Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Addressing the music information needs of musicologists

Ben Fields
October 26, 2015

Addressing the music information needs of musicologists

The music information needs of musicologists are not being met by the current generation of MIR tools and techniques. While evaluation has always been central to the practice of the music information retrieval community, the tasks tackled most often address the music information needs of recreational users, such as playlist recommendation systems; or are specified at a level which is not very relevant to the needs of music researchers, such as beat or key finding; or have focused on--and possibly even become over-fitted to--a narrow range of musical repertoire which doesn't cover musicological interests. In this tutorial we will present those music information needs through topics including at least the following: the metadata requirements of historical musicology; working with symbolic corpora; studying musical networks; passage-level audio search; and musical understandings of audio features. As as well as these scheduled presentations and discussions, we will ask the attendees to submit suggestions of musicologically motivated research questions suitable for MIR during the course of the tutorial. These will then be reviewed and discussed during the conclusion of the tutorial. Finally, we have invited Meinard Müller to conclude the tutorial by outlining his view on the current state of MIR for musicology. We are aiming to enable attendees, as experts in their own areas of MIR, to find new applications of their tools and techniques that can also serve the needs of musicologists. Given the selection of MIR topics we intend to cover, this tutorial will be of particular interest to those working in: musical metadata; symbolic MIR; audio search; and graph analytics. We believe contemporary musicology to be a rich source of new and exciting challenges for MIR and we are confident the community can rise to those challenges. In the long term, we hope this tutorial will give rise to a selection of new MIREX tasks that focus on musicological challenges.

Presented/written with Richard J. Lewis, Tim Crawford, Kevin Page, David Weigl, Meinard Mueller, David Lewis, Christophe Rhodes, Justin Gagen

Ben Fields

October 26, 2015
Tweet

More Decks by Ben Fields

Other Decks in Research

Transcript

  1. "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG
    .VTJDPMPHJTUT
    5SBOTGPSNJOH .VTJDPMPHZ
    .POEBZ 0DUPCFS .¡MBHB
    5SBOTGPSNJOH .VTJDPMPHZ .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT

    View Slide

  2. 0VUMJOF
    5JNF %FTDSJQUJPO
    *OUSPEVDUJPO "MBO .BSTEFO

    .FUBEBUB 3JDIBSE -FXJT %BWJE 8FJHM

    /FUXPSLT #FO 'JFMET

    1FSGPSNBODFSFBMUJNF ,FWJO 1BHF %BWJE 8FJHM

    #SFBL
    4ZNCPMJD NVTJD 5JN $SBXGPSE 3JDIBSE -FXJT

    "VEJP TFBSDI #FO 'JFMET 5JN $SBXGPSE

    .FJOBSE .¼MMFS
    4USVDUVSFE EJTDVTTJPO
    'JOJTI
    5SBOTGPSNJOH .VTJDPMPHZ .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT

    View Slide

  3. TR A N S FO R M I N G M U S I C O LO G Y
    An AHRC Digital Transformations project
    Addressing the Music Information
    Needs of Musicologists
    Introduction
    ISMIR 2015

    View Slide

  4. TR A N S FO R M I N G M U S I C O LO G Y
    An AHRC Digital Transformations project
    • Musicology is the study of music
    – vast range of what is meant by ‘music’
    – vast range of what is meant by ‘study’
    • Classic divisions
    – Historical Musicology (Am. ‘Musicology’)
    – Systematic Musicology (Am. ‘Music Theory’)
    – Ethnomusicology
    now perhaps of diminishing significance
    • See the tutorial ‘Musicology’ by Frans Wiering and Anya Volk at
    ISMIR 2011
    – http://ismir2011.ismir.net/tutorials/ISMIR2011-Tutorial-Musicology.pdf
    2
    ISMIR, Malaga
    26 October 2015
    Musicology

    View Slide

  5. TR A N S FO R M I N G M U S I C O LO G Y
    An AHRC Digital Transformations project
    • The sound of music (or at least things directly connected with the sound)
    – old music
    – current art music, current popular music
    – possible music
    • Musical activities
    – composing
    – performing
    – perception
    • Music’s role and function
    – music in our society
    – music in other societies
    • Data
    – scores
    – recordings
    – instruments
    – documents (letters, etc.)
    – interviews
    3
    ISMIR, Malaga
    26 October 2015
    What musicologists study

    View Slide

  6. TR A N S FO R M I N G M U S I C O LO G Y
    An AHRC Digital Transformations project
    • Collation
    – relation of items to one another
    – categorisation, etc.
    • Close examination
    – verification of details
    – reconstruction
    – interpretation
    • Theory formation
    – ... but not much testing
    • Communication/disputation among themselves
    4
    ISMIR, Malaga
    26 October 2015
    How musicologists study

    View Slide

  7. TR A N S FO R M I N G M U S I C O LO G Y
    An AHRC Digital Transformations project
    • To identify value
    • To establish authoritative versions
    – but the very idea of authoritative versions is subject to challenge!
    • To establish principles and trends
    • To influence thinking about music
    5
    ISMIR, Malaga
    26 October 2015
    Why musicologists study

    View Slide

  8. TR A N S FO R M I N G M U S I C O LO G Y
    An AHRC Digital Transformations project
    MIR and Musicology can inform and interrogate each other, e.g.
    • Genre:
    – From MIR for Musicology: Why are some genres closely definable by
    audio features and some are not?
    – From Musicology for MIR: Are genres not just a marketing device with
    little musical benefit?
    • Audio transcription:
    – From MIR for Musicology: If the notes are so poorly represented in the
    audio signal, do they really matter so much?
    – From Musicology for MIR: Concentrate on the important notes!
    6
    ISMIR, Malaga
    26 October 2015
    MIR and musicology – cross-fertilisation

    View Slide

  9. TR A N S FO R M I N G M U S I C O LO G Y
    An AHRC Digital Transformations project
    • Different concerns about accuracy
    – MIR: is processing and analysis valid?
    – Musicology: are the sources correct?
    • Different criteria of validity
    – MIR: test against ground truth
    – Musicology: test against agreement
    • Different notions of basic material:
    – MIR: definitive recordings, the ‘song’, feature sets
    – Musicology: fluid notion of ‘a piece’, the ‘passage’ (i.e., part of a piece),
    complex metadata
    7
    ISMIR, Malaga
    26 October 2015
    MIR and musicology – dislocations

    View Slide

  10. .*3 GPS NVTJDPMPHZ
    ٔ 'JWF UPQJDT
    ٔ &BDI QSFTFOUT TPNF .*3 UFDIOJRVFT
    ٔ "OE TIPXT IPX UIPTF UFDIOJRVFT NBZ CF BQQMJFE UP
    NVTJDPMPHJDBM SFTFBSDI RVFTUJPOT
    ٔ 8F BJN UP HJWF TPNF JEFBT PG OFX BQQMJDBUJPOT ZPV DBO FYQMPSF
    XJUI ZPVS FYJTUJOH UFDIOJRVFT
    5SBOTGPSNJOH .VTJDPMPHZ .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT

    View Slide

  11. 4USVDUVSFE EJTDVTTJPO
    ٔ -BTU IBMGIPVS JT B TUSVDUVSFE EJTDVTTJPO TFTTJPO
    ٔ %JWJEF JOUP QBJST BOE EJTDVTT ZPVS .*3 UFDIOJRVFT BOE DVSSFOU
    BQQMJDBUJPOT
    ٔ 5IFO TVHHFTU QPTTJCMF NVTJDPMPHJDBM BQQMJDBUJPOT PG FBDI PUIFSًT
    UFDIOJRVFT
    ٔ +PJO JOUP MBSHFS HSPVQT PS
    QSFTFOU FBDI PUIFST UFDIOJRVFT
    BOE QSPQPTFE NVTJDPMPHJDBM BQQMJDBUJPOT
    ٔ %FDJEF PO UXP PS UISFF NVTJDPMPHJDBM BQQMJDBUJPOT UP EJTDVTT
    ٔ &BDI HSPVQ UIFO QSFTFOUT UIPTF BQQMJDBUJPOT BU UIF FOE
    5SBOTGPSNJOH .VTJDPMPHZ .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT

