$30 off During Our Annual Pro Sale. View Details »

統計学実践ワークブック 第16章 重回帰分析 pp.125-127

axjack
April 03, 2022

統計学実践ワークブック 第16章 重回帰分析 pp.125-127

統計学実践ワークブック 第16章 重回帰分析 pp.125-127について、式を導出したり図示したり行間を埋めたりしました。

axjack

April 03, 2022
Tweet

More Decks by axjack

Other Decks in Science

Transcript

  1. ౷ܭֶ࣮ફϫʔΫϒοΫ
    ୈষॏճؼ෼ੳ
    QQ

    View Slide

  2. ه๏

    1

    0
    X′

    ͸ཁૉ͕͢΂ͯͰ͋ΔॎϕΫτϧ ྻϕΫτϧ

    ͸ཁૉ͕͢΂ͯͰ͋ΔॎϕΫτϧ ྻϕΫτϧ

    ͸ߦྻ9ͷసஔߦྻ
    X
    n×m
    ͸OߦNྻͷߦྻ

    View Slide

  3. ճؼ෼ੳͷزԿֶతͳೝࣝ
    Im(X)
    Y
    e = Y− ̂
    Y
    ̂
    Y = PX
    Y = X ̂
    β
    ℝn
    Im(X) = {Xv ∣ v ∈ ℝ1+d} ⊂ ℝn
    X
    n×(1+d)
    ̂
    β
    (1+d)×1
    ̂
    Y
    n×1
    =
    , e ⊥ ̂
    Y
    :Λ*N 9
    ʹࣹӨʹͨ͠Β
    ͱͳΔɻ
    ̂
    Y
    ࢒ࠩϕΫτϧ e

    View Slide

  4. 9ͷ૾ɺࣹӨɺ࢒ࠩ
    Y − ̂
    Y
    ͸
    Im(X) ʹࣹӨ͢Δߦྻɺ͢ͳΘࣹͪӨߦྻΛ PX ͱ͢Δͱɺ
    ̂
    Y = PX
    Y Y Λ Im(X) ΁ࣹӨͨ͠ϕΫτϧͰ͋Δɻ
    ͳͷͰɺ ̂
    Y
    ͱ ͸௚ަ͢Δɻ
    ̂
    Y
    ͱ͜ΖͰɺ ͸ Im(X) ʹଐ͢ΔϕΫτϧͰ΋͋Δ͔Βɺ
    ̂
    Y = X ̂
    β Λຬͨ͢Α͏ͳ ̂
    β ∈ ℝ1+d ͕ଘࡏ͢Δɻ
    X′

    e = 0
    ࢒ࠩϕΫτϧ e ʹ͍ͭͯɺ
    ͕੒Γཱͭɻ F͸*N 9
    ͷ௚ަิۭؒʹؚ·ΕΔͱ͍͏͜ͱ

    e = Y − ̂
    Y = Y − PX
    Y = Y − X ̂
    β
    ࢒ࠩϕΫτϧ e Λ
    ͱͨ͠ͱ͖ɺ
    Im(X) = {Xv ∣ v ∈ ℝ1+d} ⊂ ℝn
    9ͷ૾Λ*N 9
    ͱද͢ɻ*N 9
    ͸ू߹Ͱ͋ͬͯҎԼͷΑ͏ʹࣔ͞ΕΔɻ
    Y − PX
    Y ͱ
    ͕௚ަ͢ΔΑ͏ͳม׵ ʁ
    ͕
    PX ͳͷͰ͋Δɻ
    PX
    Y
    ͱ X

    View Slide

  5. 9F
    ∣ ∣ ∣ ⋯ ∣

    1 x1
    x2
    ⋯ xd
    ∣ ∣ ∣ ⋯ ∣
    X =
    − ⃗
    1 ′


    −x′

    1−
    −x′

    2−

    −x′

    d

    X′

    =
    X′

    e =
    − ⃗
    1 ′


    −x′

    1−
    −x′

    2−

    −x′

    d

    e =

    1 ′

    e
    x1


    e

    xd


    e
    =
    0
    0

    0
    = ⃗
    0
    n × (1 + d)
    (1 + d) × n
    (1 + d ) × n n × 1 (1 + d) × 1
    9͸Eݸͷجఈ ॎϕΫτϧ
    Λ
    ԣʹฒ΂ͨ΋ͷͩͱߟ͑Δɻ
    సஔ͢Δͱɺ
    ɾ֤ॎϕΫτϧΛసஔ
    ɾԣฒͼˠॎฒͼ
    ͱͳΔɻ
    جఈ͸*N 9
    ʹؚ·Ε͍ͯͯɺ
    *N 9
    ͷ೚ҙͷཁૉ͸࢒ࠩϕΫτϧFͱ௚ަ͢
    Δɻ ͦͷΑ͏ʹߏ੒ͨ͠΋ͷ͕࢒ࠩϕΫτϧ
    Ͱ͋Δɺͱ΋ݴ͑Δɻ

