$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Scaling your data infrastructure
Search
barrachri
April 20, 2018
Technology
1
210
Scaling your data infrastructure
Scaling your data infrastructure @ PyConNove
barrachri
April 20, 2018
Tweet
Share
More Decks by barrachri
See All by barrachri
Will Tech Save Us?
barrachri
0
110
How software can feed the World
barrachri
1
170
How to fight with yourself and win.
barrachri
0
320
Introduction to Statistics with Python
barrachri
0
420
EuroPython 2015 and the future
barrachri
2
110
Start with Flask
barrachri
3
180
Django & Docker
barrachri
6
1k
Other Decks in Technology
See All in Technology
直接メモリアクセス
koba789
0
290
計算機科学をRubyと歩む 〜DFA型正規表現エンジンをつくる~
ydah
3
230
AWSを使う上で最低限知っておきたいセキュリティ研修を社内で実施した話 ~みんなでやるセキュリティ~
maimyyym
2
270
AWS re:Invent 2025で見たGrafana最新機能の紹介
hamadakoji
0
320
Kiro Autonomous AgentとKiro Powers の紹介 / kiro-autonomous-agent-and-powers
tomoki10
0
390
「Managed Instances」と「durable functions」で広がるAWS Lambdaのユースケース
lamaglama39
0
300
コミューンのデータ分析AIエージェント「Community Sage」の紹介
fufufukakaka
0
470
チーリンについて
hirotomotaguchi
6
1.8k
生成AI活用の型ハンズオン〜顧客課題起点で設計する7つのステップ
yushin_n
0
120
モダンデータスタック (MDS) の話とデータ分析が起こすビジネス変革
sutotakeshi
0
450
AWSセキュリティアップデートとAWSを育てる話
cmusudakeisuke
0
220
Uncertainty in the LLM era - Science, more than scale
gaelvaroquaux
0
840
Featured
See All Featured
Building a Scalable Design System with Sketch
lauravandoore
463
34k
RailsConf 2023
tenderlove
30
1.3k
Leading Effective Engineering Teams in the AI Era
addyosmani
8
1.3k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
The Invisible Side of Design
smashingmag
302
51k
Large-scale JavaScript Application Architecture
addyosmani
515
110k
Designing for humans not robots
tammielis
254
26k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
31
9.8k
YesSQL, Process and Tooling at Scale
rocio
174
15k
Side Projects
sachag
455
43k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
A better future with KSS
kneath
240
18k
Transcript
Scaling your data infrastructure C H R I S T
I A N B A R R A @ P Y C O N N O V E
THE AGENDA 2 3 START THE DATA SCIENCE WORKFLOW SCALING
IS NOT JUST A MATTER OF MACHINE WHEN THE SIZE OF YOUR DATA MATTERS 1
THE AGENDA 4 5 CONTAINERIZED DATA SCIENCE CASSINY: PUT ALL
THE THINGS TOGETHER END
THE DATA SCIENCE WORKFLOW
HEXAGON PRESENTATION TEMPLATE
HOW YOU BUILD, ITERATE AND SHARE DEPENDS ON MANY THINGS
Your Users Your Product Your Team Your Company Your Tech Stack Your Domain
SCIKIT-LEARN DOCKER DATA SCIENCE TOOLBELT PANDAS JUPYTER RAY
SCALING IS NOT JUST A MATTER OF MACHINES
We all use it.
We really care about versioning. We have Untitled_1.ipynb, Untitled_2.ipynb and
Untitled_3.ipynb. HOMER SIMPSON C H I E F D A T A S C I E N T I S T D A T A B E E R I N C
Since JSON is a plain text format, they can be
version-controlled and shared with colleagues. E X I P Y T H O N N O T E B O O K D O C U M E N T A T I O N
THEY GOT IT RIGHT
BUT WE KEEP IMPROVING
90% OF JUPITER IS MADE BY HYDROGEN
THE HARD THING ABOUT STORAGE
PARQUET P A R Q U E T + O
B J E C T S T O R A G E = YO U C A N Q U E R Y I T U S I N G S Q L PA N DA S H A S N AT I V E S U P P O R T F O R G E T A B O U T C S V
WHEN THE SIZE OF YOUR DATA MATTERS
IT’S TOO SLOW DOESN’T FIT IN YOUR RAM
CODE OPTIMIZATION APPROACH SCALING FROM DIFFERENT SIDES A BIGGER MACHINE
USE MULTIPLE CORES MORE MACHINES FRAMEWORKS: DASK RAY SPARK PANDAS: READ BY CHUNKS SCIKIT-LEARN: PARTIAL FIT
chunks & partial_fit 1 M A C H I N
E
Multiple machines. n M A C H I N E
S
I don’t want to use Spark/JVM, what do you have
for me? H A P P Y P Y T H O N U S E R
WHAT IS RAY?
A high-performance distributed execution engine REDIS SCHEDULER WORKER ARROW &
PLASMA
Use pandas through ray to query parquet files in an
object storage. W O R K I N P R O G R E S S
CONTAINERIZED DATA SCIENCE
If you trained a model with scikit-learn 0.18.1, will the
same model work with 0.19.1? P R O B L E M # 1
How do you share your models? P R O B
L E M # 2
How do you put your models in production? P R
O B L E M # 3
Containerize everything. T H E A N S W E
R
1. It’s damn easy to move things around 2. You
get versioning for free 3. Stack agnostic 4. Move Docker images around T O R E C A P
CASSINY: PUT ALL THE THINGS TOGETHER
CLEAR REQUIREMENTS CONTAINERIZED EASY OBJECT STORAGE JUPYTER + IPYTHON PLATFORM
AGNOSTIC
OPEN SOURCE
DEMO
TAKEAWAYS UNIFIED DATA WAREHOUSE KEEP YOUR CODE RUNNING ON ONE
MACHINE USE DOCKER TRY RAY BRING CI/CD TO YOUR DATASCIENCE WORKFLOW OBJECT STORAGE IS COOL DISTRIBUTED COMPUTING IS HARD I DIDN’T HAVE ANOTHER POINT
None