    View Slide

  12. 0VUMJOF
    5JNF %FTDSJQUJPO
    *OUSPEVDUJPO "MBO .BSTEFO

    .FUBEBUB 3JDIBSE -FXJT %BWJE 8FJHM

    /FUXPSLT #FO 'JFMET

    1FSGPSNBODFSFBMUJNF ,FWJO 1BHF %BWJE 8FJHM

    #SFBL
    4ZNCPMJD NVTJD 5JN $SBXGPSE 3JDIBSE -FXJT

    "VEJP TFBSDI #FO 'JFMET 5JN $SBXGPSE

    .FJOBSE .¼MMFS
    4USVDUVSFE EJTDVTTJPO
    'JOJTI
    ?iiT,ffrrrXi@KmbXQ`;f2p2MibfBbKB`kyR8@imiQ`BHf
    5SBOTGPSNJOH .VTJDPMPHZ .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT

    View Slide

  13. "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG
    .VTJDPMPHJTUT .FUBEBUB
    3JDIBSE -FXJT BOE %BWJE -FXJT
    .POEBZ 0DUPCFS .¡MBHB
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  14. 8IBU JT NFUBEBUB
    ٔ .VTJDPMPHZ JT NPTUMZ BCPVU UIF DPOUFYU PG NVTJDBM QSBDUJDF
    ٔ .FUBEBUB JT UIFSFGPSF KVTU BT JNQPSUBOU BT EBUB
    ٔ FH IJTUPSJDBM NVTJDPMPHZ TUVEZJOH IPX QJFDFT NPWF UISPVHI
    TPDJBM OFUXPSLT
    ٔ FH DVMUVSBM NVTJDPMPHJTUT TUVEZJOH IPX DVMUVSBM HSPVQT JEFOUJGZ
    XJUI NVTJD
    ٔ 5IFTF RVFTUJPOT EPOًU SFMZ PO NVTJDBM DPOUFOU
    ٔ #VU UIFZ EP SFMZ PO
    ٔ JEFOUJUZ PG NVTJDBM XPSLT
    ٔ XIFO BOE XIFSF NVTJDBM XPSLT BSF QFSGPSNFE
    ٔ XIFO BOE XIFSF NVTJDBM XPSLT BSF QVCMJTIFE DPQJFE PS
    NFOUJPOFE
    ٔ 5IFSF JT NPSF NVTJDBM LOPXMFEHF JO NFUBEBUB UIBO JO DPOUFOU
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  15. 3FTFBSDI QSBDUJDFT
    ٔ 4DIPMBST NBLJOH MJTUT BOE DBUBMPHVFT
    ٔ 3FTFBSDI VOEFSUBLFO JO BSDIJWFT BOE MJCSBSJFT
    ٔ #SPXTJOH TPVSDFT JODMVEJOH
    ٔ NVTJD OPUBUJPO EPDVNFOUT
    ٔ OFXTQBQFS BSDIJWFT
    ٔ MFࡻFST
    ٔ QIPUPHSBQIT BOE QBJOUJOHT
    ٔ JOTUJUVUJPOBM SFDPSET BOE BDDPVOUT
    ٔ (BUIFS FWJEFODF BCPVU UIF NVTJDBM QBTU FH
    ٔ BDDPVOUJOH SFDPSET TIPX B NVTJDJBO BT BO FNQMPZFF PG TPNF
    JOTUJUVUJPO
    ٔ MFBSO GBDUT BCPVU B NVTJDJBOًT MJGF GSPN MFࡻFST CZ BOE BCPVU
    IJNIFS
    ٔ 3FTFBSDI FNQMPZT َNBOVBMُ TBNQMJOH NFUIPET
    ٔ $PODMVTJPOT BSF UIF SFTVMU PG UIF TDIPMBS EJHFTUJOH BMM UIF
    FWJEFODF
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  16. %JHJUJTBUJPO
    ٔ 1SFEJHJUJTBUJPO TDIPMBST SFMJFE PO FYQFSUJTF PG MJCSBSJBOT
    ٔ 3FTFBSDI XBT PࡺFO B DBTF PG CSPXTJOH
    ٔ *O UIJT FSB OFX EJTDPWFSJFT XFSF PࡺFO XPSUI B QVCMJDBUJPO
    ٔ %JHJUJTBUJPO NBLFT SFUSJFWJOH BOE WJFXJOH PG QSJNBSZ TPVSDFT
    USJWJBM
    ٔ 'VMMUFYU JOEFYFT HJWF B CBTJD XFMMVOEFSTUPPE NPEF PG
    EJTDPWFSBCJMJUZ
    ٔ #VU SFTVMUT BSF OPU BMXBZT SFMFWBOU JG DPOUFYU JT BNCJHVPVT
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  17. 4UBUJTUJDBM BQQSPBDIFT
    ٔ "SDIJWBM SFTFBSDI QSFEJHJUBM BOE EJHJUBM
    QSPEVDFT EFUBJMFE
    OBSSPX SFTFBSDI GJOEJOHT
    ٔ 4DIPMBST UFOE UP QSPCF EFFQMZ JOUP B SFTFBSDI RVFTUJPO
    ٔ $PNQVUBUJPOBM BOE TUBUJTUJDBM UFDIOJRVFT DBO CF BQQMJFE UP UBLF
    CSPBE WJFX
    ٔ &H " #JH %BUB )JTUPSZ PG .VTJD 4UFQIFO 3PTF BOE 4BOESB
    5VQQFO
    ٔ 5BLFO BOE DMFBOFE WBSJPVT DPMMFDUJPOT PG CJCMJPHSBQIJD EBUB PO
    QVCMJTIFE NVTJD TJODF $UI
    ٔ "QQMJFE TVNNBSJTBUJPO BOE WJTVBMJTBUJPO UFDIOJRVFT UP TIPX
    USFOET JO NVTJD QVCMJTIJOH
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  18. 4UBUJTUJDBM BQQSPBDIFT
    T T
    GSPN ?iiT,ff2KXQt7Q`/DQm`MHbXQ`;f+QMi2Mif2`HvfkyR8fyNfykf
    2KX+pydRX7mHH

    ٔ 4IPXJOH IPX RVBOUJUJFT PG NVTJD QVCMJTIFE JO EJख़FSFOU DJUJFT
    DIBOHFE PWFS UJNF
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  19. 4UBUJTUJDBM BQQSPBDIFT
    ٔ 1SPWJEFT GJSN FWJEFODF GPS IZQPUIFTFT BCPVU IPX NVTJD XBT
    CFJOH QSPEVDFE BOE VTFE
    ٔ 'SBODP .PSFࡻJ EFTDSJCFT UIF EJख़FSFODF CFUXFFO َDMPTF SFBEJOHُ
    BOE َEJTUBOU SFBEJOHُ
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  20. #VJMEJOH .*3 TZTUFNT GPS NVTJDPMPHZ
    ٔ .FUBEBUB NBZ CF TFFO BT َFBTZُ PS َTPMWFEُ
    ٔ 'PS TPNF .*3 BQQMJDBUJPOT UIJT NBZ CF
    ٔ &H GPS SFDSFBUJPOBM NVTJD JOGPSNBUJPO OFFET XF NBZ IBWF
    BVUIPSJUBUJWF BSUJTU BOE USBDL UJUMF EBUB
    ٔ 5IJT NBZ CF BVHNFOUFE XJUI EJTDPWFSBCJMJUZ MBCFMT HFOSF NPPE

