺͰܾ·Δ ະ དྷ ͷ ঢ় ଶ ݱ ࡏ ͷ ঢ় ଶ ͱ ա ڈ ͷ ঢ় ଶ ͨ ͪ ͢ ͳ Θ ͪ ա ڈ ͷ ཤ ྺ ʹ ґ ଘ ͠ ͯ ͍ Δ ͱ ͍ ͏ ෳ ࡶ ͩ ͚ Ͳ ͦ Γ ͦ ͏ ͩ Α ͳ ͷ ਤ
Ϛϧίϑ࿈Ͱ͋Δ
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ = P(Xt+1 = 1|Xt ) P(Xt+1 = 1|Xt , Xt−1 , Xt−2 , ⋯, X0 ) աڈͷཤྺෆཁͰ͋Δ ະདྷͷঢ়ଶݱࡏͷঢ়ଶͰܾ·Δ ະ དྷ ͷ ঢ় ଶ ݱ ࡏ ͷ ঢ় ଶ ͱ ա ڈ ͷ ঢ় ଶ ͨ ͪ ͢ ͳ Θ ͪ ա ڈ ͷ ཤ ྺ ʹ ґ ଘ ͠ ͯ ͍ Δ ͱ ͍ ͏ ෳ ࡶ ͩ ͚ Ͳ ͦ Γ ͦ ͏ ͩ Α ͳ ͩ ͚ ʹ ґ ଘ ͢ Δ ͷ ਤ
੪࣍తͰͳ͍ εςοϓਪҠ֬
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ P(Xt = 2|Xt−1 = 1) ≠ P(Xt+1 = 2|Xt = 1) ͕࣌ҟͳΕɺঢ়ଶભҠ֬ҟͳΔ
੪࣍తͰ͋Δ εςοϓਪҠ֬
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ P(Xt = 2|Xt−1 = 1) ≠ P(Xt+1 = 2|Xt = 1) ͕࣌ҟͳΔ͚ΕͲɺঢ়ଶભҠ֬ಉ͡ ࣌ʹ ͋·Γ ͠ͳͯ͘Α͘ɺঢ়ଶͱঢ়ଶ ͱεςοϓ ʹ͢Εྑ͍ɻˡঢ়ଶભҠ֬ʹؔͯ͠ɻ
༗ݶ੪࣍తϚϧίϑ࿈ TUFQભҠ ͕࣌ҟͳΔ͚ΕͲɺ ঢ়ଶભҠ֬ಉ͡ ঢ়ଶͷ͕༗ݶ ະདྷͷঢ়ଶݱࡏͷঢ়ଶ Ͱܾ·Δ
ະདྷ࣌ ݱࡏ࣌ TUFQ p(1,1) p(1,3) p(3,3) p(3,1) p(2,3) p(1,2) p(2,1) p(2,2) p(3,2) ঢ়ଶJ͔Βঢ়ଶKTUFQͰ ભҠ͢Δ֬ P(i, j) = ༗ݶ੪࣍తϚϧίϑ࿈Ͱ͋Εɺঢ়ଶભҠਤͰঢ়ଶભҠ֬ΛදͤΔ ɹɾ࣍ঢ়ଶ ະདྷ ݱঢ়ଶ ݱࡏ Ͱܾ·Δɻ ɹɾաڈͷཤྺෆཁͰ͋Δɻ ɹɾભҠ֬࣌ʹґଘ͠ͳ͍ɻ ঢ়ଶͱঢ়ଶͷؒͷؔʹ͢Εྑ͍ TUFQ͡Όͳ͍ͷߟ͑ΒΕΔ͚ ͲɺͦΕߟ͑Εྑ͍ͬΆ͍ɻ ͕͔͠͠ɺͰग़͞Εͯ ͍ͳ͍ҹɻ
༗ݶ੪࣍తϚϧίϑ࿈ TUFQભҠ ͕࣌ҟͳΔ͚ΕͲɺ ঢ়ଶભҠ֬ಉ͡ ະདྷͷঢ়ଶݱࡏͷঢ়ଶ Ͱܾ·Δ ະདྷ࣌
ݱࡏ࣌ TUFQ p(1,1) p(1,3) p(2,1) ঢ়ଶJ͔Βঢ়ଶKTUFQͰ ભҠ͢Δ֬ P(i, j) = ∑ j∈S P(i, j) = P(1,1) + P(1,2) + P(1,3) = 1 ঢ়ଶͷ͕༗ݶ ݱঢ়ଶ͔ΒભҠͰ͖Δ ະདྷͷঢ়ଶΛશͯूΊͯ ͦΕΒͷΛͱΔͱ ̍ʹͳΔɻ Jݱঢ়ଶɻ͜͜ ͰJ K࣍ঢ়ଶɻ͜͜ ͰK TUFQ͡Όͳ͍ͷߟ͑ΒΕΔ͚ ͲɺͦΕߟ͑Εྑ͍ͬΆ͍ɻ ͕͔͠͠ɺͰग़͞Εͯ ͍ͳ͍ҹɻ