Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How we use GPUs in Cookpad
Search
Yuichiro Someya
November 06, 2017
Programming
0
180
How we use GPUs in Cookpad
@Tokyo Machine Learning Kitchen
https://tokyo-ml.github.io/
Yuichiro Someya
November 06, 2017
Tweet
Share
More Decks by Yuichiro Someya
See All by Yuichiro Someya
にんげんがさき 基盤はあと / Developers over ML platform
ayemos
0
15k
機械学習をスモールスタートさせる方法 / small machine learning
ayemos
3
2.1k
アットホームな分析基盤の作り方 / Homemade Machine Learning Toolkits
ayemos
1
1k
サービス開発、機械学習、クラウド / the trinity of machine learning
ayemos
0
3.6k
成長を止めない機械学習のやり方 / Don't stop 'til you get enough (data).
ayemos
15
5.3k
AWS で加速する機械学習 / Accelerate Machine Learning with AWS
ayemos
1
350
クックパッドの機械学習基盤 2018 / Machine Learning Platform at Cookpad ~ 2018 ~
ayemos
15
21k
PyTorchとCaffe2とONNXと深層学習モデルのデプロイについて
ayemos
1
3k
クックパッドにおけるAWS GPUインスタンスの利用事例 / Powering by AWS GPU Instances in Cookpad Inc
ayemos
0
440
Other Decks in Programming
See All in Programming
プロダクトオーナーから見たSOC2 _SOC2ゆるミートアップ#2
kekekenta
0
220
MDN Web Docs に日本語翻訳でコントリビュート
ohmori_yusuke
0
650
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
310
AIによる高速開発をどう制御するか? ガードレール設置で開発速度と品質を両立させたチームの事例
tonkotsuboy_com
7
2.4k
Automatic Grammar Agreementと Markdown Extended Attributes について
kishikawakatsumi
0
200
CSC307 Lecture 05
javiergs
PRO
0
500
AIによる開発の民主化を支える コンテキスト管理のこれまでとこれから
mulyu
3
370
ぼくの開発環境2026
yuzneri
0
240
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
2.5k
余白を設計しフロントエンド開発を 加速させる
tsukuha
7
2.1k
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
AIエージェントのキホンから学ぶ「エージェンティックコーディング」実践入門
masahiro_nishimi
5
470
Featured
See All Featured
DBのスキルで生き残る技術 - AI時代におけるテーブル設計の勘所
soudai
PRO
62
50k
Un-Boring Meetings
codingconduct
0
200
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
How to Align SEO within the Product Triangle To Get Buy-In & Support - #RIMC
aleyda
1
1.4k
The Director’s Chair: Orchestrating AI for Truly Effective Learning
tmiket
1
97
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
57
50k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Lessons Learnt from Crawling 1000+ Websites
charlesmeaden
PRO
1
1.1k
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Why Our Code Smells
bkeepers
PRO
340
58k
Transcript
)PXXFVTF(16TJO$PPLQBE :VJDIJSP4PNFZB!$PPLQBE*OD3%
‣ Yuichiro Someya (ayemos) ‣ github.com/ayemos ‣ Machine Learning Enginner
@ Cookpad Inc. # 2016(new grads) ~ Current
None
‣ 0VS(16FOWJSPONFOU )PXXFVUJMJ[F"84T(16JOTUBODFT )PXXFLFFQPVSTDBMBCJMJUZPGUFBNTJO3%
/7*%*"7
All-in on AWS since 2011
All-in on AWS since 2011 Amazon RDS (Relational Data)
Amazon Redshift (Data Warehouse)
All-in on AWS since 2011 Amazon S3 (Object Storage)
Amazon RDS (Relational Data) Amazon Redshift (Data Warehouse)
All-in on AWS since 2011 Amazon S3 (Object Storage)
Amazon RDS (Relational Data) Amazon Redshift (Data Warehouse) 7JSUVBM1SJWBUF$MPVE
7JSUVBM1SJWBUF$MPVE All-in on AWS since 2011 Amazon S3 (Object
Storage) Amazon RDS (Relational Data) Amazon Redshift (Data Warehouse) Amazon EC2 (Computation)
‣ $6%" ‣ DV%//
‣ $6%" ‣ DV%// (Snapshot)
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
5FNQMBUF CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 5FNQMBUF KTPO
QBDLFSCVJME
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
IUUQTBXTBNB[PODPNBNB[POBJBNJT CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
AWS Lambda (Function) Stop! Idle? (Hourly)
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
AWS Lambda (Function) Stop! Idle? (Hourly)
‣ 0OEFNBOE(16XPSLCFODIFT 6UJMJ[F".*UPNVMUJQMFXPSLCFODIFOWJSPONFOUT 1BDLFSNBLFTJUFBTJFSUPVQEBUFBOENPSFTUBCMF 0QFSBUFWJB$IBUCPU 8SBQVQ