Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How we use GPUs in Cookpad
Search
Yuichiro Someya
November 06, 2017
Programming
0
170
How we use GPUs in Cookpad
@Tokyo Machine Learning Kitchen
https://tokyo-ml.github.io/
Yuichiro Someya
November 06, 2017
Tweet
Share
More Decks by Yuichiro Someya
See All by Yuichiro Someya
にんげんがさき 基盤はあと / Developers over ML platform
ayemos
0
14k
機械学習をスモールスタートさせる方法 / small machine learning
ayemos
3
2.1k
アットホームな分析基盤の作り方 / Homemade Machine Learning Toolkits
ayemos
1
1k
サービス開発、機械学習、クラウド / the trinity of machine learning
ayemos
0
3.5k
成長を止めない機械学習のやり方 / Don't stop 'til you get enough (data).
ayemos
15
5.3k
AWS で加速する機械学習 / Accelerate Machine Learning with AWS
ayemos
1
330
クックパッドの機械学習基盤 2018 / Machine Learning Platform at Cookpad ~ 2018 ~
ayemos
15
21k
PyTorchとCaffe2とONNXと深層学習モデルのデプロイについて
ayemos
1
3k
クックパッドにおけるAWS GPUインスタンスの利用事例 / Powering by AWS GPU Instances in Cookpad Inc
ayemos
0
440
Other Decks in Programming
See All in Programming
ID管理機能開発の裏側 高速にSaaS連携を実現したチームのAI活用編
atzzcokek
0
190
Media Capture and Streams: W3C仕様と現場での知見
nowaki28
0
130
Level up your Gemini CLI - D&D Style!
palladius
1
170
AIコーディングエージェント(Manus)
kondai24
0
120
【CA.ai #3】Google ADKを活用したAI Agent開発と運用知見
harappa80
0
260
tparseでgo testの出力を見やすくする
utgwkk
1
130
All(?) About Point Sets
hole
0
260
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
5
3.3k
開発に寄りそう自動テストの実現
goyoki
1
380
TVerのWeb内製化 - 開発スピードと品質を両立させるまでの道のり
techtver
PRO
3
1.4k
dotfiles 式年遷宮 令和最新版
masawada
1
670
全員アーキテクトで挑む、 巨大で高密度なドメインの紐解き方
agatan
8
18k
Featured
See All Featured
The Cost Of JavaScript in 2023
addyosmani
55
9.3k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Agile that works and the tools we love
rasmusluckow
331
21k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Bootstrapping a Software Product
garrettdimon
PRO
307
120k
Code Review Best Practice
trishagee
73
19k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Music & Morning Musume
bryan
46
7k
KATA
mclloyd
PRO
32
15k
A better future with KSS
kneath
240
18k
Transcript
)PXXFVTF(16TJO$PPLQBE :VJDIJSP4PNFZB!$PPLQBE*OD3%
‣ Yuichiro Someya (ayemos) ‣ github.com/ayemos ‣ Machine Learning Enginner
@ Cookpad Inc. # 2016(new grads) ~ Current
None
‣ 0VS(16FOWJSPONFOU )PXXFVUJMJ[F"84T(16JOTUBODFT )PXXFLFFQPVSTDBMBCJMJUZPGUFBNTJO3%
/7*%*"7
All-in on AWS since 2011
All-in on AWS since 2011 Amazon RDS (Relational Data)
Amazon Redshift (Data Warehouse)
All-in on AWS since 2011 Amazon S3 (Object Storage)
Amazon RDS (Relational Data) Amazon Redshift (Data Warehouse)
All-in on AWS since 2011 Amazon S3 (Object Storage)
Amazon RDS (Relational Data) Amazon Redshift (Data Warehouse) 7JSUVBM1SJWBUF$MPVE
7JSUVBM1SJWBUF$MPVE All-in on AWS since 2011 Amazon S3 (Object
Storage) Amazon RDS (Relational Data) Amazon Redshift (Data Warehouse) Amazon EC2 (Computation)
‣ $6%" ‣ DV%//
‣ $6%" ‣ DV%// (Snapshot)
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
5FNQMBUF CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 5FNQMBUF KTPO
QBDLFSCVJME
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
‣ $6%" ‣ DV%// (Snapshot) ‣ $6%" ‣ DV%//
IUUQTBXTBNB[PODPNBNB[POBJBNJT CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
AWS Lambda (Function) Stop! Idle? (Hourly)
CUDA9 cuDNN7 CUDA8 cuDNN7 CUDA8 cuDNN6 ... `ssh` ...
AWS Lambda (Function) Stop! Idle? (Hourly)
‣ 0OEFNBOE(16XPSLCFODIFT 6UJMJ[F".*UPNVMUJQMFXPSLCFODIFOWJSPONFOUT 1BDLFSNBLFTJUFBTJFSUPVQEBUFBOENPSFTUBCMF 0QFSBUFWJB$IBUCPU 8SBQVQ