Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
サービス開発、機械学習、クラウド / the trinity of machine learning
Search
Yuichiro Someya
May 11, 2018
Programming
0
3.4k
サービス開発、機械学習、クラウド / the trinity of machine learning
Qiita × Microsoft 共催MeetUp
https://connpass.com/event/86280/
Yuichiro Someya
May 11, 2018
Tweet
Share
More Decks by Yuichiro Someya
See All by Yuichiro Someya
にんげんがさき 基盤はあと / Developers over ML platform
ayemos
0
14k
機械学習をスモールスタートさせる方法 / small machine learning
ayemos
3
2k
アットホームな分析基盤の作り方 / Homemade Machine Learning Toolkits
ayemos
1
980
成長を止めない機械学習のやり方 / Don't stop 'til you get enough (data).
ayemos
15
5.2k
AWS で加速する機械学習 / Accelerate Machine Learning with AWS
ayemos
1
320
クックパッドの機械学習基盤 2018 / Machine Learning Platform at Cookpad ~ 2018 ~
ayemos
15
20k
PyTorchとCaffe2とONNXと深層学習モデルのデプロイについて
ayemos
1
3k
クックパッドにおけるAWS GPUインスタンスの利用事例 / Powering by AWS GPU Instances in Cookpad Inc
ayemos
0
420
How we use GPUs in Cookpad
ayemos
0
150
Other Decks in Programming
See All in Programming
Kotlin エンジニアへ送る:Swift 案件に参加させられる日に備えて~似てるけど色々違う Swift の仕様 / from Kotlin to Swift
lovee
1
260
Julia という言語について (FP in Julia « SIDE: F ») for 関数型まつり2025
antimon2
3
980
VS Code Update for GitHub Copilot
