Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What an ML-ful World! MLKit for Android dev.
Search
Britt Barak
October 12, 2018
Programming
0
150
What an ML-ful World! MLKit for Android dev.
Britt Barak
October 12, 2018
Tweet
Share
More Decks by Britt Barak
See All by Britt Barak
[Vonage] Introducing Conversations
brittbarak
1
140
Kids, Play Nice! Kotlin-Java Interop In Mind
brittbarak
2
460
Sharing is Caring- Getting Started with Kotlin Multiplatform
brittbarak
2
2.1k
Between JOMO and FOMO: You are reshaping communication.
brittbarak
2
1.3k
Build Apps For The Ones You Love
brittbarak
1
140
Make your app dance with MotionLayout
brittbarak
8
1.4k
Who's afraid of ML? V2 : First steps with MlKit
brittbarak
1
470
Oh, the places you'll go! Cracking Navigation on Android
brittbarak
0
490
The organic evolution - how and why we created peer mentorship program
brittbarak
0
66
Other Decks in Programming
See All in Programming
CSC307 Lecture 10
javiergs
PRO
1
660
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.4k
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
470
AWS re:Invent 2025参加 直前 Seattle-Tacoma Airport(SEA)におけるハードウェア紛失インシデントLT
tetutetu214
2
120
HTTPプロトコル正しく理解していますか? 〜かわいい猫と共に学ぼう。ฅ^•ω•^ฅ ニャ〜
hekuchan
2
690
izumin5210のプロポーザルのネタ探し #tskaigi_msup
izumin5210
1
130
Patterns of Patterns
denyspoltorak
0
1.4k
Apache Iceberg V3 and migration to V3
tomtanaka
0
160
副作用をどこに置くか問題:オブジェクト指向で整理する設計判断ツリー
koxya
1
610
今から始めるClaude Code超入門
448jp
8
8.9k
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
200
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
310
Featured
See All Featured
How to build a perfect <img>
jonoalderson
1
4.9k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
52k
The Straight Up "How To Draw Better" Workshop
denniskardys
239
140k
Highjacked: Video Game Concept Design
rkendrick25
PRO
1
290
Efficient Content Optimization with Google Search Console & Apps Script
katarinadahlin
PRO
1
320
Producing Creativity
orderedlist
PRO
348
40k
Code Reviewing Like a Champion
maltzj
527
40k
The Curious Case for Waylosing
cassininazir
0
240
Paper Plane
katiecoart
PRO
0
46k
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
Become a Pro
speakerdeck
PRO
31
5.8k
Tips & Tricks on How to Get Your First Job In Tech
honzajavorek
0
440
Transcript
What an ML-ful world Britt Barak
Once upon a time @BrittBarak
beta @BrittBarak
ML Capability ?! @BrittBarak
Who is afraid of Machine Learning? & First Steps With
ML-Kit @BrittBarak
Britt Barak Developer Experience, Nexmo Google Developer Expert Britt Barak
@brittBarak
None
@BrittBarak
= @BrittBarak
§ What’s the difference? @BrittBarak
…and classify? @BrittBarak
@BrittBarak
This is a strawberry @BrittBarak
This is a strawberry Red Seeds pattern Narrow top leaves
@BrittBarak Pointy at the bottom Round at the top
Strawberry Not Not Not Strawberry Strawberry Not Not Not @BrittBarak
~*~ images ~*~ @BrittBarak
@BrittBarak Vision library
Text Recognition @BrittBarak
Face Detection @BrittBarak
Barcode Scanning @BrittBarak
Image Labelling @BrittBarak
Landmark Recognition @BrittBarak
Custom Models @BrittBarak
Example @BrittBarak
@BrittBarak
@BrittBarak
Detector detector .execute(image) Result: @BrittBarak “Ben & Jerry’s pistachio ice
cream”
1. Setup Detector @BrittBarak
Local or cloud? @BrittBarak
@BrittBarak
Local •Realtime •Offline support •Security / Privacy •Bandwith •… @BrittBarak
Cloud •More accuracy & features •But more latency •Pricing @BrittBarak
1. Setup Detector @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .onDeviceTextRecognizer @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .cloudTextRecognizer @BrittBarak
2. Process input @BrittBarak
FirebaseVisionImage •Bitmap •image Uri •Media Image •byteArray •byteBuffer @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Text Detector
3. Execute the model @BrittBarak
Text Detector textDetector.processImage(image) @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { } @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { firebaseVisionTexts -> processOutput(fbVisionTexts) } @BrittBarak
4. Process output @BrittBarak
firebaseVisionTexts.text @BrittBarak
someTextView.text = firebaseVisionTexts.text @BrittBarak UI
Result @BrittBarak
Result @BrittBarak
(another) Example : Labelling @BrittBarak
Detector detector .execute(image) Result: @BrittBarak ice cream pint
Vegetables Deserts Vegetables
1. Setup Detector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() .visionLabelDetector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance .visionCloudLabelDetector @BrittBarak
2. Process input @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Image Classifier
3. Execute the model @BrittBarak
Image Classifier imageDetector.detectInImage(image) @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ } @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ fBLabels -> processOutput(fBLabels) } @BrittBarak
4. Process output @BrittBarak
fbLabel.label fbLabel.confidence fbLabel.entityId @BrittBarak
UI for (fbLabel in labels) { s = "${fbLabel.label} :
${fbLabel.confidence}" } @BrittBarak
Result
Result
It is an ML-ful world Enjoy!
Thank you! Keep in touch!