Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling your data infrastructure
Search
barrachri
April 20, 2018
Technology
1
180
Scaling your data infrastructure
Scaling your data infrastructure @ PyConNove
barrachri
April 20, 2018
Tweet
Share
More Decks by barrachri
See All by barrachri
Will Tech Save Us?
barrachri
0
97
How software can feed the World
barrachri
1
160
How to fight with yourself and win.
barrachri
0
290
Introduction to Statistics with Python
barrachri
0
360
EuroPython 2015 and the future
barrachri
2
110
Start with Flask
barrachri
3
180
Django & Docker
barrachri
6
960
Other Decks in Technology
See All in Technology
SSH公開鍵認証による接続 / Connecting with SSH Public Key Authentication
kaityo256
PRO
2
270
Tirez profit de Messenger pour améliorer votre architecture
tucksaun
1
210
”知のインストール”戦略:テキスト資産をAIの文脈理解に活かす
kworkdev
PRO
8
3.6k
AWSエンジニアがSAPのデータ抽出してみた
mayumi_hirano
0
110
Cline、めっちゃ便利、お金が飛ぶ💸
iwamot
21
19k
職種に名前が付く、ということ/The fact that a job title has a name
bitkey
1
280
10分でわかるfreeeのQA
freee
1
11k
古き良き Laravel のシステムは関数型スタイルでリファクタできるのか
leveragestech
1
260
SaaSプロダクト開発におけるバグの早期検出のためのAcceptance testの取り組み
kworkdev
PRO
0
550
OCI Database with PostgreSQLのご紹介
rkajiyama
0
130
アプリケーション固有の「ロジックの脆弱性」を防ぐ開発者のためのセキュリティ観点
flatt_security
40
15k
コドモンのQAの今までとこれから -XPによる成長と見えてきた課題-
masasuna
0
150
Featured
See All Featured
The Power of CSS Pseudo Elements
geoffreycrofte
75
5.7k
Practical Orchestrator
shlominoach
186
10k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
60k
Refactoring Trust on Your Teams (GOTO; Chicago 2020)
rmw
34
2.9k
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
30
1.1k
Making Projects Easy
brettharned
116
6.1k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
47
5.3k
The Straight Up "How To Draw Better" Workshop
denniskardys
232
140k
Fontdeck: Realign not Redesign
paulrobertlloyd
83
5.5k
Building a Modern Day E-commerce SEO Strategy
aleyda
39
7.2k
How STYLIGHT went responsive
nonsquared
99
5.4k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
Scaling your data infrastructure C H R I S T
I A N B A R R A @ P Y C O N N O V E
THE AGENDA 2 3 START THE DATA SCIENCE WORKFLOW SCALING
IS NOT JUST A MATTER OF MACHINE WHEN THE SIZE OF YOUR DATA MATTERS 1
THE AGENDA 4 5 CONTAINERIZED DATA SCIENCE CASSINY: PUT ALL
THE THINGS TOGETHER END
THE DATA SCIENCE WORKFLOW
HEXAGON PRESENTATION TEMPLATE
HOW YOU BUILD, ITERATE AND SHARE DEPENDS ON MANY THINGS
Your Users Your Product Your Team Your Company Your Tech Stack Your Domain
SCIKIT-LEARN DOCKER DATA SCIENCE TOOLBELT PANDAS JUPYTER RAY
SCALING IS NOT JUST A MATTER OF MACHINES
We all use it.
We really care about versioning. We have Untitled_1.ipynb, Untitled_2.ipynb and
Untitled_3.ipynb. HOMER SIMPSON C H I E F D A T A S C I E N T I S T D A T A B E E R I N C
Since JSON is a plain text format, they can be
version-controlled and shared with colleagues. E X I P Y T H O N N O T E B O O K D O C U M E N T A T I O N
THEY GOT IT RIGHT
BUT WE KEEP IMPROVING
90% OF JUPITER IS MADE BY HYDROGEN
THE HARD THING ABOUT STORAGE
PARQUET P A R Q U E T + O
B J E C T S T O R A G E = YO U C A N Q U E R Y I T U S I N G S Q L PA N DA S H A S N AT I V E S U P P O R T F O R G E T A B O U T C S V
WHEN THE SIZE OF YOUR DATA MATTERS
IT’S TOO SLOW DOESN’T FIT IN YOUR RAM
CODE OPTIMIZATION APPROACH SCALING FROM DIFFERENT SIDES A BIGGER MACHINE
USE MULTIPLE CORES MORE MACHINES FRAMEWORKS: DASK RAY SPARK PANDAS: READ BY CHUNKS SCIKIT-LEARN: PARTIAL FIT
chunks & partial_fit 1 M A C H I N
E
Multiple machines. n M A C H I N E
S
I don’t want to use Spark/JVM, what do you have
for me? H A P P Y P Y T H O N U S E R
WHAT IS RAY?
A high-performance distributed execution engine REDIS SCHEDULER WORKER ARROW &
PLASMA
Use pandas through ray to query parquet files in an
object storage. W O R K I N P R O G R E S S
CONTAINERIZED DATA SCIENCE
If you trained a model with scikit-learn 0.18.1, will the
same model work with 0.19.1? P R O B L E M # 1
How do you share your models? P R O B
L E M # 2
How do you put your models in production? P R
O B L E M # 3
Containerize everything. T H E A N S W E
R
1. It’s damn easy to move things around 2. You
get versioning for free 3. Stack agnostic 4. Move Docker images around T O R E C A P
CASSINY: PUT ALL THE THINGS TOGETHER
CLEAR REQUIREMENTS CONTAINERIZED EASY OBJECT STORAGE JUPYTER + IPYTHON PLATFORM
AGNOSTIC
OPEN SOURCE
DEMO
TAKEAWAYS UNIFIED DATA WAREHOUSE KEEP YOUR CODE RUNNING ON ONE
MACHINE USE DOCKER TRY RAY BRING CI/CD TO YOUR DATASCIENCE WORKFLOW OBJECT STORAGE IS COOL DISTRIBUTED COMPUTING IS HARD I DIDN’T HAVE ANOTHER POINT
None