74th
1
410
来たるべき 8.0 に備えて React 19 新機能と React Router 固有機能の取捨選択とすり合わせを考える
oukayuka
2
860
0626 Findy Product Manager LT Night_高田スライド_speaker deck用
mana_takada
0
110
Azure AI Foundryではじめてのマルチエージェントワークフロー
seosoft
0
140
deno-redisの紹介とJSRパッケージの運用について (toranoana.deno #21)
uki00a
0
150
Railsアプリケーションと パフォーマンスチューニング ー 秒間5万リクエストの モバイルオーダーシステムを支える事例 ー Rubyセミナー 大阪
falcon8823
4
960
Systèmes distribués, pour le meilleur et pour le pire - BreizhCamp 2025 - Conférence
slecache
0
110
なぜ適用するか、移行して理解するClean Architecture 〜構造を超えて設計を継承する〜 / Why Apply, Migrate and Understand Clean Architecture - Inherit Design Beyond Structure
seike460
PRO
1
690
AWS CDKの推しポイント 〜CloudFormationと比較してみた〜
akihisaikeda
3
310
イベントストーミング図からコードへの変換手順 / Procedure for Converting Event Storming Diagrams to Code
nrslib
1
440
Featured
See All Featured
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
657
60k
How To Stay Up To Date on Web Technology
chriscoyier
790
250k
Optimizing for Happiness
mojombo
379
70k
Optimising Largest Contentful Paint
csswizardry
37
3.3k
Code Reviewing Like a Champion
maltzj
524
40k
Mobile First: as difficult as doing things right
swwweet
223
9.7k
Fireside Chat
paigeccino
37
