Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling your data infrastructure
Search
barrachri
April 20, 2018
Technology
1
190
Scaling your data infrastructure
Scaling your data infrastructure @ PyConNove
barrachri
April 20, 2018
Tweet
Share
More Decks by barrachri
See All by barrachri
Will Tech Save Us?
barrachri
0
99
How software can feed the World
barrachri
1
170
How to fight with yourself and win.
barrachri
0
300
Introduction to Statistics with Python
barrachri
0
370
EuroPython 2015 and the future
barrachri
2
110
Start with Flask
barrachri
3
180
Django & Docker
barrachri
6
970
Other Decks in Technology
See All in Technology
組織とセキュリティ文化と、自分の一歩
maimyyym
3
1.4k
バクラクのモノレポにおける AI Coding のための環境整備と {Roo,Claude} Code活用事例 / AI Coding in Bakuraku's Monorepo: Environment Setup & Case Studies with {Roo, Claude} Code
upamune
8
5.2k
vLLM meetup Tokyo
jpishikawa
1
120
「伝える」を加速させるCursor術
naomix
0
560
会社紹介資料 / Sansan Company Profile
sansan33
PRO
6
370k
医療業界に特化した音声認識モデル構築のためのアノテーションの実態
thickstem
0
520
Securing your Lambda 101
chillzprezi
0
200
Go Connectへの想い
chiroruxx
0
160
Long journey of Continuous Delivery at Mercari
hisaharu
0
190
Autonomous Database サービス・アップデート (FY25)
oracle4engineer
PRO
1
750
単一Gitリポジトリから独立しました
lycorptech_jp
PRO
0
400
技術職じゃない私がVibe Codingで感じた、AGIが身近になる未来
blueb
0
110
Featured
See All Featured
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
180
53k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
870
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
42
2.4k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.9k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.5k
It's Worth the Effort
3n
184
28k
Product Roadmaps are Hard
iamctodd
PRO
53
11k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
52
2.8k
RailsConf 2023
tenderlove
30
1.1k
A Tale of Four Properties
chriscoyier
159
23k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.7k
Transcript
Scaling your data infrastructure C H R I S T
I A N B A R R A @ P Y C O N N O V E
THE AGENDA 2 3 START THE DATA SCIENCE WORKFLOW SCALING
IS NOT JUST A MATTER OF MACHINE WHEN THE SIZE OF YOUR DATA MATTERS 1
THE AGENDA 4 5 CONTAINERIZED DATA SCIENCE CASSINY: PUT ALL
THE THINGS TOGETHER END
THE DATA SCIENCE WORKFLOW
HEXAGON PRESENTATION TEMPLATE
HOW YOU BUILD, ITERATE AND SHARE DEPENDS ON MANY THINGS
Your Users Your Product Your Team Your Company Your Tech Stack Your Domain
SCIKIT-LEARN DOCKER DATA SCIENCE TOOLBELT PANDAS JUPYTER RAY
SCALING IS NOT JUST A MATTER OF MACHINES
We all use it.
We really care about versioning. We have Untitled_1.ipynb, Untitled_2.ipynb and
Untitled_3.ipynb. HOMER SIMPSON C H I E F D A T A S C I E N T I S T D A T A B E E R I N C
Since JSON is a plain text format, they can be
version-controlled and shared with colleagues. E X I P Y T H O N N O T E B O O K D O C U M E N T A T I O N
THEY GOT IT RIGHT
BUT WE KEEP IMPROVING
90% OF JUPITER IS MADE BY HYDROGEN
THE HARD THING ABOUT STORAGE
PARQUET P A R Q U E T + O
B J E C T S T O R A G E = YO U C A N Q U E R Y I T U S I N G S Q L PA N DA S H A S N AT I V E S U P P O R T F O R G E T A B O U T C S V
WHEN THE SIZE OF YOUR DATA MATTERS
IT’S TOO SLOW DOESN’T FIT IN YOUR RAM
CODE OPTIMIZATION APPROACH SCALING FROM DIFFERENT SIDES A BIGGER MACHINE
USE MULTIPLE CORES MORE MACHINES FRAMEWORKS: DASK RAY SPARK PANDAS: READ BY CHUNKS SCIKIT-LEARN: PARTIAL FIT
chunks & partial_fit 1 M A C H I N
E
Multiple machines. n M A C H I N E
S
I don’t want to use Spark/JVM, what do you have
for me? H A P P Y P Y T H O N U S E R
WHAT IS RAY?
A high-performance distributed execution engine REDIS SCHEDULER WORKER ARROW &
PLASMA
Use pandas through ray to query parquet files in an
object storage. W O R K I N P R O G R E S S
CONTAINERIZED DATA SCIENCE
If you trained a model with scikit-learn 0.18.1, will the
same model work with 0.19.1? P R O B L E M # 1
How do you share your models? P R O B
L E M # 2
How do you put your models in production? P R
O B L E M # 3
Containerize everything. T H E A N S W E
R
1. It’s damn easy to move things around 2. You
get versioning for free 3. Stack agnostic 4. Move Docker images around T O R E C A P
CASSINY: PUT ALL THE THINGS TOGETHER
CLEAR REQUIREMENTS CONTAINERIZED EASY OBJECT STORAGE JUPYTER + IPYTHON PLATFORM
AGNOSTIC
OPEN SOURCE
DEMO
TAKEAWAYS UNIFIED DATA WAREHOUSE KEEP YOUR CODE RUNNING ON ONE
MACHINE USE DOCKER TRY RAY BRING CI/CD TO YOUR DATASCIENCE WORKFLOW OBJECT STORAGE IS COOL DISTRIBUTED COMPUTING IS HARD I DIDN’T HAVE ANOTHER POINT
None