    ٔ 'PS BQQMJDBUJPOT TVDI BT SFDPNNFOEFS TZTUFNT TVDI NFUBEBUB
    JT TVख़JDJFOU
    ٔ 4VDI TZTUFNT PࡺFO QSJPSJUJTF FBTFPGVTF TJOHMF JOUFSBDUJPO
    ٔ +VTU GJOE B QJFDF UIBU GJUT UIF SFRVJSFNFOU
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  21. #VJMEJOH .*3 TZTUFNT GPS NVTJDPMPHZ
    ٔ 5IJT JT JO DPOUSBTU UP B QPUFOUJBM .*3 TZTUFN GPS BTTJTUJOH
    IJTUPSJDBM NVTJDPMPHZ
    ٔ 4VDI B TZTUFN NBZ JOWPMWF MPOH SFTFBSDI TFTTJPOT
    ٔ .BOZ JOUFSBDUJPOT XJUI UIF TZTUFN
    ٔ 6TJOH KVEHFNFOU UP EFUFSNJOF XIBU UIF OFYU SFUSJFWBM
    SFRVJSFNFOU XJMM CF
    ٔ 'SFRVFOU DPOUFYU TXJUDIJOH
    ٔ NVTJDBM XPSL JOGPSNBUJPO
    ٔ HFPHSBQIJDBMMPDBUJPO JOGPSNBUJPO
    ٔ QSPTPQPHSBQIZ JOGPSNBUJPO
    ٔ /PU BVUPNBUJD DPNQVUBUJPOBM NVTJDPMPHZ
    ٔ #VU SBUIFS DPNQVUFSBTTJTUFE NVTJDPMPHZ
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  22. $IBMMFOHFT PG NFUBEBUB
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  23. $IBMMFOHFT PG NFUBEBUB
    ٔ %BUB JT PࡺFO NBEF BWBJMBCMF EJHJUBMMZ BT QSPTF
    ٔ &H &.0 DPMMFDUJPO IBT DBUBMPHVF SFDPSET GPS FBDI CPPL
    ٔ #VU UIF UBCMFT PG DPOUFOUT PG UIF CPPLT BSF VOTUSVDUVSFE UFYU
    ٔ &H NBOZ VTFGVM TPVSDFT BSF QSPTF BOZXBZ MFࡻFST OFXTQBQFST
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  24. $IBMMFOHFT PG NFUBEBUB
    ٔ %BUB NBZ CF EJTUSJCVUFE CFUXFFO WBSJPVT DBUBMPHVFT
    ٔ &H XIFO TFQBSBUF MJCSBSJFT IBWF IPMEJOHT PO UIF TBNF NVTJD
    ٔ &H XIFO B TJOHMF MJCSBSZ IBT TFQBSBUF DBUBMPHVFT GPS QSJOUFE
    BOE NBOVTDSJQU NVTJD
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  25. $IBMMFOHFT PG NFUBEBUB
    ٔ %BUB OFFET UP CF JOUFSQSFUFE DPSSFDUMZ
    ٔ )VNBO SFBEFST FTQFDJBMMZ EPNBJO FYQFSUT BQQMZ QSJPS
    LOPXMFEHF XIFO SFBEJOH TPVSDFT
    ٔ #VU BDDFTTJOH B EJHJUJTBUJPO WJB GVMMUFYU JOEFY NBZ MPTF DPOUFYU
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  26. $IBMMFOHFT PG NFUBEBUB
    ٔ &H 4JY %FHSFFT PG 'SBODJT #BDPO TJUF TIPXT DPOOFDUJPO CFUXFFO
    OBNFT َ)FOSZ 1VSDFMMُ BOE َ8JMMJBN #ZSEُ
    ٔ #PUI SFDPHOJTBCMF &OHMJTI DPNQPTFST
    ٔ #VU UIJT َ8JMMJBN #ZSEُ JT B $UI MBOEPXOFS
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  27. $IBMMFOHFT PG NFUBEBUB
    ٔ %BUB NBZ PࡺFO CF JODPNQMFUF
    ٔ &H NBOZ TVSWJWJOH CPPLT PG NVTJD IBWF BCCSFWJBUFE PS BCTFOU
    DPNQPTFS OBNFT BOE QJFDF UJUMFT
    ٔ "OE EBUB NBZ FWFO CF JODPSSFDU
    ٔ &H QSJNBSZ TPVSDFT IBWF BࡻSJCVUJPOT XIJDI BSF KVTU XSPOH
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  28. $IBMMFOHFT PG NFUBEBUB
    ٔ %BUB NBZ CF BNCJHVPVT PS BQQSPYJNBUF
    ٔ &H EBUFT JO DBUBMPHVFT HJWFO BT DJSDB PS SBOHFT
    ٔ &H BCCSFWJBUFE OBNFT UIBU CFDPNF BNJHVPVT
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  29. 5FDIOJRVFT
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  30. 5FDIOJRVFT
    ٔ %BUB FOSJDIJOH BOE DMFBOJOH
    ٔ -JCSBSZ DBUBMPHVFT BSF EFWFMPQFE PWFS NBOZ ZFBST
    ٔ $IBOHJOH TUBOEBSET PG EBUB FOUSZ
    ٔ &OPSNPVT WBSJFUZ PG OBUVSF PG EBUB
    ٔ &H #JH %BUB )JTUPSZ PG .VTJD TQFOU Fख़PSU DMFBOJOH #SJUJTI
    -JCSBSZ NVTJD DBUBMPHVFT
    ٔ .BLJOH VTF PG (PPHMF 3FGJOF
    ٔ &H PVS 4FNBOUJD .FEJB /FUXPSL NJOJQSPKFDU XPSLFE XJUI &BSMZ
    .VTJD 0OMJOF DBUBMPHVF EBUB
    ٔ "O FYBNQMF PG B DBUBMPHVF XJUI UBCMFT PG DPOUFOUT FODPEFE JO
    POF ."3$ GJFME
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  31. 5FDIOJRVFT
    ٔ -JOLJOH BOE BMJHOJOH
    ٔ -JOLFE %BUB BT B QPXFSGVM UFDIOJRVF GPS PQFOJOH VQ SFTFBSDI
    EBUB
    ٔ &WFSZUIJOH UIBU OFFET UP CF BEESFTTFE JT B SFTPMWBCMF 63*
    ٔ &WFSZUIJOH JT EFTDSJCFE VTJOH 3%' USJQMFT
    ٔ 5IPTF USJQMFT TIPVME VTF QVCMJDMZ BWBJMBCMF QSFEJDBUFT
    ٔ 'PMMPXJOH UIFTF QSJODJQMFT EBUB CFDPNFT FBTJFS UP JOUFHSBUF
    ٔ 8F Fख़FDUJWFMZ CVJME VQ B CJH 8FC PG EBUB
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  32. 5FDIOJRVFT
    ٔ 0VS 4FNBOUJD .FEJB /FUXPSL NJOJQSPKFDUT IBWF EPOF UIJT XJUI
    &.0 5JNًT MVUF NVTJD DBUBMPHVF BOE ##$ &BSMZ .VTJD 4IPX
    SFDPSEJOHT
    ٔ 1SPEVDJOH HPPE RVBMJUZ -JOLFE %BUB JOWPMWFT FYQFSUT BTTFSUJOH
    MJOLT
    ٔ 5PPM XIJDI IFMQT GJOE QPUFOUJBM MJOLBHFT JO EBUB TFUT
    ٔ 1SPWJEFT DPOUFYU UP IFMQ DBUBMPHVFST EFDJEF PO UIF QMBVTJCJMJUZ PG
    UIF MJOLT
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  33. $PODMVTJPOT
    ٔ .FUBEBUB JT DPSF NVTJDPMPHJDBM LOPXMFEHF
    ٔ .VDI PG UIF QSBDUJDF PG NVTJDPMPHJDBM JT DPODFSOFE XJUI
    NFUBEBUB
    ٔ .FUBEBUB JO UIF XJME JT NFTTZ
    ٔ 8FًSF SFBMMZ MPPLJOH GPS DPNQVUFSBTTJTUFE NVTJDPMPHZ OPU
    BVUPNBUJPO
    3JDIBSE -FXJT BOE %BWJE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT .FUBEBUB

    View Slide

  34. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Social-Network Analytics and Music
    Ben Fields
    #ISMIRMusicologists
    !@alsothings

    View Slide

  35. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    social-network analytics and music
    Social Network Analytics:
    methods to describe and analyse
    complex networks that concern
    social relationships

    View Slide

  36. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    social-network analytics and music
    Music and the Web

    View Slide

  37. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    social-network analytics and music
    Music curation and the Web

    View Slide

  38. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    social-network analytics and music
    Music curation and the Web

    View Slide

  39. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    social-network analytics and music
    Music curation and the Web

    View Slide

  40. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Tools I use
    •networkX
    •iGraph
    •graphViz
    •Gephi
    •postgresql

    View Slide

  41. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Common Techniques
    •diameter
    •average degree
    •shortest path problem (common solution:
    Dijkstra’s algorithm)
    •edge betweenness
    •community segmentation

    View Slide

  42. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Diameter: the longest shortest-path between
    two nodes in a network
    Common Techniques
    diameter

    View Slide

  43. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Average Degree: the mean number of edges
    across a network
    Common Techniques
    average degree

    View Slide

  44. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Shortest Path Problem: broadly, how does one
    most efficiently find the shortest distance in
    edges between two nodes, e.g. Dijkstra’s
    algorithm
    Common Techniques
    shortest path problem

    View Slide

  45. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    edge betweenness: for any edge, the count of
    shortest paths, that must run through that
    edge. A measurement of an edge’s importance
    in the community structure of a network
    Common Techniques
    edge betweenness

