Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What an ML-ful World! MLKit for Android dev.
Search
Britt Barak
October 12, 2018
Programming
0
130
What an ML-ful World! MLKit for Android dev.
Britt Barak
October 12, 2018
Tweet
Share
More Decks by Britt Barak
See All by Britt Barak
[Vonage] Introducing Conversations
brittbarak
1
120
Kids, Play Nice! Kotlin-Java Interop In Mind
brittbarak
2
400
Sharing is Caring- Getting Started with Kotlin Multiplatform
brittbarak
2
2k
Between JOMO and FOMO: You are reshaping communication.
brittbarak
2
1.2k
Build Apps For The Ones You Love
brittbarak
1
110
Make your app dance with MotionLayout
brittbarak
8
1.3k
Who's afraid of ML? V2 : First steps with MlKit
brittbarak
1
450
Oh, the places you'll go! Cracking Navigation on Android
brittbarak
0
470
The organic evolution - how and why we created peer mentorship program
brittbarak
0
53
Other Decks in Programming
See All in Programming
Develop Faster With FrankenPHP
dunglas
2
3.2k
AI Coding Agent Enablement - エージェントを自走させよう
yukukotani
13
5.7k
Ruby's Line Breaks
yui_knk
2
450
Firebase Dynamic Linksの代替手段を自作する / Create your own Firebase Dynamic Links alternative
kubode
0
230
Kamal 2 – Get Out of the Cloud
aleksandrov
1
170
Go1.24 go vetとtestsアナライザ
kuro_kurorrr
2
820
Deoptimization: How YJIT Speeds Up Ruby by Slowing Down / RubyKaigi 2025
k0kubun
0
420
アプリを起動せずにアプリを開発して品質と生産性を上げる
ishkawa
0
2.5k
サービスクラスのありがたみを発見したときの思い出 #phpcon_odawara
77web
4
620
Building Scalable Mobile Projects: Fast Builds, High Reusability and Clear Ownership
cyrilmottier
2
250
マルチアカウント環境での、そこまでがんばらない RI/SP 運用設計
wa6sn
0
710
メモリウォールを超えて:キャッシュメモリ技術の進歩
kawayu
0
1.9k
Featured
See All Featured
Speed Design
sergeychernyshev
29
880
The Cost Of JavaScript in 2023
addyosmani
49
7.7k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
135
33k
Writing Fast Ruby
sferik
628
61k
Fantastic passwords and where to find them - at NoRuKo
philnash
51
3.1k
Music & Morning Musume
bryan
47
6.5k
[RailsConf 2023 Opening Keynote] The Magic of Rails
eileencodes
29
9.4k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
Optimizing for Happiness
mojombo
377
70k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
178
52k
How GitHub (no longer) Works
holman
314
140k
Facilitating Awesome Meetings
lara
54
6.3k
Transcript
What an ML-ful world Britt Barak
Once upon a time @BrittBarak
beta @BrittBarak
ML Capability ?! @BrittBarak
Who is afraid of Machine Learning? & First Steps With
ML-Kit @BrittBarak
Britt Barak Developer Experience, Nexmo Google Developer Expert Britt Barak
@brittBarak
None
@BrittBarak
= @BrittBarak
§ What’s the difference? @BrittBarak
…and classify? @BrittBarak
@BrittBarak
This is a strawberry @BrittBarak
This is a strawberry Red Seeds pattern Narrow top leaves
@BrittBarak Pointy at the bottom Round at the top
Strawberry Not Not Not Strawberry Strawberry Not Not Not @BrittBarak
~*~ images ~*~ @BrittBarak
@BrittBarak Vision library
Text Recognition @BrittBarak
Face Detection @BrittBarak
Barcode Scanning @BrittBarak
Image Labelling @BrittBarak
Landmark Recognition @BrittBarak
Custom Models @BrittBarak
Example @BrittBarak
@BrittBarak
@BrittBarak
Detector detector .execute(image) Result: @BrittBarak “Ben & Jerry’s pistachio ice
cream”
1. Setup Detector @BrittBarak
Local or cloud? @BrittBarak
@BrittBarak
Local •Realtime •Offline support •Security / Privacy •Bandwith •… @BrittBarak
Cloud •More accuracy & features •But more latency •Pricing @BrittBarak
1. Setup Detector @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .onDeviceTextRecognizer @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .cloudTextRecognizer @BrittBarak
2. Process input @BrittBarak
FirebaseVisionImage •Bitmap •image Uri •Media Image •byteArray •byteBuffer @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Text Detector
3. Execute the model @BrittBarak
Text Detector textDetector.processImage(image) @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { } @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { firebaseVisionTexts -> processOutput(fbVisionTexts) } @BrittBarak
4. Process output @BrittBarak
firebaseVisionTexts.text @BrittBarak
someTextView.text = firebaseVisionTexts.text @BrittBarak UI
Result @BrittBarak
Result @BrittBarak
(another) Example : Labelling @BrittBarak
Detector detector .execute(image) Result: @BrittBarak ice cream pint
Vegetables Deserts Vegetables
1. Setup Detector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() .visionLabelDetector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance .visionCloudLabelDetector @BrittBarak
2. Process input @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Image Classifier
3. Execute the model @BrittBarak
Image Classifier imageDetector.detectInImage(image) @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ } @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ fBLabels -> processOutput(fBLabels) } @BrittBarak
4. Process output @BrittBarak
fbLabel.label fbLabel.confidence fbLabel.entityId @BrittBarak
UI for (fbLabel in labels) { s = "${fbLabel.label} :
${fbLabel.confidence}" } @BrittBarak
Result
Result
It is an ML-ful world Enjoy!
Thank you! Keep in touch!