Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling your data infrastructure
Search
barrachri
April 20, 2018
Technology
1
170
Scaling your data infrastructure
Scaling your data infrastructure @ PyConNove
barrachri
April 20, 2018
Tweet
Share
More Decks by barrachri
See All by barrachri
Will Tech Save Us?
barrachri
0
95
How software can feed the World
barrachri
1
160
How to fight with yourself and win.
barrachri
0
270
Introduction to Statistics with Python
barrachri
0
330
EuroPython 2015 and the future
barrachri
2
110
Start with Flask
barrachri
3
170
Django & Docker
barrachri
6
930
Other Decks in Technology
See All in Technology
Kubeshark で Kubernetes の Traffic を眺めてみよう/Let's Look at k8s Traffic with Kubeshark
kota2and3kan
3
370
LINEスキマニにおけるフロントエンド開発
lycorptech_jp
PRO
0
330
KubeCon NA 2024 Recap / Running WebAssembly (Wasm) Workloads Side-by-Side with Container Workloads
z63d
1
240
宇宙ベンチャーにおける最近の情シス取り組みについて
axelmizu
0
110
KubeCon NA 2024 Recap: How to Move from Ingress to Gateway API with Minimal Hassle
ysakotch
0
200
サイバー攻撃を想定したセキュリティガイドライン 策定とASM及びCNAPPの活用方法
syoshie
3
1.2k
社内イベント管理システムを1週間でAKSからACAに移行した話し
shingo_kawahara
0
180
OpenAIの蒸留機能(Model Distillation)を使用して運用中のLLMのコストを削減する取り組み
pharma_x_tech
4
540
ハイテク休憩
sat
PRO
2
120
AWS re:Invent 2024で発表された コードを書く開発者向け機能について
maruto
0
180
サーバレスアプリ開発者向けアップデートをキャッチアップしてきた #AWSreInvent #regrowth_fuk
drumnistnakano
0
190
LINE Developersプロダクト(LIFF/LINE Login)におけるフロントエンド開発
lycorptech_jp
PRO
0
120
Featured
See All Featured
YesSQL, Process and Tooling at Scale
rocio
169
14k
Why Our Code Smells
bkeepers
PRO
335
57k
Designing for humans not robots
tammielis
250
25k
Fantastic passwords and where to find them - at NoRuKo
philnash
50
2.9k
Imperfection Machines: The Place of Print at Facebook
scottboms
266
13k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
95
17k
The Cost Of JavaScript in 2023
addyosmani
45
7k
Measuring & Analyzing Core Web Vitals
bluesmoon
4
170
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
28
2.1k
How GitHub (no longer) Works
holman
311
140k
Statistics for Hackers
jakevdp
796
220k
Optimizing for Happiness
mojombo
376
70k
Transcript
Scaling your data infrastructure C H R I S T
I A N B A R R A @ P Y C O N N O V E
THE AGENDA 2 3 START THE DATA SCIENCE WORKFLOW SCALING
IS NOT JUST A MATTER OF MACHINE WHEN THE SIZE OF YOUR DATA MATTERS 1
THE AGENDA 4 5 CONTAINERIZED DATA SCIENCE CASSINY: PUT ALL
THE THINGS TOGETHER END
THE DATA SCIENCE WORKFLOW
HEXAGON PRESENTATION TEMPLATE
HOW YOU BUILD, ITERATE AND SHARE DEPENDS ON MANY THINGS
Your Users Your Product Your Team Your Company Your Tech Stack Your Domain
SCIKIT-LEARN DOCKER DATA SCIENCE TOOLBELT PANDAS JUPYTER RAY
SCALING IS NOT JUST A MATTER OF MACHINES
We all use it.
We really care about versioning. We have Untitled_1.ipynb, Untitled_2.ipynb and
Untitled_3.ipynb. HOMER SIMPSON C H I E F D A T A S C I E N T I S T D A T A B E E R I N C
Since JSON is a plain text format, they can be
version-controlled and shared with colleagues. E X I P Y T H O N N O T E B O O K D O C U M E N T A T I O N
THEY GOT IT RIGHT
BUT WE KEEP IMPROVING
90% OF JUPITER IS MADE BY HYDROGEN
THE HARD THING ABOUT STORAGE
PARQUET P A R Q U E T + O
B J E C T S T O R A G E = YO U C A N Q U E R Y I T U S I N G S Q L PA N DA S H A S N AT I V E S U P P O R T F O R G E T A B O U T C S V
WHEN THE SIZE OF YOUR DATA MATTERS
IT’S TOO SLOW DOESN’T FIT IN YOUR RAM
CODE OPTIMIZATION APPROACH SCALING FROM DIFFERENT SIDES A BIGGER MACHINE
USE MULTIPLE CORES MORE MACHINES FRAMEWORKS: DASK RAY SPARK PANDAS: READ BY CHUNKS SCIKIT-LEARN: PARTIAL FIT
chunks & partial_fit 1 M A C H I N
E
Multiple machines. n M A C H I N E
S
I don’t want to use Spark/JVM, what do you have
for me? H A P P Y P Y T H O N U S E R
WHAT IS RAY?
A high-performance distributed execution engine REDIS SCHEDULER WORKER ARROW &
PLASMA
Use pandas through ray to query parquet files in an
object storage. W O R K I N P R O G R E S S
CONTAINERIZED DATA SCIENCE
If you trained a model with scikit-learn 0.18.1, will the
same model work with 0.19.1? P R O B L E M # 1
How do you share your models? P R O B
L E M # 2
How do you put your models in production? P R
O B L E M # 3
Containerize everything. T H E A N S W E
R
1. It’s damn easy to move things around 2. You
get versioning for free 3. Stack agnostic 4. Move Docker images around T O R E C A P
CASSINY: PUT ALL THE THINGS TOGETHER
CLEAR REQUIREMENTS CONTAINERIZED EASY OBJECT STORAGE JUPYTER + IPYTHON PLATFORM
AGNOSTIC
OPEN SOURCE
DEMO
TAKEAWAYS UNIFIED DATA WAREHOUSE KEEP YOUR CODE RUNNING ON ONE
MACHINE USE DOCKER TRY RAY BRING CI/CD TO YOUR DATASCIENCE WORKFLOW OBJECT STORAGE IS COOL DISTRIBUTED COMPUTING IS HARD I DIDN’T HAVE ANOTHER POINT
None