Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習をスモールスタートさせる方法 / small machine learning
Search
Yuichiro Someya
November 06, 2018
Programming
3
2k
機械学習をスモールスタートさせる方法 / small machine learning
https://d3m.connpass.com/event/104858/
Yuichiro Someya
November 06, 2018
Tweet
Share
More Decks by Yuichiro Someya
See All by Yuichiro Someya
にんげんがさき 基盤はあと / Developers over ML platform
ayemos
0
13k
アットホームな分析基盤の作り方 / Homemade Machine Learning Toolkits
ayemos
1
940
サービス開発、機械学習、クラウド / the trinity of machine learning
ayemos
0
3.3k
成長を止めない機械学習のやり方 / Don't stop 'til you get enough (data).
ayemos
15
5.1k
AWS で加速する機械学習 / Accelerate Machine Learning with AWS
ayemos
1
310
クックパッドの機械学習基盤 2018 / Machine Learning Platform at Cookpad ~ 2018 ~
ayemos
15
19k
PyTorchとCaffe2とONNXと深層学習モデルのデプロイについて
ayemos
1
2.9k
クックパッドにおけるAWS GPUインスタンスの利用事例 / Powering by AWS GPU Instances in Cookpad Inc
ayemos
0
390
How we use GPUs in Cookpad
ayemos
0
120
Other Decks in Programming
See All in Programming
距離関数を極める! / SESSIONS 2024
gam0022
0
280
RubyLSPのマルチバイト文字対応
notfounds
0
120
ローコードSaaSのUXを向上させるためのTypeScript
taro28
1
610
AWS IaCの注目アップデート 2024年10月版
konokenj
3
3.3k
Arm移行タイムアタック
qnighy
0
300
광고 소재 심사 과정에 AI를 도입하여 광고 서비스 생산성 향상시키기
kakao
PRO
0
170
とにかくAWS GameDay!AWSは世界の共通言語! / Anyway, AWS GameDay! AWS is the world's lingua franca!
seike460
PRO
1
860
アジャイルを支えるテストアーキテクチャ設計/Test Architecting for Agile
goyoki
9
3.3k
NSOutlineView何もわからん:( 前編 / I Don't Understand About NSOutlineView :( Pt. 1
usagimaru
0
330
最新TCAキャッチアップ
0si43
0
140
Pinia Colada が実現するスマートな非同期処理
naokihaba
4
220