3.5k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
45
7.4k
Building Applications with DynamoDB
mza
95
6.5k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
50k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
181
53k
Transcript
αʔϏε։ൃɺػցֶशɺΫϥυ !2JJUBº.JDSPTPGUڞ࠵.FFU6Q
ࣗݾհ છ୩༔Ұ<:VJDIJSP4PNFZB> ౦ژۀେֶେֶӃܭࢉֶम࢜ ΫοΫύουגࣜձࣾݚڀ։ൃ෦ ϦαʔνΤϯδχΞ݄d ػցֶशج൫ͷඋɺϨγϐσʔλͷੳ
UXJUUFSDPN!BZFNPT@Z HJUIVCDPNBZFNPT XXXBZFNPTNF TQFBLFSEFDLDPNBZFNPT
None
ʰιϑτΣΞΛ༻͍ͨαʔϏε։ൃͱ͍͏ ଟ݁ߏ ۙͳ ݱ͔Βػցֶशͱ͍͏ٕज़ΛݟͭΊɺ͖߹͍ํΛߟ͑Δճʱ ओͳର ػցֶशΛͬͯސ٬ʹՁΛಧ͚͍ͨਓ
?Έ͍ͨͳਓ͕ճΓʹ͍Δਓ
࣍ ͍ΖΜͳػցֶश αʔϏε։ൃͱػցֶश Ϋϥυͱ͍͏બࢶ ਓೳϒʔϜͱݬ໓ظ
࣍ ͍ΖΜͳػցֶश αʔϏε։ൃͱػցֶश Ϋϥυͱ͍͏બࢶ ਓೳϒʔϜͱݬ໓ظ
͍ΖΜͳػցֶश ػցֶशҰൃউෛͷιϦϡʔγϣϯʗ։ൃ ྫࣗಈӡసɺݕࡧ༁ ٕज़తഉଞੑͷཁҼͱͯ͠ͷػցֶश େنͳࣗಈԽʹΑΔܻഒͷվળنɺͱ͔ͦ͏͍͏ͭ
͋·ΓۙͰͳ͍
͍ΖΜͳػցֶश ػցֶशΛར༻ͨ͠αʔϏεͷ։ൃʗվળ ྫهࣄͷࣗಈྨϨίϝϯσʔγϣϯ ࣗࣾαʔϏεͰ ͪ͜ΒϒʔϜʹݗҾ͞ΕΔܗͰനԽ͍ͯ͠Δ
ਓೳػցֶशαʔϏε։ൃͱʁ ׂͬͪ͜ͱۙɻࠓ͜͜ͷΛ͠·͢ɻ
࣍ ͍ΖΜͳػցֶश αʔϏε։ൃͱػցֶश Ϋϥυͱ͍͏બࢶ ਓೳϒʔϜͱݬ໓ظ
αʔϏε։ൃͱػցֶश ιϑτΣΞ αʔϏε։ൃͰػցֶशΛ͍͍ͨͱ͍͏ χʔζ͕૿͍͑ͯΔ ਓೳϒʔϜʹґΔͱ͜Ζ͕େ͖͍ ଟ
ʰػցֶशΛ͏ʱͱʁ
ʰػցֶशΛ͏ʱͱ ػցֶशʹΑΔαʔϏεՁͷग़ʗ্ ྫهࣄͷࣗಈྨϨίϝϯσʔγϣϯ ࣗࣾαʔϏεͰ ͜ΕΛɺαʔϏε։ൃͱಉ͡ඨͰΖ͏ͱ͍͏
ۃΛݴ͑ʰϘλϯͷ৭ʗେ͖͞Λม͑Δʱͷͱಉ͡ ։ൃϓϩηεɺ։ൃίετɺٕज़తෛ࠴ɺʑ͕ొ
ʰػցֶशΛ͏ʱͱ ػցֶशʹΑΔαʔϏεՁͷग़ʗ্ ྫهࣄͷࣗಈྨϨίϝϯσʔγϣϯ ࣗࣾαʔϏεͰ ͜ΕΛɺαʔϏε։ൃͱಉ͡ඨͰΖ͏ͱ͍͏
ۃΛݴ͑ʰϘλϯͷ৭ʗେ͖͞Λม͑Δʱͷͱಉ͡ ։ൃϓϩηεɺ։ൃίετɺٕज़తෛ࠴ɺʑ͕ొ
