Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
機械学習をスモールスタートさせる方法 / small machine learning
Search
Yuichiro Someya
November 06, 2018
Programming
3
2.1k
機械学習をスモールスタートさせる方法 / small machine learning
https://d3m.connpass.com/event/104858/
Yuichiro Someya
November 06, 2018
Tweet
Share
More Decks by Yuichiro Someya
See All by Yuichiro Someya
にんげんがさき 基盤はあと / Developers over ML platform
ayemos
0
14k
アットホームな分析基盤の作り方 / Homemade Machine Learning Toolkits
ayemos
1
1k
サービス開発、機械学習、クラウド / the trinity of machine learning
ayemos
0
3.5k
成長を止めない機械学習のやり方 / Don't stop 'til you get enough (data).
ayemos
15
5.3k
AWS で加速する機械学習 / Accelerate Machine Learning with AWS
ayemos
1
330
クックパッドの機械学習基盤 2018 / Machine Learning Platform at Cookpad ~ 2018 ~
ayemos
15
21k
PyTorchとCaffe2とONNXと深層学習モデルのデプロイについて
ayemos
1
3k
クックパッドにおけるAWS GPUインスタンスの利用事例 / Powering by AWS GPU Instances in Cookpad Inc
ayemos
0
440
How we use GPUs in Cookpad
ayemos
0
170
Other Decks in Programming
See All in Programming
AIコーディングエージェント(NotebookLM)
kondai24
0
120
Media Capture and Streams: W3C仕様と現場での知見
nowaki28
0
130
新卒エンジニアのプルリクエスト with AI駆動
fukunaga2025
0
140
無秩序からの脱却 / Emergence from chaos
nrslib
2
12k
Herb to ReActionView: A New Foundation for the View Layer @ San Francisco Ruby Conference 2025
marcoroth
0
240
MAP, Jigsaw, Code Golf 振り返り会 by 関東Kaggler会|Jigsaw 15th Solution
hasibirok0
0
210
Level up your Gemini CLI - D&D Style!
palladius
1
170
ソフトウェア設計の課題・原則・実践技法
masuda220
PRO
24
21k
認証・認可の基本を学ぼう前編
kouyuume
0
150
AIコーディングエージェント(skywork)
