Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling your data infrastructure
Search
barrachri
April 20, 2018
Technology
1
180
Scaling your data infrastructure
Scaling your data infrastructure @ PyConNove
barrachri
April 20, 2018
Tweet
Share
More Decks by barrachri
See All by barrachri
Will Tech Save Us?
barrachri
0
95
How software can feed the World
barrachri
1
160
How to fight with yourself and win.
barrachri
0
280
Introduction to Statistics with Python
barrachri
0
340
EuroPython 2015 and the future
barrachri
2
110
Start with Flask
barrachri
3
170
Django & Docker
barrachri
6
950
Other Decks in Technology
See All in Technology
Nekko Cloud、 これまでとこれから ~学生サークルが作る、 小さなクラウド
logica0419
2
730
WAF に頼りすぎない AWS WAF 運用術 meguro sec #1
izzii
0
460
偶然 × 行動で人生の可能性を広げよう / Serendipity × Action: Discover Your Possibilities
ar_tama
1
740
事業継続を支える自動テストの考え方
tsuemura
0
300
7日間でハッキングをはじめる本をはじめてみませんか?_ITエンジニア本大賞2025
nomizone
2
1.4k
関東Kaggler会LT: 人狼コンペとLLM量子化について
nejumi
3
460
Googleマップ/Earthが一般化した 地図タイルのイマ
mapconcierge4agu
1
200
スタートアップ1人目QAエンジニアが QAチームを立ち上げ、“個”からチーム、 そして“組織”に成長するまで / How to set up QA team at reiwatravel
mii3king
1
1.1k
Data-centric AI入門第6章:Data-centric AIの実践例
x_ttyszk
1
370
CZII - CryoET Object Identification 参加振り返り・解法共有
tattaka
0
240
家電アプリ共通PF "Linova" のAPI利用とPostman活用事例ご紹介
yukiogawa
0
130
株式会社EventHub・エンジニア採用資料
eventhub
0
4.2k
Featured
See All Featured
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
193
16k
Raft: Consensus for Rubyists
vanstee
137
6.8k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
33
2.8k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
The Cult of Friendly URLs
andyhume
78
6.2k
Thoughts on Productivity
jonyablonski
69
4.5k
How to train your dragon (web standard)
notwaldorf
90
5.8k
Build The Right Thing And Hit Your Dates
maggiecrowley
34
2.5k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
49k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.2k
Rails Girls Zürich Keynote
gr2m
94
13k
Fontdeck: Realign not Redesign
paulrobertlloyd
82
5.4k
Transcript
Scaling your data infrastructure C H R I S T
I A N B A R R A @ P Y C O N N O V E
THE AGENDA 2 3 START THE DATA SCIENCE WORKFLOW SCALING
IS NOT JUST A MATTER OF MACHINE WHEN THE SIZE OF YOUR DATA MATTERS 1
THE AGENDA 4 5 CONTAINERIZED DATA SCIENCE CASSINY: PUT ALL
THE THINGS TOGETHER END
THE DATA SCIENCE WORKFLOW
HEXAGON PRESENTATION TEMPLATE
HOW YOU BUILD, ITERATE AND SHARE DEPENDS ON MANY THINGS
Your Users Your Product Your Team Your Company Your Tech Stack Your Domain
SCIKIT-LEARN DOCKER DATA SCIENCE TOOLBELT PANDAS JUPYTER RAY
SCALING IS NOT JUST A MATTER OF MACHINES
We all use it.
We really care about versioning. We have Untitled_1.ipynb, Untitled_2.ipynb and
Untitled_3.ipynb. HOMER SIMPSON C H I E F D A T A S C I E N T I S T D A T A B E E R I N C
Since JSON is a plain text format, they can be
version-controlled and shared with colleagues. E X I P Y T H O N N O T E B O O K D O C U M E N T A T I O N
THEY GOT IT RIGHT
BUT WE KEEP IMPROVING
90% OF JUPITER IS MADE BY HYDROGEN
THE HARD THING ABOUT STORAGE
PARQUET P A R Q U E T + O
B J E C T S T O R A G E = YO U C A N Q U E R Y I T U S I N G S Q L PA N DA S H A S N AT I V E S U P P O R T F O R G E T A B O U T C S V
WHEN THE SIZE OF YOUR DATA MATTERS
IT’S TOO SLOW DOESN’T FIT IN YOUR RAM
CODE OPTIMIZATION APPROACH SCALING FROM DIFFERENT SIDES A BIGGER MACHINE
USE MULTIPLE CORES MORE MACHINES FRAMEWORKS: DASK RAY SPARK PANDAS: READ BY CHUNKS SCIKIT-LEARN: PARTIAL FIT
chunks & partial_fit 1 M A C H I N
E
Multiple machines. n M A C H I N E
S
I don’t want to use Spark/JVM, what do you have
for me? H A P P Y P Y T H O N U S E R
WHAT IS RAY?
A high-performance distributed execution engine REDIS SCHEDULER WORKER ARROW &
PLASMA
Use pandas through ray to query parquet files in an
object storage. W O R K I N P R O G R E S S
CONTAINERIZED DATA SCIENCE
If you trained a model with scikit-learn 0.18.1, will the
same model work with 0.19.1? P R O B L E M # 1
How do you share your models? P R O B
L E M # 2
How do you put your models in production? P R
O B L E M # 3
Containerize everything. T H E A N S W E
R
1. It’s damn easy to move things around 2. You
get versioning for free 3. Stack agnostic 4. Move Docker images around T O R E C A P
CASSINY: PUT ALL THE THINGS TOGETHER
CLEAR REQUIREMENTS CONTAINERIZED EASY OBJECT STORAGE JUPYTER + IPYTHON PLATFORM
AGNOSTIC
OPEN SOURCE
DEMO
TAKEAWAYS UNIFIED DATA WAREHOUSE KEEP YOUR CODE RUNNING ON ONE
MACHINE USE DOCKER TRY RAY BRING CI/CD TO YOUR DATASCIENCE WORKFLOW OBJECT STORAGE IS COOL DISTRIBUTED COMPUTING IS HARD I DIDN’T HAVE ANOTHER POINT
None