    View Slide

  46. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    community segmentation: the process of
    separating a network into subgraphs, where
    the node connectivity within the subgraph is
    a high as possible and the node connectivity
    across subgraphs is a low as possible
    Common Techniques
    community segmentation

    View Slide

  47. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    social-network analytics and music
    Let’s take a look at genius.com

    View Slide

  48. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Lyric for Hypnotize, by
    The Notorious B.I.G. with annotation

    View Slide

  49. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Lyric for Hypnotize, by
    The Notorious B.I.G. with annotation score

    View Slide

  50. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    The recent annotations of the user
    OldJeezy

    View Slide

  51. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    basic contributor graph
    •60,472 users (nodes)
    •1,156,940 edges (one+ common songs)

    View Slide

  52. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    data acquisition
    •Scraping data from genius december 2014
    •Collected the contributions from 704,438
    •Associated metadata from 146,186 works
    •Scraper tool released under MIT license:
    https://github.com/gearmonkey/pyrg
    http://dx.doi.org/10.5281/zenodo.17515

    View Slide

  53. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    data acquisition - basic stats
    description count
    total users 704,438
    total annotations 1,256,912
    total works 146,186
    contributing users 71,129
    annotation edits 2,196,522
    annotations w/2+ editors 194,795

    View Slide

  54. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    data acquisition - genre
    genre works percentage
    rap 107,270 73.3%
    rock 16,393 11.2%
    lit 9,386 6.2%
    news 3,720 2.5%
    pop 3,715 2.5%
    sports 1,140 0.7%
    x 1,140 0.6%
    country 744 0.5%
    screen 697 0.4%
    r-b 655 0.4%
    history 502 0.3%
    unbranded 370 0.2%
    law 250 0.1%
    tech 159 0.1%
    meta 151 0.1%

    View Slide

  55. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    data acquisition - top tags
    tag works
    Rap Genius France 9,135
    Genius France 6,009
    Deutscher Rap 5,725
    Polski Rap 3,298
    West Coast 1,384
    Brasil 841
    Bay Area 839
    Indie Rock 716
    Chicago 710
    Genius Britain 540

    View Slide

  56. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    graph modelling - bipart
    •modelled first as a bipartite graph
    •nodes are either works or users
    •edges represent an instance where a user
    has contributed to an annotation of a
    work
    •216,943 nodes (71,129 users, 145,814 works)
    •439,835 edges (4.24x10-5 of all possible)

    View Slide

  57. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    graph modelling - projected
    •project graph to works with weighted
    edges
    •keep only the largest connected
    component
    •resulting graph has 125,044 nodes and
    38,259,818 edges

    View Slide

  58. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    graph modelling - communities
    method modularity communities
    fast-greedy 0.529 498
    leading
    eigenvector
    0.003 11488
    multilevel 0.582 169

    View Slide

  59. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    arguments
    •full history of each annotation
    •find ‘edit wars’

    View Slide

  60. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    most contentious annotations
    1. 2040 | 3599357 | http://genius.com/Eminem-rap-god-lyrics
    2. 1239 | 4086888 | http://genius.com/Kendrick-lamar-i-lyrics
    3. 1224 | 2092508 | http://genius.com/Big-sean-control-lyrics
    4. 1026 | 3680563 | http://genius.com/Big-sean-control-lyrics
    5. 976 | 2371035 | http://genius.com/Eminem-bad-guy-lyrics
    score | anno id | song url

    View Slide

  61. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    ecifying the origins
    song-by-song basis.
    e networks are cre-
    ation of social net-
    and characteristics.
    is proposed, unify-
    artist and genre net-
    . Such metrics are
    eresting patterns of
    ic suitable for mu-
    and visualizations
    led-based influence
    tribution; heavy in-
    on modern hip-hop,
    usicological results.
    N
    cant tool for under-
    ms. Social network
    garnered the atten-
    mputer science, and
    n retrieval commu-
    collaboration, rec-
    networks.
    d in Cano and Kop-
    arity networks from
    fluence using web scraping, web services, and audio simi-
    larity to construct influence graphs of a collection of synth
    pop music [7]. The work outlines the difficulty of construct-
    ing influence networks and motivates further investigation.
    Figure 1. Visualization of Genre Flow. The size and opacity
    of a directed edge indicates the relative flow of samples from
    one genre to another.
    Other Examples
    Musical Influence Network Analysis and Rank of Sample-Based Music
    Nicholas J. Bryan and Ge Wang !
    Musical Influence Network Analysis and Rank of Sample-Based Music,
    Proc. ISMIR, 2011

    View Slide

  62. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Other Examples
    Finding Community Structure in Music Genre Networks
    Debora C. Corrêa, Luciano da F. Costa, and Alexandre L. M. Levada !
    Finding Community Structure in Music Genre Networks, Proc. ISMIR, 2011
    ety for Music Information Retrieval Conference (ISMIR 2011)
    pb
    5
    0
    7
    Figure 6.
    od review on the
    aph theory.
    titioning method
    of the Laplacian
    incidence matri-
    et of vertices and
    Q, is given by:
    (1)
    s of V .
    Laplacian matrix
    Figure 6. The network of genres by the Fiedler vector.

    View Slide

  63. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    In Summary
    •SNA provides a set of tools to observe socio-
    cultural phenomena
    •when applied to networks with musical intent
    and meaning: we get musicology(?)

    View Slide

  64. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Questions
    Questions or comments to:
    •! @alsothings / [email protected]
    •! @TMusicology
    •#ISMIRMusicologists

    View Slide

  65. 1
    Information capture, consolidation, and
    analysis to support the musicological
    investigation of opera performance
    Experiences with Wagner's Ring Cycle
    Kevin Page, David Weigl
    Oxford e-Research Centre, University of Oxford
    Addressing the music information needs of musicologists
    ISMIR tutorial, October 2015

    View Slide

  66. 2
    Capturing an annotated copy of a complete Ring performance
    Outline
    • Musicology motivation
    • Hardware and software for collecting the data
    • Pragmatics of data collection
    • Preliminary data investigation
    • Applied data analysis (demo)
    • Bonus(?!): video during the break

    View Slide

  67. 3
    Musicology motivation: performance studies
    “In opera and music theatre, the individual realisation of a work in
    performance differs significantly from the abstract concept that is captured in
    the score. The scenic interpretation, with its own characteristics and its
    specific perspective on the work, is created afresh in every new staging -
    thus a performance and its experience cannot be measured on the basis of
    the score alone.
    Especially for studies that want to consider the reception and perception of
    an operatic work, taking into account the characteristics of individual
    stagings and keeping a record of particular performances is an important
    requirement. In recent decades, methodological shifts such as a
    ‘performative turn’ and reception theory accorded an increasing value to the
    performance as a source for musicological research. This poses the
    question of how best to document the ephemeral phenomenon of an
    operatic performance.”
    Carolin Rindfleisch, Oxford, October 2015

    View Slide

  68. 4
    Hearing Wagner? Seeing Wagner? Reading Wagner?
    Georg Unger as Siegfried, Der Ring
    des Nibelungen, Bayreuth 1876,
    Universitätsbibliothek Frankfurt am
    Main, urn:nbn:de:hebis:30:2-151468
    Siegfried; Valery Gergiev and
    Mariinsky Opera: Der Ring des
    Nibelungen, Birmingham 2014
    http://www.birminghamhippodr
    ome.com/WhatsOn_focus.asp
    ?showId=1823
    Siegfried and Mime; Pierre Boulez
    and Patrice Chereau: Der Ring
    des Nibelungen, Bayreuth 1976,
    http://mostlyopera.blogspot.co.uk/
    2008/11/chreau-and-boulez-
    nibelungen-ring-on.html

    View Slide

  69. 5
    Hearing Wagner? Seeing Wagner? Reading Wagner?
    How can we capture performance?
    • Audio-visual recording
    – Neither objective nor exhaustive
    • Live annotation of performance
    – Di-erent kinds of information
    – Integration of document and analysis
    – Adaptable to research questions
    ● If we can distinguish between the annotation
    technology and the meaning of the annotations

    View Slide

  70. 6
    Opportunity: the Marinsky Ring in Birmingham
    • Mariinsky Opera Company under Valery Gergiev
    • Birmingham Hippodrome
    • 4 nights over 5 days in November 2014
    • Genesis of the project to capture bio-sensed physiological
    data
    – Create a musicological ground truth to form hypotheses
    – Builds on work in generating semantic hyperstructures
    for detailed and dense information spaces
    – A worthy investigation of performance in its own right
    • Hearing Wagner public engagement event two weeks(!) later
    presenting initial results

