Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
第14章マルコフ連鎖
Search
axjack
March 21, 2022
Science
0
140
第14章マルコフ連鎖
統計学実践ワークブックpp.108-109
の第14章マルコフ連鎖に出てくる、
・確率変数
・状態
・状態空間
・時点
・未来/現在/過去(の履歴)
・斉次的
・遷移確率
をまとめたものである。
axjack
March 21, 2022
Tweet
Share
More Decks by axjack
See All by axjack
実験計画法_フィッシャーの3原則
axjack
0
420
統計学実践ワークブック 第16章 重回帰分析 pp.125-127
axjack
0
2.9k
統計学実践ワークブック 第15章 確率過程の基礎 p.117のεiの分布を導出する
axjack
0
930
多変量正規分布に従う確率変数の条件付き期待値・分散
axjack
0
900
修正項を用いて繰り返しのある二元配置分散分析の分散分析表を完成させる
axjack
0
300
Other Decks in Science
See All in Science
データベース03: 関係データモデル
trycycle
PRO
1
260
データマイニング - コミュニティ発見
trycycle
PRO
0
150
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
160
地質研究者が苦労しながら運用する情報公開システムの実例
naito2000
0
260
04_石井クンツ昌子_お茶の水女子大学理事_副学長_D_I社会実現へ向けて.pdf
sip3ristex
0
610
サイゼミ用因果推論
lw
1
7.5k
凸最適化からDC最適化まで
santana_hammer
1
290
システム数理と応用分野の未来を切り拓くロードマップ・エンターテインメント(スポーツ)への応用 / Applied mathematics for sports entertainment
konakalab
1
390
06_浅井雄一郎_株式会社浅井農園代表取締役社長_紹介資料.pdf
sip3ristex
0
620
深層学習を用いた根菜類の個数カウントによる収量推定法の開発
kentaitakura
0
180
傾向スコアによる効果検証 / Propensity Score Analysis and Causal Effect Estimation
ikuma_w
0
130
05_山中真也_室蘭工業大学大学院工学研究科教授_だてプロの挑戦.pdf
sip3ristex
0
630
Featured
See All Featured
Connecting the Dots Between Site Speed, User Experience & Your Business [WebExpo 2025]
tammyeverts
8
520
Building Adaptive Systems
keathley
43
2.7k
Writing Fast Ruby
sferik
628
62k
Docker and Python
trallard
45
3.6k
For a Future-Friendly Web
brad_frost
180
9.9k
The Pragmatic Product Professional
lauravandoore
36
6.9k
How to Think Like a Performance Engineer
csswizardry
26
1.9k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3k
Done Done
chrislema
185
16k
Why Our Code Smells
bkeepers
PRO
339
57k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Code Reviewing Like a Champion
maltzj
525
40k
Transcript
ୈষϚϧίϑ࿈ ౷ܭֶ࣮ફϫʔΫϒοΫ QQ
