$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling your data infrastructure
Search
barrachri
April 20, 2018
Technology
1
170
Scaling your data infrastructure
Scaling your data infrastructure @ PyConNove
barrachri
April 20, 2018
Tweet
Share
More Decks by barrachri
See All by barrachri
Will Tech Save Us?
barrachri
0
95
How software can feed the World
barrachri
1
160
How to fight with yourself and win.
barrachri
0
270
Introduction to Statistics with Python
barrachri
0
330
EuroPython 2015 and the future
barrachri
2
110
Start with Flask
barrachri
3
170
Django & Docker
barrachri
6
930
Other Decks in Technology
See All in Technology
【AWS re:Invent 2024】Amazon Bedrock アップデート総まとめ
minorun365
PRO
7
600
Amazon Bedrock Multi-Agent Collaboration Workshop の紹介 - ワークショップでAIエージェントを学ぼう
nasuvitz
3
290
Nihonbashi Test Talk #3_WebDriver BiDiと最新の実装状況 / WebDriver BiDi latest status
takeyaqa
1
150
.NET のUnified AI Building Blocks 入門...!
okazuki
0
190
深層学習のリペア技術の最新動向と実際 / DNN Repair Techniques for AI Performance Alignment for Safety Requirements
ishikawafyu
0
490
振る舞い駆動開発(BDD)における、テスト自動化の前に大切にしていること #stac2024 / BDD formulation
nihonbuson
3
1k
セキュリティ系アップデート全体像と AWS Organizations 新ポリシー「宣言型ポリシー」を紹介 / reGrowth 2024 Security
masahirokawahara
0
130
JAWS-UG 横浜支部 #76 AWS re:Invent 2024 宇宙一早い Recap LT3Amazon EKS Auto Modeと遊び(パーティ)の話
tjotjo
0
130
pmconf2024_UPSIDER
upsider_tech
0
7.4k
Will Positron accelerate us?
lycorptech_jp
PRO
1
130
イベントをどう管理するか
mikanichinose
1
120
2024/11/29_失敗談から学ぶ! エンジニア向けre:Invent攻略アンチパターン集
hiashisan
0
440
Featured
See All Featured
Into the Great Unknown - MozCon
thekraken
33
1.5k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
2
250
Visualization
eitanlees
145
15k
A Tale of Four Properties
chriscoyier
157
23k
Making the Leap to Tech Lead
cromwellryan
133
9k
Keith and Marios Guide to Fast Websites
keithpitt
410
22k
We Have a Design System, Now What?
morganepeng
51
7.3k
The MySQL Ecosystem @ GitHub 2015
samlambert
250
12k
Product Roadmaps are Hard
iamctodd
PRO
49
11k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
45
2.2k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
27
4.3k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
126
18k
Transcript
Scaling your data infrastructure C H R I S T
I A N B A R R A @ P Y C O N N O V E
THE AGENDA 2 3 START THE DATA SCIENCE WORKFLOW SCALING
IS NOT JUST A MATTER OF MACHINE WHEN THE SIZE OF YOUR DATA MATTERS 1
THE AGENDA 4 5 CONTAINERIZED DATA SCIENCE CASSINY: PUT ALL
THE THINGS TOGETHER END
THE DATA SCIENCE WORKFLOW
HEXAGON PRESENTATION TEMPLATE
HOW YOU BUILD, ITERATE AND SHARE DEPENDS ON MANY THINGS
Your Users Your Product Your Team Your Company Your Tech Stack Your Domain
SCIKIT-LEARN DOCKER DATA SCIENCE TOOLBELT PANDAS JUPYTER RAY
SCALING IS NOT JUST A MATTER OF MACHINES
We all use it.
We really care about versioning. We have Untitled_1.ipynb, Untitled_2.ipynb and
Untitled_3.ipynb. HOMER SIMPSON C H I E F D A T A S C I E N T I S T D A T A B E E R I N C
Since JSON is a plain text format, they can be
version-controlled and shared with colleagues. E X I P Y T H O N N O T E B O O K D O C U M E N T A T I O N
THEY GOT IT RIGHT
BUT WE KEEP IMPROVING
90% OF JUPITER IS MADE BY HYDROGEN
THE HARD THING ABOUT STORAGE
PARQUET P A R Q U E T + O
B J E C T S T O R A G E = YO U C A N Q U E R Y I T U S I N G S Q L PA N DA S H A S N AT I V E S U P P O R T F O R G E T A B O U T C S V
WHEN THE SIZE OF YOUR DATA MATTERS
IT’S TOO SLOW DOESN’T FIT IN YOUR RAM
CODE OPTIMIZATION APPROACH SCALING FROM DIFFERENT SIDES A BIGGER MACHINE
USE MULTIPLE CORES MORE MACHINES FRAMEWORKS: DASK RAY SPARK PANDAS: READ BY CHUNKS SCIKIT-LEARN: PARTIAL FIT
chunks & partial_fit 1 M A C H I N
E
Multiple machines. n M A C H I N E
S
I don’t want to use Spark/JVM, what do you have
for me? H A P P Y P Y T H O N U S E R
WHAT IS RAY?
A high-performance distributed execution engine REDIS SCHEDULER WORKER ARROW &
PLASMA
Use pandas through ray to query parquet files in an
object storage. W O R K I N P R O G R E S S
CONTAINERIZED DATA SCIENCE
If you trained a model with scikit-learn 0.18.1, will the
same model work with 0.19.1? P R O B L E M # 1
How do you share your models? P R O B
L E M # 2
How do you put your models in production? P R
O B L E M # 3
Containerize everything. T H E A N S W E
R
1. It’s damn easy to move things around 2. You
get versioning for free 3. Stack agnostic 4. Move Docker images around T O R E C A P
CASSINY: PUT ALL THE THINGS TOGETHER
CLEAR REQUIREMENTS CONTAINERIZED EASY OBJECT STORAGE JUPYTER + IPYTHON PLATFORM
AGNOSTIC
OPEN SOURCE
DEMO
TAKEAWAYS UNIFIED DATA WAREHOUSE KEEP YOUR CODE RUNNING ON ONE
MACHINE USE DOCKER TRY RAY BRING CI/CD TO YOUR DATASCIENCE WORKFLOW OBJECT STORAGE IS COOL DISTRIBUTED COMPUTING IS HARD I DIDN’T HAVE ANOTHER POINT
None