    View Slide

  71. 7
    The Musical Score Annotation Kit – ‘MuSAK’
    ...an exercise in pragmatism!
    Tablet interface and annotation
    server
    • Considered a detailed interface that
    would enable the musicologist to
    annotated from a full coded pallette
    of annotations
    • But needed an interface that was
    fast enough to use quickly, and
    familiar enough to learn quickly
    • Developed a system using the
    'Union' platform server and a tablet
    interface displaying a scanned score
    • Each tablet stroke is an annotation

    View Slide

  72. 8
    The Musical Score Annotation Kit – ‘MuSAK’
    Digital Pen and Audio Notes
    • Livescribe 'Echo' pen
    • Uses a small camera and special 'Anoto'
    paper
    • Can also capture audio notes
    • Data downloaded over USB

    View Slide

  73. 9
    The Musical Score Annotation Kit – ‘MuSAK’
    Score following and replay tool
    • Also web based
    • Captured page turns in sync with the performance
    – As opposed to turns when annotating
    • Software reused to create a replay of data for the Hearing Wagner event

    View Slide

  74. 10
    The Musical Score Annotation Kit – ‘MuSAK’
    Audio and video
    • Video of the musicologist at work
    • No rights to capture and publish
    the actual performance
    – But need a notion of its
    implicit existence to
    synchronise timelines
    – Substitute (commercial)
    audio recordings for
    playback
    • Also background noise for
    synchronisation from Livescribe
    Echo pen

    View Slide

  75. 11
    Preparation and deployment
    IMSLP short piano score
    250-365 pages per
    opera
    Trimmed and cleaned
    for tablet
    Marked up for musical
    annotation before
    performance
    ~3 days per opera
    Annotated on tablet
    during performance
    Each annotation
    layer can be replayed or
    processed separately
    Combined with other
    data sources: Echo pen,
    video, substitute audio

    View Slide

  76. 12
    Data collection
    • Fieldwork can be trying!
    • Some problems:
    – Annotator location
    – System problems (Die Walküre, Act III, Scene I)
    – Clock drift
    ● Collected data
    – 15 hours, consisting four nights’ performance over Cve days
    – Over 100,000 tablet strokes → 8,216 annotations
    – 1,300 performance based page turns
    – 1,316 digital images
    – 104 pages of writing → 13 hours of digital pen replay
    – 15 hours of video footage

    View Slide

  77. 13
    Data publication – Linked Data and metaMuSAK

    View Slide

  78. 14
    Data publication – even “simple” things are complex!
    Representation of Ring annotation data

    View Slide

  79. 15
    Data publication – Linked Data and metaMuSAK
    http://www.transforming-musicology.org/tools/metaMuSAK

    View Slide

  80. 16
    Preliminary Data investigation – demo in a minute!

    View Slide

  81. 17
    Preliminary Data investigation – demo in a minute!

    View Slide

  82. 18
    Preliminary Data investigation – demo in a minute!

    View Slide

  83. 19
    ReJections
    • What started as a supporting data capture quickly became worthy of
    investigation in its own right
    – This was an iterative collaboration as we demonstrated to the
    musicologist what was possible technologically, then exploring
    the research data this provided musicologically
    • Also an exercise in compromise
    – It is far from a perfect system from a data capture perspective
    but the technologist's perfect tool would have been
    dysfunctional for the musicologist in the Celd
    • Relatively simplistic (for now) analysis, but still insightful for the
    musicologist...
    – Annotation rate has implications on suitability and analytical
    granularity of annotation key
    – Periods of peak annotation density can be identiCed and
    revisited by the musicologist for review

    View Slide

  84. 20
    Demo time... empirical reception studies using R
    1) Inspect the raw and processed musicological annotation data
    2) Compare musicologist's page viewing durations with page
    performance-event durations to quantify the overhead of the
    annotation task
    3) Generate summaries of annotation activity in terms of annotations
    per page and per minute
    4) Determine the variability of annotation rate (with implications on
    analytical granularity).
    5) Isolate moments of peak annotation density for review by the
    musicologist

    View Slide

  85. 21
    Thank you – questions?
    [email protected]
    [email protected]
    To find out more about the (Meta)MuSAK system and data...
    … see our paper in the ISMIR proceedings and poster (and demo)
    tomorrow (Tuesday). Also see:
    http://www.transforming-musicology.org/tools/metaMuSAK
    Thanks to all our co-authors and collaborators, but especially Terhi Nurmikko-
    Fuller (University of Oxford e-Research Centre), Carolin Rindfleisch (University of
    Oxford Faculty of Music) and Richard Lewis (Goldsmiths University of London
    Department of Computing).
    …and it ain't over 'til...

    View Slide

  86. "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG
    .VTJDPMPHJTUT 4ZNCPMJD .VTJD
    5JN $SBXGPSE BOE 3JDIBSE -FXJT
    .POEBZ 0DUPCFS .¡MBHB
    5JN $SBXGPSE BOE 3JDIBSE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT 4ZNCPMJD .VTJ

    View Slide

  87. 3FDBQ
    ٔ $POUFYUVBM BOE CJCMJPHSBQIJD JOGPSNBUJPO
    ٔ /FUXPSL BOBMZTJT UP VOEFSTUBOE DPOUFYU
    ٔ 3JDI NVMUJSFTPVSDFT BCPVU XPSLT BOE QFSGPSNBODFT
    ٔ /PX XF UVSO UP BO BQQBSFOU TUBQMF PG NVTJDPMPHJDBM TUVEZ UIF
    TDPSF
    5JN $SBXGPSE BOE 3JDIBSE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT 4ZNCPMJD .VTJ

    View Slide

  88. 4ZNCPMJD &ODPEJOH
    ٔ %JTDSFUF FODPEJOH BT PQQPTFE UP DPOUJOVPVT
    ٔ 3FRVJSFT B MFWFM PG BUPNJDJUZ HSBOVMBSJUZ
    ٔ /PSNBMMZ B QJUDIFE FWFOU XJUI B EVSBUJPO
    ٔ 0ࡺFO DBMMFE B َOPUFُ
    ٔ 0ࡺFO PSUIPHPOBM TUSFBNT PG FWFOUT MJLF َTUBWFTُ

    ٔ &YBNQMF FODPEJOHT
    ٔ .*%* GJMFT
    ٔ 1MBJOF &BTJF $PEF
    ٔ %"3.4
    ٔ .VTJD9.-
    ٔ .&*
    ٔ ,FSO
    ٔ .BOZ NBOZ PUIFST
    5JN $SBXGPSE BOE 3JDIBSE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT 4ZNCPMJD .VTJ

    View Slide

  89. .VTJD /PUBUJPOT
    ٔ 4ZNCPMJD FODPEJOHT PࡺFO NVTJDOPUBUJPO MJLF
    ٔ 8SJUJOH TZTUFNT GPS QSFTDSJCJOH PS EFTDSJCJOH NVTJDBM
    QFSGPSNBODF
    ٔ &ODPEJOHT PࡺFO CBTFE PO 8FTUFSO $PNNPO 1SBDUJDF QFSJPE
    OPUBUJPO
    ٔ &ODPEJOHT PࡺFO UBLF QJUDI BOE EVSBUJPO BT NPTU JNQPSUBOU
    JOGPSNBUJPO
    ٔ "MUIPVHI TDPSFT DBSSZ PUIFS JOGPSNBUJPO UPP
    ٔ &ODPEJOHT PG EJTDSFUF QJUDI FWFOUT HJWF B LJOE PG NBUSJY
    ٔ 'PS QPMZQIPOJD NVTJD SPXT PG QBSUT
    ٔ "OE FBDI SPX DPNQSJTFT B TFSJFT PG QJUDIFT
    5JN $SBXGPSE BOE 3JDIBSE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT 4ZNCPMJD .VTJ

    View Slide

  90. 4ZNCPMJD 5FDIOJRVFT
    ٔ 4USJOH BMHPSJUINT
    ٔ 3FQSFTFOUJOH NVTJD BT B TFSJFT PG TZNCPMT
    ٔ "QQMZJOH UFDIOJRVFT TVDI BT FEJU EJTUBODF GPS TJNJMBSJUZ
    ٔ .BSLPW NPEFMT
    ٔ 0OMJOF QBࡻFSO EJTDPWFSZ JO TZNCPM TUSFBNT
    ٔ &WFOU GSFRVFODZ BOBMZTFT
    ٔ &H QJUDI IJTUPHSBNT
    ٔ (FPNFUSJD BMHPSJUINT
    ٔ 3FQSFTFOUJOH NVTJD BT NVMUJEJNFOTJPOBM TZNCPMT
    ٔ "QQMZJOH USBOTGPSNBUJPOT GPS TJNJMBSJUZ BOE QBࡻFSO EJTDPWFSZ
    ٔ "O FYBNQMF JT UIF 4*" BMHPSJUIN GPS QBࡻFSO JEFOUJGJDBUJPO
    ٔ "OE 4*"5&$ GPS QBࡻFSO TFBSDI

