Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How we use GPUs in Cookpad
Search
Yuichiro Someya
November 06, 2017
Programming
0
180
How we use GPUs in Cookpad
@Tokyo Machine Learning Kitchen
https://tokyo-ml.github.io/
Yuichiro Someya
November 06, 2017
Tweet
Share
More Decks by Yuichiro Someya
See All by Yuichiro Someya
にんげんがさき 基盤はあと / Developers over ML platform
ayemos
0
15k
機械学習をスモールスタートさせる方法 / small machine learning
ayemos
3
2.1k
アットホームな分析基盤の作り方 / Homemade Machine Learning Toolkits
ayemos
1
1k
サービス開発、機械学習、クラウド / the trinity of machine learning
ayemos
0
3.6k
成長を止めない機械学習のやり方 / Don't stop 'til you get enough (data).
ayemos
15
5.3k
AWS で加速する機械学習 / Accelerate Machine Learning with AWS
ayemos
1
350
クックパッドの機械学習基盤 2018 / Machine Learning Platform at Cookpad ~ 2018 ~
ayemos
15
21k
PyTorchとCaffe2とONNXと深層学習モデルのデプロイについて
ayemos
1
3k
クックパッドにおけるAWS GPUインスタンスの利用事例 / Powering by AWS GPU Instances in Cookpad Inc
ayemos
0
440
Other Decks in Programming
See All in Programming
生成AIを使ったコードレビューで定性的に品質カバー
chiilog
1
270
責任感のあるCloudWatchアラームを設計しよう
akihisaikeda
3
180
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
610
OSSとなったswift-buildで Xcodeのビルドを差し替えられるため 自分でXcodeを直せる時代になっている ダイアモンド問題編
yimajo
3
620
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
IFSによる形状設計/デモシーンの魅力 @ 慶應大学SFC
gam0022
1
310
15年続くIoTサービスのSREエンジニアが挑む分散トレーシング導入
melonps
2
220
2026年 エンジニアリング自己学習法
yumechi
0
140
SourceGeneratorのススメ
htkym
0
200
組織で育むオブザーバビリティ
ryota_hnk
0
180
[KNOTS 2026登壇資料]AIで拡張‧交差する プロダクト開発のプロセス および携わるメンバーの役割
hisatake
0
290
MUSUBIXとは
nahisaho
0
140
Featured
See All Featured
The Language of Interfaces
destraynor
162
26k
It's Worth the Effort
3n
188
29k
State of Search Keynote: SEO is Dead Long Live SEO
ryanjones
0
120
Done Done
chrislema
186
16k
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
240
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.3k
Applied NLP in the Age of Generative AI
inesmontani
PRO
4
2k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
130
Are puppies a ranking factor?
jonoalderson
1
2.7k
The Illustrated Guide to Node.js - THAT Conference 2024
reverentgeek
0
260
Automating Front-end Workflow
addyosmani
1371
200k
Transcript
)PXXFVTF(16TJO$PPLQBE :VJDIJSP4PNFZB!$PPLQBE*OD3%
‣ Yuichiro Someya (ayemos) ‣ github.com/ayemos ‣ Machine Learning Enginner
@ Cookpad Inc. # 2016(new grads) ~ Current
None
‣ 0VS(16FOWJSPONFOU )PXXFVUJMJ[F"84T(16JOTUBODFT )PXXFLFFQPVSTDBMBCJMJUZPGUFBNTJO3%
/7*%*"7
All-in on AWS since 2011
All-in on AWS since 2011 Amazon RDS (Relational Data)
Amazon Redshift (Data Warehouse)
All-in on AWS since 2011 Amazon S3 (Object Storage)
Amazon RDS (Relational Data) Amazon Redshift (Data Warehouse)
All-in on AWS since 2011 Amazon S3 (Object Storage)
Amazon RDS (Relational Data) Amazon Redshift (Data Warehouse) 7JSUVBM1SJWBUF$MPVE
7JSUVBM1SJWBUF$MPVE All-in on AWS since 2011 Amazon S3 (Object
Storage) Amazon RDS (Relational Data) Amazon Redshift (Data Warehouse) Amazon EC2 (Computation)
‣ $6%" ‣ DV%//
‣ $6%" ‣ DV%// (Snapshot)
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
5FNQMBUF CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 5FNQMBUF KTPO
QBDLFSCVJME
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
IUUQTBXTBNB[PODPNBNB[POBJBNJT CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
AWS Lambda (Function) Stop! Idle? (Hourly)
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
AWS Lambda (Function) Stop! Idle? (Hourly)
‣ 0OEFNBOE(16XPSLCFODIFT 6UJMJ[F".*UPNVMUJQMFXPSLCFODIFOWJSPONFOUT 1BDLFSNBLFTJUFBTJFSUPVQEBUFBOENPSFTUBCMF 0QFSBUFWJB$IBUCPU 8SBQVQ