Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What an ML-ful World! MLKit for Android dev.
Search
Britt Barak
October 12, 2018
Programming
0
130
What an ML-ful World! MLKit for Android dev.
Britt Barak
October 12, 2018
Tweet
Share
More Decks by Britt Barak
See All by Britt Barak
[Vonage] Introducing Conversations
brittbarak
1
130
Kids, Play Nice! Kotlin-Java Interop In Mind
brittbarak
2
440
Sharing is Caring- Getting Started with Kotlin Multiplatform
brittbarak
2
2k
Between JOMO and FOMO: You are reshaping communication.
brittbarak
2
1.2k
Build Apps For The Ones You Love
brittbarak
1
120
Make your app dance with MotionLayout
brittbarak
8
1.4k
Who's afraid of ML? V2 : First steps with MlKit
brittbarak
1
450
Oh, the places you'll go! Cracking Navigation on Android
brittbarak
0
480
The organic evolution - how and why we created peer mentorship program
brittbarak
0
54
Other Decks in Programming
See All in Programming
Strands Agents で実現する名刺解析アーキテクチャ
omiya0555
1
120
Constant integer division faster than compiler-generated code
herumi
2
650
State of CSS 2025
benjaminkott
1
100
MCP連携で加速するAI駆動開発/mcp integration accelerates ai-driven-development
bpstudy
0
300
Understanding Ruby Grammar Through Conflicts
yui_knk
1
110
未来を拓くAI技術〜エージェント開発とAI駆動開発〜
leveragestech
2
140
Go製CLIツールをnpmで配布するには
syumai
2
1.2k
プロダクトという一杯を作る - プロダクトチームが味の責任を持つまでの煮込み奮闘記
hiliteeternal
0
460
0から始めるモジュラーモノリス-クリーンなモノリスを目指して
sushi0120
1
280
A Gopher's Guide to Vibe Coding
danicat
0
150
エンジニアのための”最低限いい感じ”デザイン入門
shunshobon
0
110
可変性を制する設計: 構造と振る舞いから考える概念モデリングとその実装
a_suenami
10
1.7k
Featured
See All Featured
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.8k
Making Projects Easy
brettharned
117
6.3k
Scaling GitHub
holman
462
140k
Unsuck your backbone
ammeep
671
58k
Docker and Python
trallard
45
3.5k
Music & Morning Musume
bryan
46
6.7k
Building Adaptive Systems
keathley
43
2.7k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
667
120k
BBQ
matthewcrist
89
9.8k
Large-scale JavaScript Application Architecture
addyosmani
512
110k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
6k
Transcript
What an ML-ful world Britt Barak
Once upon a time @BrittBarak
beta @BrittBarak
ML Capability ?! @BrittBarak
Who is afraid of Machine Learning? & First Steps With
ML-Kit @BrittBarak
Britt Barak Developer Experience, Nexmo Google Developer Expert Britt Barak
@brittBarak
None
@BrittBarak
= @BrittBarak
§ What’s the difference? @BrittBarak
…and classify? @BrittBarak
@BrittBarak
This is a strawberry @BrittBarak
This is a strawberry Red Seeds pattern Narrow top leaves
@BrittBarak Pointy at the bottom Round at the top
Strawberry Not Not Not Strawberry Strawberry Not Not Not @BrittBarak
~*~ images ~*~ @BrittBarak
@BrittBarak Vision library
Text Recognition @BrittBarak
Face Detection @BrittBarak
Barcode Scanning @BrittBarak
Image Labelling @BrittBarak
Landmark Recognition @BrittBarak
Custom Models @BrittBarak
Example @BrittBarak
@BrittBarak
@BrittBarak
Detector detector .execute(image) Result: @BrittBarak “Ben & Jerry’s pistachio ice
cream”
1. Setup Detector @BrittBarak
Local or cloud? @BrittBarak
@BrittBarak
Local •Realtime •Offline support •Security / Privacy •Bandwith •… @BrittBarak
Cloud •More accuracy & features •But more latency •Pricing @BrittBarak
1. Setup Detector @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .onDeviceTextRecognizer @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .cloudTextRecognizer @BrittBarak
2. Process input @BrittBarak
FirebaseVisionImage •Bitmap •image Uri •Media Image •byteArray •byteBuffer @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Text Detector
3. Execute the model @BrittBarak
Text Detector textDetector.processImage(image) @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { } @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { firebaseVisionTexts -> processOutput(fbVisionTexts) } @BrittBarak
4. Process output @BrittBarak
firebaseVisionTexts.text @BrittBarak
someTextView.text = firebaseVisionTexts.text @BrittBarak UI
Result @BrittBarak
Result @BrittBarak
(another) Example : Labelling @BrittBarak
Detector detector .execute(image) Result: @BrittBarak ice cream pint
Vegetables Deserts Vegetables
1. Setup Detector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() .visionLabelDetector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance .visionCloudLabelDetector @BrittBarak
2. Process input @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Image Classifier
3. Execute the model @BrittBarak
Image Classifier imageDetector.detectInImage(image) @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ } @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ fBLabels -> processOutput(fBLabels) } @BrittBarak
4. Process output @BrittBarak
fbLabel.label fbLabel.confidence fbLabel.entityId @BrittBarak
UI for (fbLabel in labels) { s = "${fbLabel.label} :
${fbLabel.confidence}" } @BrittBarak
Result
Result
It is an ML-ful world Enjoy!
Thank you! Keep in touch!