ਗ਼͘ਖ਼͘͠ػցֶशΛ͏ͨΊʹ ։ൃʹ͔͔ΔظؒͱίετʁಘΒΕΔՁʁ ແɺϒʔϜΛ౿·͑ͯଟΊʹࢿΛ͢Δͷͭͷબࢶ αʔϏεͷվળεϐʔυʹ͍ͭͯདྷΕΔʁ དྷΕͳ͍ͱͨ͠ΒͲΕ͘Β͍Ϊϟοϓ͕͋Δʁ ӡ༻ίετͲΕ͘Β͍ʁ
ਗ਼͘ਖ਼͘͠ػցֶशΛ͏ͨΊʹ ։ൃʹ͔͔ΔظؒͱίετʁಘΒΕΔՁʁ ແɺϒʔϜΛ౿·͑ͯଟΊʹࢿΛ͢Δͷͭͷબࢶ αʔϏεͷվળεϐʔυʹ͍ͭͯདྷΕΔʁ དྷΕͳ͍ͱͨ͠ΒͲΕ͘Β͍Ϊϟοϓ͕͋Δʁ ӡ༻ίετͲΕ͘Β͍ʁ
ʰਫ਼ʱͱʰՁʱ ࢀߟIUUQTXXXTMJEFTIBSFOFU5PLPSPUFO/BLBZBNBTT αʔϏεͷՁ' ػցֶशϞσϧͷਫ਼ ͱͨ࣌͠ɺ 'ͲͷΑ͏ͳܗ͔ʁ ͦΕΛ౿·͑ͯͲͷΑ͏ͳظΛઃఆ͢Δ͔
ग़དྷΕαʔϏεͷاըʗઃܭΛ͢Δ࣌ʹ͜ΕΛݕ౼͖͢ αʔϏεͷվળϓϩηεʹػցֶशϞσϧ͕ר͖ࠐ·ΕΔ
ʰਫ਼ʱͱʰՁʱ ࢀߟIUUQTXXXTMJEFTIBSFOFU5PLPSPUFO/BLBZBNBTT αʔϏεͷՁ' ػցֶशϞσϧͷਫ਼ ͱͨ࣌͠ɺ 'ͲͷΑ͏ͳܗ͔ʁ ͦΕΛ౿·͑ͯͲͷΑ͏ͳظΛઃఆ͢Δ͔
ग़དྷΕαʔϏεͷاըʗઃܭΛ͢Δ࣌ʹ͜ΕΛݕ౼͖͢ αʔϏεͷվળϓϩηεʹػցֶशϞσϧ͕ר͖ࠐ·ΕΔ
ਗ਼͘ਖ਼͘͠ػցֶशΛ͏ͨΊʹ ։ൃʹ͔͔ΔظؒͱίετʁಘΒΕΔՁʁ ແɺϒʔϜΛ౿·͑ͯଟΊʹࢿΛ͢Δͷͭͷબࢶ αʔϏεͷվળεϐʔυʹ͍ͭͯདྷΕΔʁ དྷΕͳ͍ͱͨ͠ΒͲΕ͘Β͍Ϊϟοϓ͕͋Δʁ ӡ༻ίετͲΕ͘Β͍ʁ
ػցֶशͷվળϓϩηε ྫهࣄͷࣗಈྨ ࣗಈهࣄྨثͷΧςΰϦʹ ʰಈʱΛͯ͠Έ͍ͨ σʔλऩूͱੳɺϞσϧͷֶश ͋Δ͔Βिؒ͘Β͍͔͔Δͳ Ϛδ͔
ػցֶशͷվળϓϩηε ྫهࣄͷࣗಈྨ ࣗಈهࣄྨثͷΧςΰϦʹ ʰಈʱΛͯ͠Έ͍ͨ σʔλऩूͱੳɺϞσϧͷֶश ͋Δ͔Βिؒ͘Β͍͔͔Δͳ Ϛδ͔
ػցֶशͷվળϓϩηε ྫهࣄͷࣗಈྨ ࣗಈهࣄྨثͷΧςΰϦʹ ʰಈʱΛͯ͠Έ͍ͨ σʔλऩूͱੳɺϞσϧͷֶश ͋Δ͔Βिؒ͘Β͍͔͔Δͳ Ϛδ͔ αʔϏε։ൃͱϞσϧ։ൃͷ εϐʔυײʹΪϟοϓ͕͋Δ
ௗͷը૾ྨʹ͔͔Βͳ͍͕ʜ
ػցֶशͷվળϓϩηε αʔϏεͷՁ' ػցֶशϞσϧͷਫ਼ αʔϏεʗϞσϧͷվળεϐʔυʹΪϟοϓ͕͋Δ αʔϏε։ൃʹ͓͍ͯհͳίϯϙʔωϯτʹͳΓͭͭ͋Δ
ࣅͨલྫͱͯ͠ݕࡧΤϯδϯͱ͔ʁ
ਗ਼͘ਖ਼͘͠ػցֶशΛ͏ͨΊʹ ։ൃʹ͔͔ΔظؒͱίετʁಘΒΕΔՁʁ ແɺϒʔϜΛ౿·͑ͯଟΊʹࢿΛ͢Δͷͭͷબࢶ αʔϏεͷվળεϐʔυʹ͍ͭͯདྷΕΔʁ དྷΕͳ͍ͱͨ͠ΒͲΕ͘Β͍Ϊϟοϓ͕͋Δʁ ӡ༻ίετͲΕ͘Β͍ʁ
ػցֶशͱӡ༻ίετ ʰػցֶशٕज़తෛ࠴ͷߴརି͠ ҙ༁ ʱ IUUQTSFTFBSDIHPPHMFDPNQVCTQVCIUNM σʔλͷऩूʗੳʗཧ ϞσϧͷσϓϩΠͱϞχλϦϯά