͜ΕԿ ౷ܭֶ࣮ફϫʔΫϒοΫQQ ͷୈষϚϧίϑ࿈ʹग़ͯ͘Δɺ ɹɾ֬ม ɹɾঢ়ଶ ɹɾঢ়ଶۭؒ ɹɾ࣌ ɹɾະདྷݱࡏաڈ ͷཤྺ
ɹɾ੪࣍త ɹɾભҠ֬ Λ·ͱΊͨͷͰ͋Δɻ
Ϛϧίϑ࿈ʹೖΔલʹ Xn ֬ม9Oʮঢ়ଶʯͱ͍͏ΛऔΔͷͰ͋Δɻ ঢ়ଶΛूΊͨͷΛঢ়ଶۭؒͱ͍͏ɻ ঢ়ଶۭؒΛ4ͱ͢Δɻ ঢ়ଶۭؒू߹Ͱ͋Δɻ ఴࣈOʮ࣌ʯͱݺΕΔɻ ͨͱ͑9࣌ͷ֬ม͢ͳΘͪঢ়ଶͰ͋Δɻ ͨͱ͑9࣌ͷ֬ม͢ͳΘͪঢ়ଶͰ͋Δɻ ͨͱ͑9U࣌Uͷ֬ม͢ͳΘͪঢ়ଶͰ͋Δɻ
͍ͯ͠Δ࣌Λ࣌Uͱͯ͠ɺ ɾ࣌U U ɹˠɹաڈ ͷཤྺ ɾ࣌Uɹˠɹݱࡏ ɾ࣌U U ɹˠະདྷ ͱೝࣝ͢Δͱ ཧղ͍͢͠తͳҙຯͰ Α͍ɻ
Ϛϧίϑ࿈ʹೖΔલʹ p(n) m (x, B) := P(Xn+m ∈ B|Xn =
x), x ∈ S B ∈ 𝒮 ঢ়ଶۭؒ4ͷ෦ू߹ΛूΊͨू߹ 𝒮 ঢ়ଶۭؒ4ͷ෦ू߹ΛूΊͨू߹ͷཁૉ ࣌OͰͷ Nεςοϓޙͷ ભҠ֬ ࣌OͰঢ়ଶY ू߹#ͷཁૉ͕ঢ় ଶΛूΊͨͷ ࣌O NͰͷ ֬ม ͭ·Γ ঢ়ଶΛද͢ ू߹#ͷཁૉͷͲ Ε͔ΛऔΔ ࣌OͰঢ়ଶۭؒ4ͷ ͳ͔ͷཁૉYΛऔΔ
Ϛϧίϑ࿈Ͱͳ͍
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ P(Xt+1 = 1|Xt , Xt−1 , Xt−2 , ⋯, X0 ) ະདྷͷঢ়ଶɺݱࡏͷঢ়ଶͱաڈͷཤྺͰܾ·Δ ະ དྷ ͷ ঢ় ଶ ݱ ࡏ ͷ ঢ় ଶ ͱ ա ڈ ͷ ঢ় ଶ ͨ ͪ ͢ ͳ Θ ͪ ա ڈ ͷ ཤ ྺ ʹ ґ ଘ ͠ ͯ ͍ Δ ͱ ͍ ͏ ෳ ࡶ ͩ ͚ Ͳ ͦ Γ ͦ ͏ ͩ Α ͳ ͷ ਤ
Ϛϧίϑ࿈Ͱ͋Δ
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ = P(Xt+1 = 1|Xt ) P(Xt+1 = 1|Xt , Xt−1 , Xt−2 , ⋯, X0 ) աڈͷཤྺෆཁͰ͋Δ ະདྷͷঢ়ଶݱࡏͷঢ়ଶͰܾ·Δ ະ དྷ ͷ ঢ় ଶ ݱ ࡏ ͷ ঢ় ଶ ͱ ա ڈ ͷ ঢ় ଶ ͨ ͪ ͢ ͳ Θ ͪ ա ڈ ͷ ཤ ྺ ʹ ґ ଘ ͠ ͯ ͍ Δ ͱ ͍ ͏ ෳ ࡶ ͩ ͚ Ͳ ͦ Γ ͦ ͏ ͩ Α ͳ ͩ ͚ ʹ ґ ଘ ͢ Δ ͷ ਤ
੪࣍తͰͳ͍ εςοϓਪҠ֬
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ P(Xt = 2|Xt−1 = 1) ≠ P(Xt+1 = 2|Xt = 1) ͕࣌ҟͳΕɺঢ়ଶભҠ֬ҟͳΔ
੪࣍తͰ͋Δ εςοϓਪҠ֬
࣌U ࣌U ࣌U ࣌U ະདྷ ݱࡏ աڈ աڈ աڈͷཤྺ P(Xt = 2|Xt−1 = 1) ≠ P(Xt+1 = 2|Xt = 1) ͕࣌ҟͳΔ͚ΕͲɺঢ়ଶભҠ֬ಉ͡ ࣌ʹ ͋·Γ ͠ͳͯ͘Α͘ɺঢ়ଶͱঢ়ଶ ͱεςοϓ ʹ͢Εྑ͍ɻˡঢ়ଶભҠ֬ʹؔͯ͠ɻ
༗ݶ੪࣍తϚϧίϑ࿈ TUFQભҠ ͕࣌ҟͳΔ͚ΕͲɺ ঢ়ଶભҠ֬ಉ͡ ঢ়ଶͷ͕༗ݶ ະདྷͷঢ়ଶݱࡏͷঢ়ଶ Ͱܾ·Δ
ະདྷ࣌ ݱࡏ࣌ TUFQ p(1,1) p(1,3) p(3,3) p(3,1) p(2,3) p(1,2) p(2,1) p(2,2) p(3,2) ঢ়ଶJ͔Βঢ়ଶKTUFQͰ ભҠ͢Δ֬ P(i, j) = ༗ݶ੪࣍తϚϧίϑ࿈Ͱ͋Εɺঢ়ଶભҠਤͰঢ়ଶભҠ֬ΛදͤΔ ɹɾ࣍ঢ়ଶ ະདྷ ݱঢ়ଶ ݱࡏ Ͱܾ·Δɻ ɹɾաڈͷཤྺෆཁͰ͋Δɻ ɹɾભҠ֬࣌ʹґଘ͠ͳ͍ɻ ঢ়ଶͱঢ়ଶͷؒͷؔʹ͢Εྑ͍ TUFQ͡Όͳ͍ͷߟ͑ΒΕΔ͚ ͲɺͦΕߟ͑Εྑ͍ͬΆ͍ɻ ͕͔͠͠ɺͰग़͞Εͯ ͍ͳ͍ҹɻ
༗ݶ੪࣍తϚϧίϑ࿈ TUFQભҠ ͕࣌ҟͳΔ͚ΕͲɺ ঢ়ଶભҠ֬ಉ͡ ະདྷͷঢ়ଶݱࡏͷঢ়ଶ Ͱܾ·Δ ະདྷ࣌
ݱࡏ࣌ TUFQ p(1,1) p(1,3) p(2,1) ঢ়ଶJ͔Βঢ়ଶKTUFQͰ ભҠ͢Δ֬ P(i, j) = ∑ j∈S P(i, j) = P(1,1) + P(1,2) + P(1,3) = 1 ঢ়ଶͷ͕༗ݶ ݱঢ়ଶ͔ΒભҠͰ͖Δ ະདྷͷঢ়ଶΛશͯूΊͯ ͦΕΒͷΛͱΔͱ ̍ʹͳΔɻ Jݱঢ়ଶɻ͜͜ ͰJ K࣍ঢ়ଶɻ͜͜ ͰK TUFQ͡Όͳ͍ͷߟ͑ΒΕΔ͚ ͲɺͦΕߟ͑Εྑ͍ͬΆ͍ɻ ͕͔͠͠ɺͰग़͞Εͯ ͍ͳ͍ҹɻ