    5JN $SBXGPSE BOE 3JDIBSE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT 4ZNCPMJD .VTJ

    View Slide

  91. 4ZNCPMJD 5BTLT
    ٔ ,FZ GJOEJOHNPEF GJOEJOH
    ٔ &H VTJOH QJUDI GSFRVFODZ BOBMZTJT
    ٔ #BTJDT PG BVUPNBUJD NVTJD BOBMZTJT
    ٔ 1JUDI TQFMMJOH
    ٔ 1BࣄFSO JEFOUJGJDBUJPOSFUSJFWBM
    ٔ &YUBDU NBUDIJOH WT BQQSPYJNBUF NBUDIJOH
    ٔ ,OPXO QBࡻFSOT WT VOLOPXO QBࡻFSOT
    ٔ 4FNBOUJD BVEJP
    ٔ &YUSBDUJOH OPUFMJLF JOGPSNBUJPO BOE PUIFS TFNBOUJD MBCFMT

    GSPN BVEJP
    ٔ ࣉFSZCZFYBNQMF
    ٔ 8IFSF UIF RVFSZ JT TZNCPMJD CVU UIF DPSQVT JT BVEJP
    5JN $SBXGPSE BOE 3JDIBSE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT 4ZNCPMJD .VTJ

    View Slide

  92. 4ZNCPMJD 5BTLT GPS .VTJDPMPHZ
    5JN $SBXGPSE BOE 3JDIBSE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT 4ZNCPMJD .VTJ

    View Slide

  93. 3FTPVSDF 1VCMJDBUJPO
    ٔ .BOZ FYBNQMFT PG َEJHJUJTBUJPOُ JO UIF TZNCPMJD FODPEJOH XPSME
    ٔ $$"3) BU 4UBOGPSE IBWF CFFO FEJUJOH BOE QVCMJTIJOH )VNESVN
    BOE .VTF%BUB DPOUFOU GPS NBOZ ZFBST
    ٔ .D(JMM XPSL PO FBSMZ NVTJD TPVSDFT BOE 0.3
    ٔ 3*4. 01"$ QSPWJEFT JODJQJU TFBSDI
    5JN $SBXGPSE BOE 3JDIBSE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT 4ZNCPMJD .VTJ

    View Slide

  94. %PDVNFOUBSZ &WJEFODF
    ٔ 8IZ EP NVTJDPMPHJTUT TUVEZ OPUBUJPO TPVSDFT
    ٔ 5P EJTDPWFS EPDVNFOUBSZ FWJEFODF PG NVTJDBM QSBDUJDF
    ٔ #PUI DVSSFOU BOE IJTUPSJDBM
    ٔ 'SPN NVTJDBM TPVSDFT XF DBO MFBSO BCPVU XIBU NVTJD XBT
    LOPXO XIFSF BOE XIFO
    ٔ "MUIPVHI SFNFNCFS UIF NFUBEBUB QSPCMFNT JO IJTUPSJDBM
    TPVSDFT

    ٔ -FBSO GSPN EPDVNFOUBSZ FWJEFODF BCPVU IPX NVTJD XBT
    USBOTNJࡻFE
    ٔ .BOVTDSJQUT CPPLT PࡺFO DPOUBJO DPQJFT PG QJFDFT CVU PࡺFO XJUI
    FSSPST
    ٔ -POH USBEJUJPO PG QSPEVDJOH FEJUJPOT PG NBOVTDSJQU NVTJD CPPLT
    5JN $SBXGPSE BOE 3JDIBSE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT 4ZNCPMJD .VTJ

    View Slide

  95. %PDVNFOUBSZ &WJEFODF
    ٔ 4DIPMBST CVJME VQ EPNBJO LOPXMFEHF EVSJOH UIFJS DBSFFST
    ٔ 0O NVTJDBM XPSLT NVTJDJBOT TDSJCFT MPDBUJPOT BOE EBUFT PG
    CPPLT
    ٔ 6TJOH UIJT UIFZ BSF BCMF UP BQQSPBDI SFTFBSDI RVFTUJPOT TVDI BT
    ٔ XIP DPQJFE UIJT OFX VOBࡻSJCVUFE TPVSDF
    ٔ HJWFO UIJT TJOHMF QBSUCPPL XIJDI QJFDFT BSF DPQJFE JOUP JU
    ٔ PG XIJDI PUIFS QJFDF JT UIJT OFX TPVSDF BO BSSBOHFNFOU
    ٔ 5P FODPEF TPVSDFT XJUI UIF LJOE PG EFUBJM SFRVJSFE GPS
    EPDVNFOUBSZ SFTFBSDI XF OFFE SJDI BOE GMFYJCMF FODPEJOHT
    ٔ 'PS UIJT UIF .VTJD &ODPEJOH *OUJUBUJWF JT QSPNJTJOH
    5JN $SBXGPSE BOE 3JDIBSE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT 4ZNCPMJD .VTJ

    View Slide

  96. $POUFOUCBTFE $PSQVT .VTJDPMPHZ
    ٔ "SHVFE FBSMJFS UIBU NVTJDPMPHZ JT MBSHFMZ OPU BCPVU NVTJDBM
    DPOUFOU
    ٔ #VU DPNQVUBUJPOBM UFDIOJRVFT QSPWJEF BDDFTT UP DPOUFOU
    ٔ &TQFDJBMMZ PO B MBSHFTDBMF UIBU IBT OFWFS CFFO USBDUBCMF GPS
    NVTJDPMPHJTUT
    ٔ 4P DPSQVT NVTJDPMPHZ IBT KVTU OFWFS GFBUVSFE BT QBSU PG UIF
    EJTDJQMJOF
    ٔ "MTP WBSJPVT IJTUPSJDBM SFBTPOT XIZ NVTJDPMPHJTUT UFOE UP BWPJE
    XIBU UIFZ TFF BT َDPNQBSBUJWFُ XPSL JO TUVEZJOH NVTJD
    ٔ "SFBT PG SFTFBSDI UIBU NBZ CF PQFOFE VQ CZ MBSHFTDBMF
    UFDIOJRVFT JODMVEF
    ٔ 4UVEZJOH UIF َNVTJDBM CBDLHSPVOEُ
    5JN $SBXGPSE BOE 3JDIBSE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT 4ZNCPMJD .VTJ

    View Slide

  97. .VTJDBM 4FBSDI
    ٔ ,OPXMFEHF PG SFQFSUPJSF TPVSDFT BOE USBEJUJPOT NPTU SFMJBCMF
    TPVSDF PG OFX EJTDPWFSJFT
    ٔ (JWFO TVख़JDJFOU DPSQPSB DPOUFOUCBTFE TFBSDI NBZ FOBCMF
    SFTFBSDI RVFTUJPOT BSPVOE NVTJDBM BMMVTJPO
    ٔ RVPUBUJPO CPSSPXJOH BSSBOHFNFOU DPQZJOH FSSPST FUD
    ٔ 1PUFOUJBM UFDIOJRVFT JODMVEF
    ٔ 1ISBTFCBTFE SFUSJFWBM HJWFO B TZNCPMJD NVTJD QISBTF SFUVSO BMM
    UIF QJFDFT UIBU DPOUBJOT NBUDIFT XJUIJO B UISFTIPME BOE UIFJS
    MPDBUJPOT
    ٔ &H 5IFNF'JOEFS 1FBDIOPUF 3*4. 01"$
    5JN $SBXGPSE BOE 3JDIBSE -FXJT .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT 4ZNCPMJD .VTJ

    View Slide

  98. EMO & ECOLM!
    Printed 16th-century vocal and lute music

    View Slide

  99. Elements for a Workflow!
    Will need to be roughly similar for any medium-large
    scale automatic music-encoding project

    View Slide

  100. Secular vocal Sacred vocal Free
    compositions
    Dances
    ('suites'
    count as
    one)
    Total
    Totals 486 89 232 275 1082
    45%
    8%
    22%
    25%
    Secular vocal
    Sacred vocal
    Free composi6ons
    Dances ('suites' count as one)
    300 books of music printed before 1600
    All are ‘anthologies’ (i.e. by >1 composer)
    About 10% (27 books) are in tablature
    About 50% of tablature is arrangements of
    vocal music
    Need to identify unknown source-models for
    the arrangements
    Early Music Online (EMO)!