͜͜·Ͱ αʔϏε։ൃͷݱͰػցֶशΛͬͯՁΛੜΈग़͍ͨ͠ ಘΒΕΔՁ' Ϟσϧͷਫ਼ Λྫྷ੩ʹݟͭΊΔ͖ αʔϏε։ൃͷεϐʔυײͷ͔ͤʹͳΒͳ͍Α͏ʹҙ
Ҏ্ ӡ༻ίετΛ౿·͑ͯɺຊʹΔ͖͔ߟ͑Δ
͜͜·Ͱ αʔϏε։ൃͷݱͰػցֶशΛͬͯՁΛੜΈग़͍ͨ͠ ಘΒΕΔՁ' Ϟσϧͷਫ਼ Λྫྷ੩ʹݟͭΊΔ͖ αʔϏε։ൃͷεϐʔυײͷ͔ͤʹͳΒͳ͍Α͏ʹҙ
Ҏ্ ӡ༻ίετΛ౿·͑ͯɺຊʹΔ͖͔ߟ͑Δ ωΨςΟϒ
ػցֶशͱαʔϏεͷվળϓϩηε Ͳ͏͢Εʁ εϐʔυʹΪϟοϓ͕͋Δͱ͍͏ೝࣝ߹Θͤ ϓϩηεͷݟ͠ ͳΔ͘ૣ͘͢Δ ྫػցֶशֶ
ػցֶशֶ ػցֶशʹؔ͢Δ։ൃϓϩηεͷվળ ػցֶशֶݚڀձͱ͍͏ͷग़དྷͨΈ͍ͨ IUUQTTJUFTHPPHMFDPNWJFXTJHNMTF ՝ҙࣝߴ·͍ͬͯΔ
ػցֶशͷӡ༻ίετ Ͳ͏͢Εʁ ӡ༻ίετΛ౿·͑ͯऔΓΉ͖͔ܾΊΔ ແɺϒʔϜΛ౿·͑ͯଟΊʹࢿΛSZ ػցֶशϓϥοτϑΥʔϜͱ͍͏બࢶ
࣍ ͍ΖΜͳػցֶश αʔϏε։ൃͱػցֶश Ϋϥυͱ͍͏બࢶ ਓೳϒʔϜͱݬ໓ظ
ػցֶशϓϥοτϑΥʔϜ ֤छΫϥυϓϥοτϑΥʔϜͷػցֶशαϙʔτ͕നԽͯ͠Δ "NB[PO4BHF.BLFS "[VSF.BDIJOF-FBSOJOH4UVEJP (PPHMF$MPVE.BDIJOF-FBSOJOH&OHJOFʑ
લड़ͨ͠Α͏ͳҙ͕ࣝߴ·͍ͬͯΔʁ
ػցֶशͱΫϥυ .-BB4ɺػցֶशϓϥοτϑΥʔϜͱ͍͏બࢶ͕͋Δ ৽͍͠ͳͷͰ༻ޠ͕৭ʑ ʰ࣮ݧ͔Βຊ൪ӡ༻·Ͱɺ౷߹తͳڥͰػցֶश͢Δʱ
ػցֶशͱΫϥυ .-BB4ɺػցֶशϓϥοτϑΥʔϜͱ͍͏બࢶ͕͋Δ ৽͍͠ͳͷͰ༻ޠ͕৭ʑ ʰ࣮ݧ͔Βຊ൪ӡ༻·Ͱɺ౷߹తͳڥͰػցֶश͢Δʱ σʔλऩूσʔλੳϞσϧߏஙֶशσϓϩΠ ͦΕͧΕͷ࣮ߦͱཧ
֤छσʔλܥαʔϏεͱͷ౷߹ σʔλऩू ੳ άϥϑΟΧϧͳύΠϓϥΠϯߏங Ϟσϧߏங ֶश
࣮ݧ݁ՌͷαʔϏεԽ σϓϩΠ ྫ"[VSF.BDIJOF-FBSOJOH4UVEJP
ػցֶशͱΫϥυ ̋ڞ௨ج൫ԽʹΑͬͯӡ༻ίετ͕ݮग़དྷΔ ̋ج൫্ʹߏங͞ΕΔߴڃͳػೳͷԸܙ͕ड͚ΒΕΔ "#ςετɺਫ਼ϞχλϦϯά ଟɺকདྷతʹɺ
˚طଘϦιʔεͱͷ౷߹ίετ ػցֶशʹݶΒͳ͍ͳͷͰࠓճεϧʔ ˚(FOFSJDBOE&YUFOTJWFͱ͍͏ཁ݅
5'9"5FOTPS'MPX#BTFE1SPEVDUJPO4DBMF.BDIJOF-FBSOJOH1MBUGPSN ΑΓ l5IFNBDIJOFMFBSOJOHQMBUGPSNNVTUCFHFOFSJD FOPVHIUPIBOEMFUIFNPTUDPNNPOTFUPGMFBSOJOH UBTLTBTXFMMBTCFFYUFOTJCMFUPTVQQPSUPOFP⒎ BUZQJDBMVTFDBTFTz IUUQTEMBDNPSHDJUBUJPODGN JE ҙ༁ .-BB4แׅత͔֦ͭுՄೳͰ͋Δ͖