    ͷجఈ͸ɺ9ͷୈྻ ୈྻ ʜ ୈEྻ
    Ͱ͋Δɻ
    Im(X) = {Xv ∣ v ∈ ℝ1+d} ⊂ ℝn
    ˠ

    View Slide

  6. ࣹӨߦྻͷಋग़
    X′

    e = X′

    (Y − ̂
    Y) = X′

    (Y − X ̂
    β) = ⃗
    0 ΑΓɺ
    ⟺ X′

    Y = X′

    X ̂
    β ⟺ ̂
    β = (X′

    X)−1X′

    Y
    ̂
    Y = X ̂
    β = X(X′

    X)−1X′

    Y
    ·ͨɺ
    PX
    = X(X′

    X)−1X′

    Ͱ͋Δ͔Β ̂
    Y = PX
    Y ͱൺֱͯ͠
    X′

    X͸Մٯͱ͢Δ
    X′

    e = ⃗
    0 ΑΓɺ
    ͱͳΔɻ

    View Slide

  7. ࣹӨߦྻ1Yͷੑ࣭

    PX
    = X(X′

    X)−1X′

    ͱͯ͠ɺ
    P2
    X
    = PX
    PX
    = (X(X′

    X)−1X′

    )(X(X′

    X)−1X′

    ) = X(X′

    X)−1(X′

    X)(X′

    X)−1X′

    = X(X′

    X)−1X′

    = PX
    P′

    X
    = (X(X′

    X)−1X′

    )′

    = X′



    ((X′

    X)−1)′

    X′

    = X(X′

    X)−1X′

    = PX
    Im(X) = {Xv|v ∈ ℝ1+d}
    Im(PX
    ) = {PX
    w|w ∈ ℝn}
    X ͸ n × (1 + d) ߦྻͳͷͰɺ
    ͸
    PX n × n ߦྻ O࣍ਖ਼ํߦྻ
    Ͱ͋Δɻ
    ࣹӨߦྻͷೋ৐ͱసஔ͸࠶ͼࣹӨߦྻʹ໭Δ͜ͱΛ֬ೝ͢Δɻ
    ͯ͞ɺ
    ͱ
    ͸౳͍͠ͱͷ͜ͱͳͷͰɺ͜ΕΛࣔͯ͠ΈΔɻ
    *N 1Y
    ΋*N 9
    ΋ͲͪΒ΋ू߹Ͱ͋Δ͜ͱΑΓɺ
    l1
    ∈ Im(X) ⟹ l1
    ∈ Im(PX
    )
    l2
    ∈ Im(PX
    ) ⟹ l2
    ∈ Im(X)
    Λࣔͤ͹ྑ͍ɻ

    View Slide

  8. ࣹӨߦྻ1Yͷੑ࣭

    [1]l1
    ∈ Im(X) ⟹ l1
    ∈ Im(PX
    )
    [2]l2
    ∈ Im(PX
    ) ⟹ l2
    ∈ Im(X)
    l1
    ∈ Im(X)
    Im(X) = {Xv|v ∈ ℝ1+d}
    Im(PX
    ) = {PX
    w|w ∈ ℝn}
    v1
    ∈ ℝ1+d
    l1
    = Xv1
    ∈ ℝn
    w1
    = Xv1
    ∈ ℝn
    l2
    ∈ Im(PX
    ) l2
    = PX
    w2
    = X(X′

    X)−1X′

    w2
    ∈ ℝn
    l1
    = PX
    w1
    ∈ Im(PX
    )
    l2
    = X(X′

    X)−1X′

    w2
    = Xv2
    v2
    = (X′

    X)−1X′

    w2
    ∈ ℝ1+d l2
    = Xv2
    ∈ Im(X)
    ͱͳΔl1
    ΛऔΔͱɺ ͱͳΔ ͕औΕΔɻ
    l1
    = Xv1
    = X(X′

    X)−1(X′

    X)v1
    = PX
    Xv1 ͱදͤ͹
    ͱͯ͠
    ͱͳΔl2ΛऔΔͱɺ
    ͱͳΔw2
    ∈ ℝn ͕औΕΔɻ ͱදͤ͹
    ͱͯ͠
    Ҏ্ΑΓɺ
    Im(PX
    ) = Im(X)