Enabling DevOps and Team Topologies Through Architecture: Architecting for Fast Flow
cer
PRO
0
310
Featured
See All Featured
RailsConf 2023
tenderlove
29
900
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
Designing for humans not robots
tammielis
250
25k
Building a Scalable Design System with Sketch
lauravandoore
459
33k
Code Review Best Practice
trishagee
64
17k
Teambox: Starting and Learning
jrom
133
8.8k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
26
1.4k
How GitHub (no longer) Works
holman
310
140k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
250
21k
VelocityConf: Rendering Performance Case Studies
addyosmani
325
24k
Transcript
ػցֶशΛεϞʔϧελʔτ ͤ͞Δํ๏ ΫοΫύουגࣜձࣾછ୩༔Ұ %BUB%SJWFO%FWFMPQFS.FFUVQ
ࣗݾհ છ୩༔Ұ<BZFNPT> ΫοΫύουגࣜձࣾ৽ଔೖࣾ ݚڀ։ൃ෦ΤϯδχΞ ػցֶशج൫ɺը૾ೝࣝܥͷݚڀ։ൃ
ΫοΫύουͱػցֶश ΫοΫύουݚڀ։ൃ෦ ݄ʹൃ ࢲ͕ଐ͞Εͨͷಉ࣌ظ ໊࣌ͷϝϯόʔ
݄ݱࡏࠃʹ໊ ւ֎ʹ໊ ʰສͷϨγϐσʔλΛ׆༻͠ɺϢʔβʔʹՁΛಧ͚Δʱ
ࠓͷτϐοΫ ػցֶश ओʹਂֶश Λ εϞʔϧελʔτͤ͞Δํ๏ ͳͥεϞʔϧελʔτ͕ඞཁ͔ Ͳ͏Δͷ͔
ࠓͷτϐοΫ ٕज़ʗέʔεελσΟগͳΊɺ ίϯηϓτଟΊͷʹͳΓ·͢ աڈʹٕͨ͠ज़తͳͪ͜Β IUUQTTQFBLFSEFDLDPNBZFNPT
ਂֶशͱεϞʔϧελʔτ
ਂֶशͱεϞʔϧελʔτ 4NBMMTUBSU εϞʔϧελʔτ 4UBSUTNBMM
lUIJOLJOHCJH TUBSUJOHTNBMM BOETDBMJOHGBTUz IUUQTKJNDBSSPMMDPNJOOPWBUJPOUIJOLCJHTUBSUTNBMMTDBMFGBTU
5IJOLCJHJEFOUJGZUIFMPOHUFSNUSBOTGPSNBUJWFUSFOET JODMVEJOHTJHOJpDBOUJOEVTUSZDIBOHF CVTJOFTTNPEFM EJTSVQUJPO ྫ͑ɺʮσΟʔϓϥʔχϯάΛ͍ͬͯ͘ʯͱܾΊΔ
4UBSUTNBMM1JDLBOVNCFSPGTNBMM FYQFSJFOUJBM PSJFOUBUFEQSPKFDUTUPCFHJO5IJTXJMMHJWFZPVCFUUFS EFQUIPGJOTJHIU ͍ͬͯͨ͘Ίʹখ͍͞ϓϩδΣΫτΛ͜ͳ͠ɺֶͿ
4DBMFGBTU%FUFSNJOFXIJDIBSFBTOFFEUPCFUBDLMFE pSTUJOUFSNTPGNPWJOHGPSXBSE%FWFMPQUIFBCJMJUZUP UBLFZPVSbQSPUPUZQJOH`PGTLJMMTFOIBODFNFOUGSPNUIF TNBMMTDBMFQSPKFDUTJOUPGVMMqFEHFEPQFSBUJPOT ༗ͳϓϩδΣΫτΛબͼɺຊ֨తʹՔಇͤ͞Δ