(FOFSJDBOE&YUFOTJWF ʰ࣮ݧ͔Βຊ൪ӡ༻·Ͱɺ౷߹తͳڥͰػցֶशʱ ͠Α͏ͱ͍ͯ͠Δ (FOFSJDͳΔ͘ଟ͘ͷϢʔεέʔεʹ ಁաతʹ ରԠ͍ͨ͠ ྑ͍நԽͱ"1*֦ॆͷؤுΓ
&YUFOTJWFྫ֎తͳέʔεʹରͯ͠ গͳ͍࿑ྗͰ ରԠ͍ͨ͠ ҙͷίʔυΛࠩ͠ࠐΊΔॴΛ༻ҙ͢Δɺͱ͔ʜ
(FOFSJDBOE&YUFOTJWF ʰ࣮ݧ͔Βຊ൪ӡ༻·Ͱɺ౷߹తͳڥͰػցֶशʱ ͠Α͏ͱ͍ͯ͠Δ (FOFSJDͳΔ͘ଟ͘ͷϢʔεέʔεʹ ಁաతʹ ରԠ͍ͨ͠ ྑ͍நԽͱ"1*֦ॆͷؤுΓ
&YUFOTJWFྫ֎తͳέʔεʹରͯ͠ গͳ͍࿑ྗͰ ରԠ͍ͨ͠ ҙͷίʔυΛࠩ͠ࠐΊΔॴΛ༻ҙ͢Δɺͱ͔ʜ ࣮αʔϏεͰͷӡ༻࣮ϓϥοτϑΥʔϜख़ ͕͞ΕΔͱ͜Ζ
(FOFSJDBOE&YUFOTJWF ʰ࣮ݧ͔Βຊ൪ӡ༻·Ͱɺ౷߹తͳڥͰػցֶशʱ ͠Α͏ͱ͍ͯ͠Δ (FOFSJDͳΔ͘ଟ͘ͷϢʔεέʔεʹ ಁաతʹ ରԠ͍ͨ͠ ྑ͍நԽͱ"1*֦ॆͷؤுΓ
&YUFOTJWFྫ֎తͳέʔεʹରͯ͠ গͳ͍࿑ྗͰ ରԠ͍ͨ͠ ҙͷίʔυΛࠩ͠ࠐΊΔॴΛ༻ҙ͢Δɺͱ͔ʜ ݱͱͯ͠ ͬͯΈΔࣄྫΛ࡞Δࣄ͔Β࢝ΊΑ͏
͜͜·Ͱ·ͱΊ
࣍ ͍ΖΜͳػցֶश αʔϏε։ൃͱػցֶश Ϋϥυͱ͍͏બࢶ ਓೳϒʔϜͱݬ໓ظ
ਓೳϒʔϜ ʰୈ࣍ਓೳϒʔϜʱ ͷౙ͔͍ͬͯΔʁ
IUUQXXXHBSUOFSDPKQQSFTTIUNMQSIUNM
IUUQXXXHBSUOFSDPKQQSFTTIUNMQSIUNM
ਓೳϒʔϜ ਓೳ࣮ݱͷखஈͷ̍ͭͱͯ͠ͷػցֶशʹ͕ू·Δ ΛΘͳ͍ػցֶशͷԠ༻ʹର͢Δظ͕͍͢͝ ιϑτΣΞ։ൃͷݱͰۙʹ؍ଌͰ͖Δͷ?͜ΕͷҰ෦ ྫʮػցֶशͰͳΜͱ͔͢Δʯ
ਓೳϒʔϜ ਓೳ࣮ݱͷखஈͷ̍ͭͱͯ͠ͷػցֶशʹ͕ू·Δ ΛΘͳ͍ػցֶशͷԠ༻ʹର͢Δظ͕͍͢͝ ιϑτΣΞ։ൃͷݱͰۙʹ؍ଌͰ͖Δͷ?͜ΕͷҰ෦ ྫʮػցֶशͰͳΜͱ͔͢Δʯ ظͱݱঢ়ͷΪϟοϓݬ໓ͷҼࢠ
ਓೳϒʔϜ Ͳ͏͢Εʁ ਖ਼͘͠ظ͢Δ ͪ͜Β͋·ΓίϯτϩʔϧͰ͖ͳ͍ʜ ظʹԠ͑ΔҝʹؤுΔ ࠓͨ͠ͱ͔
·ͱΊ ػցֶश͕Γ্͕͍ͬͯΔ αʔϏε։ൃͱ͍͏จ຺Ͱ Α͍͖߹͍ํΛࡧ͍͖͍ͯͨ͠ ӡ༻ίετɺਫ਼ͱՁͷ͕ؔॏཁͳΧΪ
·ͱΊ ػցֶश͕Γ্͕͍ͬͯΔ αʔϏε։ൃͱ͍͏จ຺Ͱ Α͍͖߹͍ํΛࡧ͍͖͍ͯͨ͠ ӡ༻ίετɺਫ਼ͱՁͷ͕ؔॏཁͳΧΪ
ͦΕͦΕͱͯ͠ σΟʔϓϥʔχϯάͷՄೳੑੌ͍ ͱࢥ͏ ͷͰɺಓʹ͍ͬͯ͘
͓ΘΓ