Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How we use GPUs in Cookpad
Search
Yuichiro Someya
November 06, 2017
Programming
0
160
How we use GPUs in Cookpad
@Tokyo Machine Learning Kitchen
https://tokyo-ml.github.io/
Yuichiro Someya
November 06, 2017
Tweet
Share
More Decks by Yuichiro Someya
See All by Yuichiro Someya
にんげんがさき 基盤はあと / Developers over ML platform
ayemos
0
14k
機械学習をスモールスタートさせる方法 / small machine learning
ayemos
3
2.1k
アットホームな分析基盤の作り方 / Homemade Machine Learning Toolkits
ayemos
1
990
サービス開発、機械学習、クラウド / the trinity of machine learning
ayemos
0
3.5k
成長を止めない機械学習のやり方 / Don't stop 'til you get enough (data).
ayemos
15
5.2k
AWS で加速する機械学習 / Accelerate Machine Learning with AWS
ayemos
1
320
クックパッドの機械学習基盤 2018 / Machine Learning Platform at Cookpad ~ 2018 ~
ayemos
15
20k
PyTorchとCaffe2とONNXと深層学習モデルのデプロイについて
ayemos
1
3k
クックパッドにおけるAWS GPUインスタンスの利用事例 / Powering by AWS GPU Instances in Cookpad Inc
ayemos
0
430
Other Decks in Programming
See All in Programming
uniqueパッケージの内部実装を支えるweak pointerの話
magavel
0
920
アメ車でサンノゼを走ってきたよ!
s_shimotori
0
140
どの様にAIエージェントと 協業すべきだったのか?
takefumiyoshii
2
610
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
140
Pull-Requestの内容を1クリックで動作確認可能にするワークフロー
natmark
2
450
iOSアプリの信頼性を向上させる取り組み/ios-app-improve-reliability
shino8rayu9
0
150
(Extension DC 2025) Actor境界を越える技術
teamhimeh
1
220
育てるアーキテクチャ:戦い抜くPythonマイクロサービスの設計と進化戦略
fujidomoe
1
150
Introducing ReActionView: A new ActionView-Compatible ERB Engine @ Kaigi on Rails 2025, Tokyo, Japan
marcoroth
3
920
階層構造を表現するデータ構造とリファクタリング 〜1年で10倍成長したプロダクトの変化と課題〜
yuhisatoxxx
3
920
Back to the Future: Let me tell you about the ACP protocol
terhechte
0
130
株式会社 Sun terras カンパニーデック
sunterras
0
230
Featured
See All Featured
Building Better People: How to give real-time feedback that sticks.
wjessup
368
20k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
Visualization
eitanlees
148
16k
Site-Speed That Sticks
csswizardry
11
880
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.1k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
54
3k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
Why You Should Never Use an ORM
jnunemaker
PRO
59
9.6k
[RailsConf 2023] Rails as a piece of cake
palkan
57
5.9k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Transcript
)PXXFVTF(16TJO$PPLQBE :VJDIJSP4PNFZB!$PPLQBE*OD3%
‣ Yuichiro Someya (ayemos) ‣ github.com/ayemos ‣ Machine Learning Enginner
@ Cookpad Inc. # 2016(new grads) ~ Current
None
‣ 0VS(16FOWJSPONFOU )PXXFVUJMJ[F"84T(16JOTUBODFT )PXXFLFFQPVSTDBMBCJMJUZPGUFBNTJO3%
/7*%*"7
All-in on AWS since 2011
All-in on AWS since 2011 Amazon RDS (Relational Data)
Amazon Redshift (Data Warehouse)
All-in on AWS since 2011 Amazon S3 (Object Storage)
Amazon RDS (Relational Data) Amazon Redshift (Data Warehouse)
All-in on AWS since 2011 Amazon S3 (Object Storage)
Amazon RDS (Relational Data) Amazon Redshift (Data Warehouse) 7JSUVBM1SJWBUF$MPVE
7JSUVBM1SJWBUF$MPVE All-in on AWS since 2011 Amazon S3 (Object
Storage) Amazon RDS (Relational Data) Amazon Redshift (Data Warehouse) Amazon EC2 (Computation)
‣ $6%" ‣ DV%//
‣ $6%" ‣ DV%// (Snapshot)
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
5FNQMBUF CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 5FNQMBUF KTPO
QBDLFSCVJME
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
IUUQTBXTBNB[PODPNBNB[POBJBNJT CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
AWS Lambda (Function) Stop! Idle? (Hourly)
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
AWS Lambda (Function) Stop! Idle? (Hourly)
‣ 0OEFNBOE(16XPSLCFODIFT 6UJMJ[F".*UPNVMUJQMFXPSLCFODIFOWJSPONFOUT 1BDLFSNBLFTJUFBTJFSUPVQEBUFBOENPSFTUBCMF 0QFSBUFWJB$IBUCPU 8SBQVQ