kondai24
0
110
宅宅自以為的浪漫:跟 AI 一起為自己辦的研討會寫一個售票系統
eddie
0
470
Evolving NEWT’s TypeScript Backend for the AI-Driven Era
xpromx
0
260
Featured
See All Featured
GraphQLとの向き合い方2022年版
quramy
50
14k
How GitHub (no longer) Works
holman
316
140k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Into the Great Unknown - MozCon
thekraken
40
2.2k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.6k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Code Review Best Practice
trishagee
73
19k
The Language of Interfaces
destraynor
162
25k
Transcript
ػցֶशΛεϞʔϧελʔτ ͤ͞Δํ๏ ΫοΫύουגࣜձࣾછ୩༔Ұ %BUB%SJWFO%FWFMPQFS.FFUVQ
ࣗݾհ છ୩༔Ұ<BZFNPT> ΫοΫύουגࣜձࣾ৽ଔೖࣾ ݚڀ։ൃ෦ΤϯδχΞ ػցֶशج൫ɺը૾ೝࣝܥͷݚڀ։ൃ
ΫοΫύουͱػցֶश ΫοΫύουݚڀ։ൃ෦ ݄ʹൃ ࢲ͕ଐ͞Εͨͷಉ࣌ظ ໊࣌ͷϝϯόʔ
݄ݱࡏࠃʹ໊ ւ֎ʹ໊ ʰສͷϨγϐσʔλΛ׆༻͠ɺϢʔβʔʹՁΛಧ͚Δʱ
ࠓͷτϐοΫ ػցֶश ओʹਂֶश Λ εϞʔϧελʔτͤ͞Δํ๏ ͳͥεϞʔϧελʔτ͕ඞཁ͔ Ͳ͏Δͷ͔
ࠓͷτϐοΫ ٕज़ʗέʔεελσΟগͳΊɺ ίϯηϓτଟΊͷʹͳΓ·͢ աڈʹٕͨ͠ज़తͳͪ͜Β IUUQTTQFBLFSEFDLDPNBZFNPT
ਂֶशͱεϞʔϧελʔτ
ਂֶशͱεϞʔϧελʔτ 4NBMMTUBSU εϞʔϧελʔτ 4UBSUTNBMM
lUIJOLJOHCJH TUBSUJOHTNBMM BOETDBMJOHGBTUz IUUQTKJNDBSSPMMDPNJOOPWBUJPOUIJOLCJHTUBSUTNBMMTDBMFGBTU
5IJOLCJHJEFOUJGZUIFMPOHUFSNUSBOTGPSNBUJWFUSFOET JODMVEJOHTJHOJpDBOUJOEVTUSZDIBOHF CVTJOFTTNPEFM EJTSVQUJPO ྫ͑ɺʮσΟʔϓϥʔχϯάΛ͍ͬͯ͘ʯͱܾΊΔ
4UBSUTNBMM1JDLBOVNCFSPGTNBMM FYQFSJFOUJBM PSJFOUBUFEQSPKFDUTUPCFHJO5IJTXJMMHJWFZPVCFUUFS EFQUIPGJOTJHIU ͍ͬͯͨ͘Ίʹখ͍͞ϓϩδΣΫτΛ͜ͳ͠ɺֶͿ
4DBMFGBTU%FUFSNJOFXIJDIBSFBTOFFEUPCFUBDLMFE pSTUJOUFSNTPGNPWJOHGPSXBSE%FWFMPQUIFBCJMJUZUP UBLFZPVSbQSPUPUZQJOH`PGTLJMMTFOIBODFNFOUGSPNUIF TNBMMTDBMFQSPKFDUTJOUPGVMMqFEHFEPQFSBUJPOT ༗ͳϓϩδΣΫτΛબͼɺຊ֨తʹՔಇͤ͞Δ
