Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling your data infrastructure
Search
barrachri
April 20, 2018
Technology
1
190
Scaling your data infrastructure
Scaling your data infrastructure @ PyConNove
barrachri
April 20, 2018
Tweet
Share
More Decks by barrachri
See All by barrachri
Will Tech Save Us?
barrachri
0
97
How software can feed the World
barrachri
1
160
How to fight with yourself and win.
barrachri
0
290
Introduction to Statistics with Python
barrachri
0
360
EuroPython 2015 and the future
barrachri
2
110
Start with Flask
barrachri
3
180
Django & Docker
barrachri
6
960
Other Decks in Technology
See All in Technology
SREからゼロイチプロダクト開発へ ー越境する打席の立ち方と期待への応え方ー / Product Engineering Night #8
itkq
2
1k
PdM採用とAIの製品活用を同時に頑張ってみた話 / EM oasis 20250418
rakus_dev
0
120
AWSで作るセキュアな認証基盤with OAuth mTLS / Secure Authentication Infrastructure with OAuth mTLS on AWS
kaminashi
0
180
ブラウザのレガシー・独自機能を愛でる-Firefoxの脆弱性4選- / Browser Crash Club #1
masatokinugawa
1
510
意思決定を支える検索体験を目指してやってきたこと
hinatades
PRO
0
270
Cross Data Platforms Meetup LT 20250422
tarotaro0129
1
760
AWSのマルチアカウント管理 ベストプラクティス最新版 2025 / Multi-Account management on AWS best practice 2025
ohmura
4
320
バクラクの認証基盤の成長と現在地 / bakuraku-authn-platform
convto
4
690
PostgreSQL Log File Mastery: Optimizing Database Performance Through Advanced Log Analysis
shiviyer007
PRO
0
130
SmartHR プロダクトエンジニア求人ガイド_2025 / PdE job guide 2025
smarthr
0
170
ガバクラのAWS長期継続割引 ~次の4/1に慌てないために~
hamijay_cloud
1
370
彩の国で始めよう。おっさんエンジニアから共有したい、当たり前のことを当たり前にする技術
otsuki
0
160
Featured
See All Featured
Making the Leap to Tech Lead
cromwellryan
133
9.2k
The Language of Interfaces
destraynor
157
25k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
Automating Front-end Workflow
addyosmani
1369
200k
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Principles of Awesome APIs and How to Build Them.
keavy
126
17k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.8k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.1k
Building Better People: How to give real-time feedback that sticks.
wjessup
367
19k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
47
2.7k
The Art of Programming - Codeland 2020
erikaheidi
53
13k
Code Reviewing Like a Champion
maltzj
522
40k
Transcript
Scaling your data infrastructure C H R I S T
I A N B A R R A @ P Y C O N N O V E
THE AGENDA 2 3 START THE DATA SCIENCE WORKFLOW SCALING
IS NOT JUST A MATTER OF MACHINE WHEN THE SIZE OF YOUR DATA MATTERS 1
THE AGENDA 4 5 CONTAINERIZED DATA SCIENCE CASSINY: PUT ALL
THE THINGS TOGETHER END
THE DATA SCIENCE WORKFLOW
HEXAGON PRESENTATION TEMPLATE
HOW YOU BUILD, ITERATE AND SHARE DEPENDS ON MANY THINGS
Your Users Your Product Your Team Your Company Your Tech Stack Your Domain
SCIKIT-LEARN DOCKER DATA SCIENCE TOOLBELT PANDAS JUPYTER RAY
SCALING IS NOT JUST A MATTER OF MACHINES
We all use it.
We really care about versioning. We have Untitled_1.ipynb, Untitled_2.ipynb and
Untitled_3.ipynb. HOMER SIMPSON C H I E F D A T A S C I E N T I S T D A T A B E E R I N C
Since JSON is a plain text format, they can be
version-controlled and shared with colleagues. E X I P Y T H O N N O T E B O O K D O C U M E N T A T I O N
THEY GOT IT RIGHT
BUT WE KEEP IMPROVING
90% OF JUPITER IS MADE BY HYDROGEN
THE HARD THING ABOUT STORAGE
PARQUET P A R Q U E T + O
B J E C T S T O R A G E = YO U C A N Q U E R Y I T U S I N G S Q L PA N DA S H A S N AT I V E S U P P O R T F O R G E T A B O U T C S V
WHEN THE SIZE OF YOUR DATA MATTERS
IT’S TOO SLOW DOESN’T FIT IN YOUR RAM
CODE OPTIMIZATION APPROACH SCALING FROM DIFFERENT SIDES A BIGGER MACHINE
USE MULTIPLE CORES MORE MACHINES FRAMEWORKS: DASK RAY SPARK PANDAS: READ BY CHUNKS SCIKIT-LEARN: PARTIAL FIT
chunks & partial_fit 1 M A C H I N
E
Multiple machines. n M A C H I N E
S
I don’t want to use Spark/JVM, what do you have
for me? H A P P Y P Y T H O N U S E R
WHAT IS RAY?
A high-performance distributed execution engine REDIS SCHEDULER WORKER ARROW &
PLASMA
Use pandas through ray to query parquet files in an
object storage. W O R K I N P R O G R E S S
CONTAINERIZED DATA SCIENCE
If you trained a model with scikit-learn 0.18.1, will the
same model work with 0.19.1? P R O B L E M # 1
How do you share your models? P R O B
L E M # 2
How do you put your models in production? P R
O B L E M # 3
Containerize everything. T H E A N S W E
R
1. It’s damn easy to move things around 2. You
get versioning for free 3. Stack agnostic 4. Move Docker images around T O R E C A P
CASSINY: PUT ALL THE THINGS TOGETHER
CLEAR REQUIREMENTS CONTAINERIZED EASY OBJECT STORAGE JUPYTER + IPYTHON PLATFORM
AGNOSTIC
OPEN SOURCE
DEMO
TAKEAWAYS UNIFIED DATA WAREHOUSE KEEP YOUR CODE RUNNING ON ONE
MACHINE USE DOCKER TRY RAY BRING CI/CD TO YOUR DATASCIENCE WORKFLOW OBJECT STORAGE IS COOL DISTRIBUTED COMPUTING IS HARD I DIDN’T HAVE ANOTHER POINT
None