    View Slide

  101. Early Music Online (EMO)!
    Plenty of musicological literature about the
    arrangements
    Essential resources is: Howard Mayer Brown,
    Instrumental Music Published before 1600
    (Harvard, 1965)

    View Slide

  102. H.M. Brown, Instrumental Music!

    View Slide

  103. H.M. Brown, Instrumental Music!

    View Slide

  104. H.M. Brown, Instrumental Music!

    View Slide

  105. H.M. Brown, Instrumental Music!

    View Slide

  106. Early Music Online (EMO)!
    But also, scholars (and, more recently,
    players) have identified quotations of vocal
    music in fantasias, etc.
    As well as direct quotations, lute music oen
    contains less-clear allusions or even
    paraphrases of well-known music of the time
    Perhaps we can discover more of these?

    View Slide

  107. Early Music Online (EMO)!
    In manuscript sources, most lute music is
    anonymous
    Titles and/or composer names (where given)
    are oen incorrect, misspelt or otherwise
    garbled in manuscripts - and even in prints

    View Slide

  108. Early Music Online (EMO)!
    We are looking at ways to use musical
    content to ‘amplify’ metadata searches, since
    approximate matching is required in both
    domains
    Different approaches needed for lute and
    vocal music, because of the differences
    between tablature and mensural notation

    View Slide

  109. EMO/ECOLM cross-searching!
    Need a common/compatible data structure
    for searching
    We treat a score as a discrete pitch/onset-
    time matrix (Something like MIDI)
    Use geometric search methods such as
    SIAMESE
    We can also generate chroma and use audio
    methods (e.g. to match with recordings)

    View Slide

  110. EMO!
    16-c vocal music was mostly published in
    part-books

    View Slide

  111. EMO – part-books!
    Superius! Altus!
    Tenor! Bassus!

    View Slide

  112. EMO – part-books!
    16-c vocal music was mostly published in
    part-books
    OMR - Correction interface within Aruspix

    View Slide

  113. EMO – Aruspix - Optical Music Recognition!
    Vocal music in part-books
    OMR - Correction interface within Aruspix

    View Slide

  114. EMO – part-books!
    16-c vocal music was mostly published in
    part-books
    OMR - Correction interface within Aruspix
    -> MEI encodings (part-books)

    View Slide

  115. EMO – part-books – MEI encodings!
    Vocal music in part-books
    OMR - Correction interface within Aruspix
    -> MEI encodings (part-books)

    View Slide

  116. EMO – part-books -> scores!
    Given corrected MEI part-book encodings …
    … making scores is easy, but correction takes
    time
    Making scores from error-ridden parts is an open
    problem we are addressing
    Converting score to pitch/time matrix is trivial

    View Slide

  117. EMO – metadata for pieces?!
    … but, where do pieces begin/end?

    View Slide

  118. EMO – metadata for pieces?!
    Image 014!
    Image 030!
    Image 046!
    Image 062!

    View Slide

  119. EMO – metadata for pieces?!
    … but, where do pieces begin/end?
    EMO collation interface, based on library
    metadata

    View Slide

  120. EMO – ‘Inventory Maker’!

    View Slide

  121. ECOLM – Tablature recogntion is simpler !
    Each piece is complete on a page-sequence in
    a single book
    Optical Tablature Recognition based on
    Gamera
    Errors are inevitable with optical recognition
    Crowd-source expert correction via web
    interface

    View Slide

  122. ECOLM – Tablature correction!
    Crowd-source expert correction via web
    interface
    Double-entry: correct twice for each line of
    music
    … but, where do pieces begin/end?
    Easier than for vocal music: use Brown
    metadata to collate corrected lines

    View Slide

  123. ECOLM – from tablature to search format!
    With corrected tablature for complete pieces
    … conversion to pitch/time matrix is easy
    We can search within ECOLM using SIAMESE
    We can generate chroma and use audio
    methods (e.g. to match with recordings)

    View Slide

  124. ECOLM!
    ECOLM editing/playback/search interface
    demo

    View Slide

  125. Near-neighbour search in acoustic feature space
    A case study in contrafactum and parody
    Presented/adopted by Ben Fields
    Material originally by Christophe Rhodes

    View Slide

  126. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Introduction
    The ‘remixes’ and ‘cover songs’ of the Renaissance
    Parody and contrafacta
    Lugebat David Absalon
    Je prens congies
    J'ay mis mon cueur
    Credo a 8 mass

    View Slide

  127. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Introduction
    Parody and contrafacta
    Nirvana Weird Al

    View Slide

  128. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Introduction
    Josquin des Prez (c.1450–1521?)
    • contemporary reputation: greatest composer of the age
    Josquin des Prez
    *OUSPEVDUJPO 4JNJMBSJUZ 3FTVMUT $PODMVTJPOT
    *OUSPEVDUJPO
    +PTRVJO EFT 1SF[
    +PTRVJO EFT 1SF[ Dم

    ٔ DPOUFNQPSBSZ SFQVUBUJPO HSFBUFTU DPNQPTFS PG UIF BHF

    View Slide

  129. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Introduction
    Nicolas Gombert (c.1495–c.1560)
    • transition figure between Josquin and Palestrina
    Nicolas Gombert

    View Slide

  130. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Introduction
    The Je prens congies complex
    •Je prens congies chanson
    •Tu sola es and Tulerunt Dominum motets
    •Lugebat David Absalon motet
    •Credo a 8 mass fragment
    •J’ay mis mon cueur chanson

    View Slide

  131. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Introduction
    Attribution
    Attribution shift over almost a century
    •19th century (Otto Kade)
    •Tulerunt authentic Josquin
    •Lugebat David Absalon doubtful
    •Josquin Edition (Albert Smijers, 1921–)
    •neither Tulerunt nor Lugebat
    •DasChorwerk (Blume,1933)
    •Tulerunt attributed to Josquin
    •Early Venetian Motets (Norbert Böker-Heil, 1969)
    •Identification of Je prens congas as source material

    View Slide

  132. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Introduction
    Attribution
    *OUSPEVDUJPO
    "ࡻSJCVUJPO

    View Slide

  133. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Similarity
    Audio Features: Non-Negative Least Squares Chroma
    •log-frequency short-time Fourier Transform Yk,m
    •note dictionary Ek,n
    •find note activations xn,. to minimize
    ||Yk,.
    − Ek,nxn,.||2
    •subject to xn,m
    ≥ 0
    Matthias Mauch and Simon Dixon, Approximate Note Transcription for the
    Improved Identification of Difficult Chords, Proc. ISMIR, 2010!

    View Slide

  134. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Similarity
    Audio similarity: sequences
    •In this investigation:
    •frames: 1s granularity;
    •feature dimensionality d: 12;
    •sequences: searchlength 10-30 frames.
    *OUSPEVDUJPO 4JNJMBSJUZ 3FTVMUT $PODMVTJPOT
    4JNJMBSJUZ
    "VEJP TJNJMBSJUZ TFRVFODFT
    E
    E × TFBSDIMFOHUI
    O − TFBSDIMFOHUI + 1
    *O UIJT JOWFTUJHBUJPO
    ٔ GSBNFT T HSBOVMBSJUZ
    ٔ GFBUVSF EJNFOTJPOBMJUZ E
    ٔ TFRVFODFT TFBSDIMFOHUI GSBNFT
    $ISJTUPQIF 3IPEFT 'SJEBZ UI 4FQUFNCFS /FBSOFJHICPVS TFBSDI JO BDPVTUJD GFBUVSF TQBDFT

    View Slide

  135. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Similarity
    Audio similarity
    Fragment to fragment:
    !
    •metric distance (maybe?)
    •non-negative(maybe?)
    •bounded above (maybe?)
    NJMBSJUZ
    P TJNJMBSJUZ
    HNFOU UP GSBHNFOU
    E-(GJ
    N, GK
    O)
    NFUSJD EJTUBODF NBZCF