5IJOLCJH ྫ͑ ʮਂֶशΛ͍ͬͯ͘ʯͱܾΊΔ 4UBSUTNBMMখ͍͞ϓϩδΣΫτ ࣮ݧ Λ͜ͳ͠ɺֶͿ 4DBMFGBTU༗ͳϓϩδΣΫτΛຊ֨తʹՔಇͤ͞Δ
ਂֶशͱ4UBSUTNBMM 4UBSUTNBMMখ͍͞ϓϩδΣΫτΛ͜ͳ͠ɺֶͿ ਂֶशͱ4UBSUTNBMMͷ૬ੑ͕͍͍ͱࢥΘͤΔ ৽ٕज़Ͱ͋ΓɺԿ͕ͲΕ͘Β͍Ͱ͖Δͷ͔प͞Ε͍ͯͳ͍ ෦తࢼߦࡨޡ͕ඞཁ
લྫͳ͍ͷͰɺޭ ྫϢʔβʔͷՁʹܨ͕Δ ͢Δͷ͔͔Βͳ͍ ֎෦తʏ ٕज़ελοΫͱͯ͠ݟͯૣख़Ͱ͋Δ ӡ༻ͷٕज़తशख़͕ඞཁ
ਂֶशͱ4UBSUTNBMM ҰํͰɺ4UBSUTNBMM͕Γʹͦ͘͏ͳҰ໘͋Δ େྔͷσʔλͱܭࢉث͕ඞཁ ӡ༻ίετ͕ߴ͍ ࠾༻େมͦ͏
IUUQTBJHPPHMFSFTFBSDIQVCTQVC
ਂֶशͱ4UBSUTNBMM ҰํͰɺ4UBSUTNBMM͕Γʹͦ͘͏ͳҰ໘͋Δ େྔͷσʔλͱܭࢉث͕ඞཁ ӡ༻ίετ͕ߴ͍ ࠾༻େมͦ͏
IUUQTBJHPPHMFSFTFBSDIQVCTQVC .-0QTͰ ͕ ղܾͰ͖ͦ͏ͳ
ͱ͜ΖͰ.-0QTͱ ڪΒ͘%FW0QTಉ༷͕ͩ ·ͩఆٛෆ໌ྎ ֶशΞϧΰϦζϜҎ֎ʁ %FW0QTͷ.-൛ʁ ػցֶश͕ɺιϑτΣΞ։ൃࣄۀʹ͓͍ͯՁΛੜΈग़͢͜ͱͷͰ͖Δ
ٕज़ελοΫͰ͋Γଓ͚ΔͨΊʹඞཁͳٕज़ ʰӡ༻ίετͷݮʱ͚͕ͩతͰͳ͍ ྫਂֶशΛεϞʔϧελʔτͤ͞Δҝͷ.-0QT
͜͜·Ͱ·ͱΊ ਂֶशΛεϞʔϧελʔτ͍ͤͨ͞ ͦͷͨΊʹ.-0QTͷϓϥΫςΟεΛ׆͔ͤͦ͏
εϞʔϧελʔτͷͨΊͷ.-0QT ΫοΫύουͷ߹
ܭࢉثڥ ݄ͷ ݚڀ։ൃ෦һਓ དྷि͔ΒΠϯλʔϯΛਓड͚ೖΕ "84ຊ൪ΞΧϯτʹྑͷ(16Πϯελϯε HYMBSHF ͕
৽ن࡞ͷʹίϛϡχέʔγϣϯ͕ൃੜ ݚڀ։ൃ༻ΞΧϯτΛൃߦ͠ɺӡ༻ͷੵۃతͳԽ
ܭࢉثڥ ݚڀ։ൃ༻ΞΧϯτͷΠϯϑϥΛίʔυཧ ຊ൪ΞΧϯτͷϓϥΫςΟε %FW0QT ʹ฿͏ $IBU#PUΛ௨ͯ͠(16ΠϯελϯεΛ্ཱͪ͛ΔΈΛ࣮
Πϯελϯεͷ࡞ɺٳΠϯελϯεͷࣗಈఀࢭΛඋ ࣮࣭ (16Πϯελϯεݐͯ์Λ࣮ݱ ͍ͭͰ࣮ݧεϞʔϧελʔτ
ܭࢉثڥ ݚڀ։ൃ༻ΞΧϯτͷΠϯϑϥΛίʔυཧ ຊ൪ΞΧϯτͷϓϥΫςΟε %FW0QT ʹ฿͏ $IBU#PUΛ௨ͯ͠(16ΠϯελϯεΛ্ཱͪ͛ΔΈΛ࣮
Πϯελϯεͷ࡞ɺٳΠϯελϯεͷࣗಈఀࢭΛඋ ࣮࣭ (16Πϯελϯεݐͯ์Λ࣮ݱ ͍ͭͰ࣮ݧεϞʔϧελʔτ .-0QT
ػցֶशج൫ͱ4UBSUTNBMM ػցֶशج൫·ͨ৽͍͠ྖҬ4UBSUTNBMM͕ඞཁ ඞཁͳͷج൫ٕज़ͷεϞʔϧͳࢼߦࡨޡ ྫ͑ج൫୲Λ3%ʹஔͯ͠ΈΔ LVCFqPXͳͲͷϓϥοτϑΥʔϜ৫γνϡΤʔγϣϯ ͱͷ૬ੑ͕͋Δ
ՄೳͰ͋Ε ੵۃతʹࢼ͢ɺͬͯΈΔͱΑͦ͞͏
༨ஊʙݕࡧγεςϜʹֶͿʙ ʮσʔλͷྲྀΕ͕͋ΓɺγεςϜ͕σʔλͱڞʹ͢ΔΑ͏ͳγ εςϜʯͱ͍͑ʁ ݕࡧγεςϜͷӡ༻ϓϥΫςΟε͔Β ֶͿ͜ͱଟͦ͏ ΠϯσοΫεͷߏஙɺࣙॻσʔλͷཧ IUUQTXXXBNB[PODPKQ#VJMEJOH*OUFMMJHFOU4ZTUFNT-FBSOJOH&OHJOFFSJOHFCPPLEQ##82)3
·ͱΊ ਂֶशεϞʔϧελʔτ͍ͤͨ͞ ৽͍ٕ͠ज़ͷՄೳੑ ͱ੍ Λ࡞Γͳ͕ΒֶͿ εϞʔϧελʔτ .-0QTͷదͳར༻εϞʔϧελʔτΛॿ͚Δ