Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What an ML-ful World! MLKit for Android dev.
Search
Britt Barak
October 12, 2018
Programming
0
140
What an ML-ful World! MLKit for Android dev.
Britt Barak
October 12, 2018
Tweet
Share
More Decks by Britt Barak
See All by Britt Barak
[Vonage] Introducing Conversations
brittbarak
1
140
Kids, Play Nice! Kotlin-Java Interop In Mind
brittbarak
2
450
Sharing is Caring- Getting Started with Kotlin Multiplatform
brittbarak
2
2.1k
Between JOMO and FOMO: You are reshaping communication.
brittbarak
2
1.3k
Build Apps For The Ones You Love
brittbarak
1
130
Make your app dance with MotionLayout
brittbarak
8
1.4k
Who's afraid of ML? V2 : First steps with MlKit
brittbarak
1
470
Oh, the places you'll go! Cracking Navigation on Android
brittbarak
0
490
The organic evolution - how and why we created peer mentorship program
brittbarak
0
59
Other Decks in Programming
See All in Programming
宅宅自以為的浪漫:跟 AI 一起為自己辦的研討會寫一個售票系統
eddie
0
510
AI時代を生き抜く 新卒エンジニアの生きる道
coconala_engineer
1
370
FluorTracer / RayTracingCamp11
kugimasa
0
240
「コードは上から下へ読むのが一番」と思った時に、思い出してほしい話
panda728
PRO
39
26k
Giselleで作るAI QAアシスタント 〜 Pull Requestレビューに継続的QAを
codenote
0
250
Denoのセキュリティに関する仕組みの紹介 (toranoana.deno #23)
uki00a
0
110
Go コードベースの構成と AI コンテキスト定義
andpad
0
130
Rubyで鍛える仕組み化プロヂュース力
muryoimpl
0
150
LLMで複雑な検索条件アセットから脱却する!! 生成的検索インタフェースの設計論
po3rin
4
890
堅牢なフロントエンドテスト基盤を構築するために行った取り組み
shogo4131
8
2.4k
俺流レスポンシブコーディング 2025
tak_dcxi
14
9.2k
AIエージェントの設計で注意するべきポイント6選
har1101
5
1.5k
Featured
See All Featured
Designing for Timeless Needs
cassininazir
0
87
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
980
For a Future-Friendly Web
brad_frost
180
10k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.1k
Producing Creativity
orderedlist
PRO
348
40k
The Cost Of JavaScript in 2023
addyosmani
55
9.4k
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
180
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Unsuck your backbone
ammeep
671
58k
How People are Using Generative and Agentic AI to Supercharge Their Products, Projects, Services and Value Streams Today
helenjbeal
1
77
Kristin Tynski - Automating Marketing Tasks With AI
techseoconnect
PRO
0
110
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
35
2.3k
Transcript
What an ML-ful world Britt Barak
Once upon a time @BrittBarak
beta @BrittBarak
ML Capability ?! @BrittBarak
Who is afraid of Machine Learning? & First Steps With
ML-Kit @BrittBarak
Britt Barak Developer Experience, Nexmo Google Developer Expert Britt Barak
@brittBarak
None
@BrittBarak
= @BrittBarak
§ What’s the difference? @BrittBarak
…and classify? @BrittBarak
@BrittBarak
This is a strawberry @BrittBarak
This is a strawberry Red Seeds pattern Narrow top leaves
@BrittBarak Pointy at the bottom Round at the top
Strawberry Not Not Not Strawberry Strawberry Not Not Not @BrittBarak
~*~ images ~*~ @BrittBarak
@BrittBarak Vision library
Text Recognition @BrittBarak
Face Detection @BrittBarak
Barcode Scanning @BrittBarak
Image Labelling @BrittBarak
Landmark Recognition @BrittBarak
Custom Models @BrittBarak
Example @BrittBarak
@BrittBarak
@BrittBarak
Detector detector .execute(image) Result: @BrittBarak “Ben & Jerry’s pistachio ice
cream”
1. Setup Detector @BrittBarak
Local or cloud? @BrittBarak
@BrittBarak
Local •Realtime •Offline support •Security / Privacy •Bandwith •… @BrittBarak
Cloud •More accuracy & features •But more latency •Pricing @BrittBarak
1. Setup Detector @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .onDeviceTextRecognizer @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .cloudTextRecognizer @BrittBarak
2. Process input @BrittBarak
FirebaseVisionImage •Bitmap •image Uri •Media Image •byteArray •byteBuffer @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Text Detector
3. Execute the model @BrittBarak
Text Detector textDetector.processImage(image) @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { } @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { firebaseVisionTexts -> processOutput(fbVisionTexts) } @BrittBarak
4. Process output @BrittBarak
firebaseVisionTexts.text @BrittBarak
someTextView.text = firebaseVisionTexts.text @BrittBarak UI
Result @BrittBarak
Result @BrittBarak
(another) Example : Labelling @BrittBarak
Detector detector .execute(image) Result: @BrittBarak ice cream pint
Vegetables Deserts Vegetables
1. Setup Detector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() .visionLabelDetector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance .visionCloudLabelDetector @BrittBarak
2. Process input @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Image Classifier
3. Execute the model @BrittBarak
Image Classifier imageDetector.detectInImage(image) @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ } @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ fBLabels -> processOutput(fBLabels) } @BrittBarak
4. Process output @BrittBarak
fbLabel.label fbLabel.confidence fbLabel.entityId @BrittBarak
UI for (fbLabel in labels) { s = "${fbLabel.label} :
${fbLabel.confidence}" } @BrittBarak
Result
Result
It is an ML-ful world Enjoy!
Thank you! Keep in touch!