Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How we use GPUs in Cookpad
Search
Yuichiro Someya
November 06, 2017
Programming
0
180
How we use GPUs in Cookpad
@Tokyo Machine Learning Kitchen
https://tokyo-ml.github.io/
Yuichiro Someya
November 06, 2017
Tweet
Share
More Decks by Yuichiro Someya
See All by Yuichiro Someya
にんげんがさき 基盤はあと / Developers over ML platform
ayemos
0
15k
機械学習をスモールスタートさせる方法 / small machine learning
ayemos
3
2.1k
アットホームな分析基盤の作り方 / Homemade Machine Learning Toolkits
ayemos
1
1k
サービス開発、機械学習、クラウド / the trinity of machine learning
ayemos
0
3.6k
成長を止めない機械学習のやり方 / Don't stop 'til you get enough (data).
ayemos
15
5.3k
AWS で加速する機械学習 / Accelerate Machine Learning with AWS
ayemos
1
350
クックパッドの機械学習基盤 2018 / Machine Learning Platform at Cookpad ~ 2018 ~
ayemos
15
21k
PyTorchとCaffe2とONNXと深層学習モデルのデプロイについて
ayemos
1
3k
クックパッドにおけるAWS GPUインスタンスの利用事例 / Powering by AWS GPU Instances in Cookpad Inc
ayemos
0
440
Other Decks in Programming
See All in Programming
CSC307 Lecture 07
javiergs
PRO
1
560
dchart: charts from deck markup
ajstarks
3
1k
CSC307 Lecture 05
javiergs
PRO
0
500
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
AIと一緒にレガシーに向き合ってみた
nyafunta9858
0
250
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
140
AI時代の認知負荷との向き合い方
optfit
0
160
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
390
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
2.5k
Amazon Bedrockを活用したRAGの品質管理パイプライン構築
tosuri13
5
770
Data-Centric Kaggle
isax1015
2
780
Oxlint JS plugins
kazupon
1
980
Featured
See All Featured
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
1
55
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
Getting science done with accelerated Python computing platforms
jacobtomlinson
2
120
Java REST API Framework Comparison - PWX 2021
mraible
34
9.1k
How to Build an AI Search Optimization Roadmap - Criteria and Steps to Take #SEOIRL
aleyda
1
1.9k
Leveraging LLMs for student feedback in introductory data science courses - posit::conf(2025)
minecr
0
150
Designing for humans not robots
tammielis
254
26k
Why Mistakes Are the Best Teachers: Turning Failure into a Pathway for Growth
auna
0
54
Build your cross-platform service in a week with App Engine
jlugia
234
18k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.4k
Transcript
)PXXFVTF(16TJO$PPLQBE :VJDIJSP4PNFZB!$PPLQBE*OD3%
‣ Yuichiro Someya (ayemos) ‣ github.com/ayemos ‣ Machine Learning Enginner
@ Cookpad Inc. # 2016(new grads) ~ Current
None
‣ 0VS(16FOWJSPONFOU )PXXFVUJMJ[F"84T(16JOTUBODFT )PXXFLFFQPVSTDBMBCJMJUZPGUFBNTJO3%
/7*%*"7
All-in on AWS since 2011
All-in on AWS since 2011 Amazon RDS (Relational Data)
Amazon Redshift (Data Warehouse)
All-in on AWS since 2011 Amazon S3 (Object Storage)
Amazon RDS (Relational Data) Amazon Redshift (Data Warehouse)
All-in on AWS since 2011 Amazon S3 (Object Storage)
Amazon RDS (Relational Data) Amazon Redshift (Data Warehouse) 7JSUVBM1SJWBUF$MPVE
7JSUVBM1SJWBUF$MPVE All-in on AWS since 2011 Amazon S3 (Object
Storage) Amazon RDS (Relational Data) Amazon Redshift (Data Warehouse) Amazon EC2 (Computation)
‣ $6%" ‣ DV%//
‣ $6%" ‣ DV%// (Snapshot)
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
5FNQMBUF CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 5FNQMBUF KTPO
QBDLFSCVJME
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
IUUQTBXTBNB[PODPNBNB[POBJBNJT CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
AWS Lambda (Function) Stop! Idle? (Hourly)
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
AWS Lambda (Function) Stop! Idle? (Hourly)
‣ 0OEFNBOE(16XPSLCFODIFT 6UJMJ[F".*UPNVMUJQMFXPSLCFODIFOWJSPONFOUT 1BDLFSNBLFTJUFBTJFSUPVQEBUFBOENPSFTUBCMF 0QFSBUFWJB$IBUCPU 8SBQVQ