5IJOLCJH ྫ͑ ʮਂֶशΛ͍ͬͯ͘ʯͱܾΊΔ 4UBSUTNBMMখ͍͞ϓϩδΣΫτ ࣮ݧ Λ͜ͳ͠ɺֶͿ 4DBMFGBTU༗ͳϓϩδΣΫτΛຊ֨తʹՔಇͤ͞Δ
ਂֶशͱ4UBSUTNBMM 4UBSUTNBMMখ͍͞ϓϩδΣΫτΛ͜ͳ͠ɺֶͿ ਂֶशͱ4UBSUTNBMMͷ૬ੑ͕͍͍ͱࢥΘͤΔ ৽ٕज़Ͱ͋ΓɺԿ͕ͲΕ͘Β͍Ͱ͖Δͷ͔प͞Ε͍ͯͳ͍ ෦తࢼߦࡨޡ͕ඞཁ
લྫͳ͍ͷͰɺޭ ྫϢʔβʔͷՁʹܨ͕Δ ͢Δͷ͔͔Βͳ͍ ֎෦తʏ ٕज़ελοΫͱͯ͠ݟͯૣख़Ͱ͋Δ ӡ༻ͷٕज़తशख़͕ඞཁ
ਂֶशͱ4UBSUTNBMM ҰํͰɺ4UBSUTNBMM͕Γʹͦ͘͏ͳҰ໘͋Δ େྔͷσʔλͱܭࢉث͕ඞཁ ӡ༻ίετ͕ߴ͍ ࠾༻େมͦ͏
IUUQTBJHPPHMFSFTFBSDIQVCTQVC
ਂֶशͱ4UBSUTNBMM ҰํͰɺ4UBSUTNBMM͕Γʹͦ͘͏ͳҰ໘͋Δ େྔͷσʔλͱܭࢉث͕ඞཁ ӡ༻ίετ͕ߴ͍ ࠾༻େมͦ͏
IUUQTBJHPPHMFSFTFBSDIQVCTQVC .-0QTͰ ͕ ղܾͰ͖ͦ͏ͳ
ͱ͜ΖͰ.-0QTͱ ڪΒ͘%FW0QTಉ༷͕ͩ ·ͩఆٛෆ໌ྎ ֶशΞϧΰϦζϜҎ֎ʁ %FW0QTͷ.-൛ʁ ػցֶश͕ɺιϑτΣΞ։ൃࣄۀʹ͓͍ͯՁΛੜΈग़͢͜ͱͷͰ͖Δ
ٕज़ελοΫͰ͋Γଓ͚ΔͨΊʹඞཁͳٕज़ ʰӡ༻ίετͷݮʱ͚͕ͩతͰͳ͍ ྫਂֶशΛεϞʔϧελʔτͤ͞Δҝͷ.-0QT
͜͜·Ͱ·ͱΊ ਂֶशΛεϞʔϧελʔτ͍ͤͨ͞ ͦͷͨΊʹ.-0QTͷϓϥΫςΟεΛ׆͔ͤͦ͏
εϞʔϧελʔτͷͨΊͷ.-0QT ΫοΫύουͷ߹
ܭࢉثڥ ݄ͷ ݚڀ։ൃ෦һਓ དྷि͔ΒΠϯλʔϯΛਓड͚ೖΕ "84ຊ൪ΞΧϯτʹྑͷ(16Πϯελϯε HYMBSHF ͕
৽ن࡞ͷʹίϛϡχέʔγϣϯ͕ൃੜ ݚڀ։ൃ༻ΞΧϯτΛൃߦ͠ɺӡ༻ͷੵۃతͳԽ
ܭࢉثڥ ݚڀ։ൃ༻ΞΧϯτͷΠϯϑϥΛίʔυཧ ຊ൪ΞΧϯτͷϓϥΫςΟε %FW0QT ʹ฿͏ $IBU#PUΛ௨ͯ͠(16ΠϯελϯεΛ্ཱͪ͛ΔΈΛ࣮
Πϯελϯεͷ࡞ɺٳΠϯελϯεͷࣗಈఀࢭΛඋ ࣮࣭ (16Πϯελϯεݐͯ์Λ࣮ݱ ͍ͭͰ࣮ݧεϞʔϧελʔτ
ܭࢉثڥ ݚڀ։ൃ༻ΞΧϯτͷΠϯϑϥΛίʔυཧ ຊ൪ΞΧϯτͷϓϥΫςΟε %FW0QT ʹ฿͏ $IBU#PUΛ௨ͯ͠(16ΠϯελϯεΛ্ཱͪ͛ΔΈΛ࣮
Πϯελϯεͷ࡞ɺٳΠϯελϯεͷࣗಈఀࢭΛඋ ࣮࣭ (16Πϯελϯεݐͯ์Λ࣮ݱ ͍ͭͰ࣮ݧεϞʔϧελʔτ .-0QT
ػցֶशج൫ͱ4UBSUTNBMM ػցֶशج൫·ͨ৽͍͠ྖҬ4UBSUTNBMM͕ඞཁ ඞཁͳͷج൫ٕज़ͷεϞʔϧͳࢼߦࡨޡ ྫ͑ج൫୲Λ3%ʹஔͯ͠ΈΔ LVCFqPXͳͲͷϓϥοτϑΥʔϜ৫γνϡΤʔγϣϯ ͱͷ૬ੑ͕͋Δ
ՄೳͰ͋Ε ੵۃతʹࢼ͢ɺͬͯΈΔͱΑͦ͞͏
༨ஊʙݕࡧγεςϜʹֶͿʙ ʮσʔλͷྲྀΕ͕͋ΓɺγεςϜ͕σʔλͱڞʹ͢ΔΑ͏ͳγ εςϜʯͱ͍͑ʁ ݕࡧγεςϜͷӡ༻ϓϥΫςΟε͔Β ֶͿ͜ͱଟͦ͏ ΠϯσοΫεͷߏஙɺࣙॻσʔλͷཧ IUUQTXXXBNB[PODPKQ#VJMEJOH*OUFMMJHFOU4ZTUFNT-FBSOJOH&OHJOFFSJOHFCPPLEQ##82)3
·ͱΊ ਂֶशεϞʔϧελʔτ͍ͤͨ͞ ৽͍ٕ͠ज़ͷՄೳੑ ͱ੍ Λ࡞Γͳ͕ΒֶͿ εϞʔϧελʔτ .-0QTͷదͳར༻εϞʔϧελʔτΛॿ͚Δ