    OPOOFHBUJWF NBZCF

    CPVOEFE BCPWF NBZCF

    View Slide

  136. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Similarity
    Audio similarity
    Fragment to fragment:
    !
    •metric distance (maybe?)
    •non-negative(maybe?)
    •bounded above (maybe?)
    NJMBSJUZ
    P TJNJMBSJUZ
    HNFOU UP GSBHNFOU
    E-(GJ
    N, GK
    O)
    NFUSJD EJTUBODF NBZCF

    OPOOFHBUJWF NBZCF

    CPVOEFE BCPWF NBZCF

    Fragment to track:
    HNFOU UP GSBHNFOU
    E-(GJ
    N, GK
    O)
    ٔ NFUSJD EJTUBODF NBZCF

    ٔ OPOOFHBUJWF NBZCF

    ٔ CPVOEFE BCPWF NBZCF

    HNFOU UP USBDL
    E-(GJ
    N, UK) = NJO
    O
    E-(GJ
    N, GK
    O)

    View Slide

  137. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Similarity
    Audio similarity
    Fragment to fragment:
    !
    •metric distance (maybe?)
    •non-negative(maybe?)
    •bounded above (maybe?)
    NJMBSJUZ
    P TJNJMBSJUZ
    HNFOU UP GSBHNFOU
    E-(GJ
    N, GK
    O)
    NFUSJD EJTUBODF NBZCF

    OPOOFHBUJWF NBZCF

    CPVOEFE BCPWF NBZCF

    Fragment to track:
    HNFOU UP GSBHNFOU
    E-(GJ
    N, GK
    O)
    ٔ NFUSJD EJTUBODF NBZCF

    ٔ OPOOFHBUJWF NBZCF

    ٔ CPVOEFE BCPWF NBZCF

    HNFOU UP USBDL
    E-(GJ
    N, UK) = NJO
    O
    E-(GJ
    N, GK
    O)
    Track to track:
    NFOU UP GSBHNFOU
    E-(GJ
    N, GK
    O)
    NFUSJD EJTUBODF NBZCF

    OPOOFHBUJWF NBZCF

    CPVOEFE BCPWF NBZCF

    NFOU UP USBDL
    E-(GJ
    N, UK) = NJO
    O
    E-(GJ
    N, GK
    O)
    L UP USBDL
    E-(UJ, UK) = NJO
    N
    E-(GJ
    N, UK)

    View Slide

  138. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Similarity
    Outlier analysis
    *OUSPEVDUJPO 4JNJMBSJUZ 3FTVMUT $PODMVTJPOT
    4JNJMBSJUZ
    0VUMJFS BOBMZTJT
    $ISJTUPQIF 3IPEFT 'SJEBZ UI 4FQUFNCFS /FBSOFJHICPVS TFBSDI JO BDPVTUJD GFBUVSF TQBDFT

    View Slide

  139. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    *OUSPEVDUJPO 4JNJMBSJUZ 3FTVMUT $PODMVTJPOT
    4JNJMBSJUZ
    0VUMJFS BOBMZTJT
    $ISJTUPQIF 3IPEFT 'SJEBZ UI 4FQUFNCFS /FBSOFJHICPVS TFBSDI JO BDPVTUJD GFBUVSF TQBDFT
    Similarity
    Outlier analysis

    View Slide

  140. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    *OUSPEVDUJPO 4JNJMBSJUZ 3FTVMUT $PODMVTJPOT
    4JNJMBSJUZ
    0VUMJFS BOBMZTJT
    $ISJTUPQIF 3IPEFT 'SJEBZ UI 4FQUFNCFS /FBSOFJHICPVS TFBSDI JO BDPVTUJD GFBUVSF TQBDFT
    Similarity
    Outlier analysis

    View Slide

  141. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Results
    Josquin attribution
    With some care: can find all of the recordings in the
    Je prens congies complex as low-distance retrievals:
    •aggregate over many fragments of source
    tracks;
    •chroma rotation.

    View Slide

  142. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Results
    Reproducibility
    Gave (broadly) this investigation to students at
    Oxford Digital Humanities Summer School:
    •no prior programming assumed;
    •audio features precomputed.
    Student feedback for five-day “Digital Musicology”:
    92% “met” or “exceeded” expectations

    View Slide

  143. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Conclusions
    •audio similarity can be used to guide attribution...
    •…if recordings are available
    •(mechanically-generated recordings would be
    better for this task)
    •similarity outliers can help increase
    understanding

    View Slide

  144. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Conclusions
    •query language (Hendrik Blokeel “Declarative
    Data Analysis”)
    •hierarchical indexing (Fionn Murtagh “High
    Dimensional Data Scaling”)
    •shrink-wrap software
    •new interfaces for exploring collections of music
    Future Work

    View Slide

  145. 26 October 2015 ISMIR, Malaga, Spain Ben Fields, @alsothings
    #ISMIRMusicologists
    Questions
    Investigation materials:
    •audioDB software: https://github.com/TransformingMusicology/
    audioDB
    •linked from http://www.doc.gold.ac.uk/~mas01cr/papers/:
    •iPython notebook
    •numeric feature data
    Questions or comments to:
    •! @ascii19 / [email protected] (Christophe Rhodes)
    •! @alsothings / [email protected] (Me!)
    •! @TMusicology
    •#ISMIRMusicologists

    View Slide

  146. Wagner leitmotifs!
    Proof-of-concept work mostly done under
    OMRAS2 project, c2008-11

    View Slide

  147. Richard Wagner!
    Richard Wagner (1813-1883) is well-known
    for developing a method of composition
    which employed ‘leitmotifs’ (leading motifs)
    to help the audience follow the dramatic
    narrative and identify with the emotional
    states of the characters on-stage.
    Technique still used today in advertising and
    film music.

    View Slide

  148. Research question!
    Since the leitmotif technique depended on
    the audience perceiving the leitmotifs clearly,
    can we use audio MIR to ‘recognise’ them as
    humans do?
    In the psychological part of Transforming
    Musicology, we are working to establish how
    well audiences hear and respond to Wagner’s
    leitmotifs.

    View Slide

  149. Research challenge!
    Early work (from the OMRAS2 project) used
    NNLS chroma features as a proof-of-concept
    Some leitmotifs are easy to recognise, but
    others much harder
    It depends on musical context, and the extent
    to which they differ from the query example
    Also, tempo, timbre (instrument, voice) and
    orchestral texture (scoring) play a part, too

    View Slide

  150. Wagner’s ‘Ring’ Cycle!
    Sir Georg Solti’s famous recording of the
    ‘Ring’ Cycle of four operas (Das Rheingold,
    Die Walküre, Siegfried & Göerdämmerung)
    Recorded in Vienna, 1958-66
    Re-mastered and re-released on CD oen
    148 tracks, ~12 hours of music, avge 5 min

    View Slide

  151. Method (i)!
    Extract NNLS-chroma features (4 & 10
    frames/sec) from Solti Ring recordings and
    make a pair of audioDB databases
    Extract NNLS-chroma features (4 & 10 f/s)
    from a set of leitmotifs for which we have
    names (from books by Donington and Mann)
    and score-extracts (graphics)
    Build simple web-interface

    View Slide

  152. Method (ii)!
    Perform searches
    a) at same pitch
    b) transposed (queries ‘rotated’) to all 12 keys
    c) at 4 and 10 f/s (user choice)
    Select 10 top best matches

    View Slide

  153. 4USVDUVSFE EJTDVTTJPO
    ٔ -BTU IBMGIPVS JT B TUSVDUVSFE EJTDVTTJPO TFTTJPO
    ٔ %JWJEF JOUP QBJST BOE EJTDVTT ZPVS .*3 UFDIOJRVFT BOE DVSSFOU
    BQQMJDBUJPOT
    ٔ 5IFO TVHHFTU QPTTJCMF NVTJDPMPHJDBM BQQMJDBUJPOT PG FBDI PUIFSًT
    UFDIOJRVFT
    ٔ +PJO JOUP MBSHFS HSPVQT PS
    QSFTFOU FBDI PUIFST UFDIOJRVFT
    BOE QSPQPTFE NVTJDPMPHJDBM BQQMJDBUJPOT
    ٔ %FDJEF PO UXP PS UISFF NVTJDPMPHJDBM BQQMJDBUJPOT UP EJTDVTT
    ٔ &BDI HSPVQ UIFO QSFTFOUT UIPTF BQQMJDBUJPOT BU UIF FOE
    5SBOTGPSNJOH .VTJDPMPHZ .POEBZ 0DUPCFS .¡MBHB "EESFTTJOH UIF .VTJD *OGPSNBUJPO /FFET PG .VTJDPMPHJTUT

    View Slide