    View Slide

  9. F
    0 = ⃗
    1 ′

    e
    Im(X)
    Y
    ̂
    Y = PX
    Y = X ̂
    β
    ℝn
    Im(X) = {Xv ∣ v ∈ ℝ1+d} ⊂ ℝn
    e
    e

    1
    ˠ
    ͱ͸ɺ

    1 ͱe͕௚ަ͢Δɺͱݴ͍ͬͯΔɻ

    View Slide


  10. 0 = ⃗
    1 ′

    e = ⃗
    1 ′

    (Y − X ̂
    β) = n(¯
    y − (1,¯
    x′

    ) ̂
    β)ʹ͍ͭͯ෼ղͯ͠ߟ͑Δɻ

    1 ′

    Y =
    (
    1

    1
    )


    y1

    yn
    = ∑ yi
    = n¯
    y

    1 ′

    X =
    (
    1

    1
    )


    1 , −x′

    1

    ⋮ , ⋮
    1 , −x′

    n

    = (n, ∑ x′

    i) = (n, n ¯
    x′

    )
    0 = ⃗
    1 ′

    e = ⃗
    1 ′

    (Y − X ̂
    β) = (n¯
    y − (n, n ¯
    x′

    ) ̂
    β) = n(¯
    y − (1, ¯
    x′

    ) ̂
    β)
    ͜ͷΧϯϚ͸ྻΛ۠෼͚͢ΔͨΊͷه߸ɻ
    ಺ੵͰ͸ͳ͍ɻ
    −x′

    i
    − = (xi,1
    ⋯ xi,d
    )
    ͸ԣϕΫτϧ
    Ҏ্ΑΓɺ
    ͱͳͬͯɺ ¯
    y = (1, ¯
    x′

    ) ̂
    β ΛಘΔɻ
    ¯
    y
    ԣϕΫτϧͨͪͷ࿨͸
    ରԠ͢Δ੒෼͝ͱʹ࿨ΛऔΔ

    View Slide

  11. QԼஈ
    Y = X ̂
    β + e Y − ⃗
    1 ¯
    y = X ̂
    β − ⃗
    1 ¯
    y + e
    ΑΓ
    Y − ⃗
    1 ¯
    y = X ̂
    β − ⃗
    1 (1,¯
    x′

    ) ̂
    β + e
    ¯
    y = (1, ¯
    x′

    ) ̂
    β
    ͞Βʹ ΑΓ
    = (X − ⃗
    1 (1,¯
    x′

    ))
    ̂
    β + e
    = (
    1 x1


    ⋮ ⋮
    1 xn


    − ⃗
    1 (1,¯
    x′

    ))
    ̂
    β + e
    =
    1 − 1 x1


    − x′

    ⋮ ⋮
    1 − 1 xn


    − x′

    ̂
    β + e
    =
    0 (x1
    − ¯
    x)′

    ⋮ ⋮
    0 (xn
    − ¯
    x)′

    ̂
    β + e

    View Slide

  12. Qதஈ
    Im(X)
    Y− ⃗
    1 ¯
    y
    X ̂
    β − ⃗
    1 ¯
    y
    ℝn
    Im(X) = {Xv ∣ v ∈ ℝ1+d} ⊂ ℝn
    e
    Y
    X ̂
    β
    e

    1 ¯
    y͚ͩͣΒ͢
    ͜ͷɹɹ্ͷࡾ֯ܗͰ
    ࡾฏํͷఆཧΛ͢Ε͹ྑ͍ɻ
    ℝn

    View Slide


  13. Qதஈ
    Y − ⃗
    1 ¯
    y = X ̂
    β − ⃗
    1 ¯
    y + e
    ⟺ Y − ⃗
    1 ¯
    y = X ̂
    β − ⃗
    1 (1,¯
    x′

    ) ̂
    β + e
    ΑΓɺ ∥Y − ⃗
    1 ¯
    y∥2 = ∥X ̂
    β − ⃗
    1 (1,¯
    x′

    ) ̂
    β∥2 + ∥e∥2
    ⟺ ∑ (yi
    − ¯
    y)2 = ∑ ((xi
    − ¯
    x)′

    ̂
    β1:d)
    2
    + ∑ e2
    i
    ͱͳΔɻ
    ̂
    β0
    ܎਺
    ஫໨ϙΠϯτ
    ͸ɺ
    ͕ফ͑Δ
    ͷฏۉ͔Βͷภࠩ
    xi
    xi
    − ¯
    x ͕ग़ݱ͢Δ

    1 ¯
    y Λ࢖ͬͨ͜ͱͰɺ
    ͓ೃછΈ
    ͷมಈͷ෼ղͷ͕ࣜग़ݱ͢Δ
    ͜ͱͰ͋Δɻ

    View Slide