Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What an ML-ful World! MLKit for Android dev.
Search
Britt Barak
October 12, 2018
Programming
0
150
What an ML-ful World! MLKit for Android dev.
Britt Barak
October 12, 2018
Tweet
Share
More Decks by Britt Barak
See All by Britt Barak
[Vonage] Introducing Conversations
brittbarak
1
140
Kids, Play Nice! Kotlin-Java Interop In Mind
brittbarak
2
460
Sharing is Caring- Getting Started with Kotlin Multiplatform
brittbarak
2
2.1k
Between JOMO and FOMO: You are reshaping communication.
brittbarak
2
1.3k
Build Apps For The Ones You Love
brittbarak
1
140
Make your app dance with MotionLayout
brittbarak
8
1.4k
Who's afraid of ML? V2 : First steps with MlKit
brittbarak
1
470
Oh, the places you'll go! Cracking Navigation on Android
brittbarak
0
490
The organic evolution - how and why we created peer mentorship program
brittbarak
0
66
Other Decks in Programming
See All in Programming
AIによる開発の民主化を支える コンテキスト管理のこれまでとこれから
mulyu
3
370
FOSDEM 2026: STUNMESH-go: Building P2P WireGuard Mesh Without Self-Hosted Infrastructure
tjjh89017
0
170
CSC307 Lecture 02
javiergs
PRO
1
780
AtCoder Conference 2025
shindannin
0
1.1k
Patterns of Patterns
denyspoltorak
0
1.4k
AIで開発はどれくらい加速したのか?AIエージェントによるコード生成を、現場の評価と研究開発の評価の両面からdeep diveしてみる
daisuketakeda
1
2.5k
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6.1k
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
開発者から情シスまで - 多様なユーザー層に届けるAPI提供戦略 / Postman API Night Okinawa 2026 Winter
tasshi
0
200
Best-Practices-for-Cortex-Analyst-and-AI-Agent
ryotaroikeda
1
110
Unicodeどうしてる? PHPから見たUnicode対応と他言語での対応についてのお伺い
youkidearitai
PRO
1
2.6k
Featured
See All Featured
The Mindset for Success: Future Career Progression
greggifford
PRO
0
240
Visual Storytelling: How to be a Superhuman Communicator
reverentgeek
2
430
Code Review Best Practice
trishagee
74
20k
[RailsConf 2023] Rails as a piece of cake
palkan
59
6.3k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Odyssey Design
rkendrick25
PRO
1
500
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
508
140k
What the history of the web can teach us about the future of AI
inesmontani
PRO
1
430
B2B Lead Gen: Tactics, Traps & Triumph
marketingsoph
0
55
Designing for Performance
lara
610
70k
Become a Pro
speakerdeck
PRO
31
5.8k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Transcript
What an ML-ful world Britt Barak
Once upon a time @BrittBarak
beta @BrittBarak
ML Capability ?! @BrittBarak
Who is afraid of Machine Learning? & First Steps With
ML-Kit @BrittBarak
Britt Barak Developer Experience, Nexmo Google Developer Expert Britt Barak
@brittBarak
None
@BrittBarak
= @BrittBarak
§ What’s the difference? @BrittBarak
…and classify? @BrittBarak
@BrittBarak
This is a strawberry @BrittBarak
This is a strawberry Red Seeds pattern Narrow top leaves
@BrittBarak Pointy at the bottom Round at the top
Strawberry Not Not Not Strawberry Strawberry Not Not Not @BrittBarak
~*~ images ~*~ @BrittBarak
@BrittBarak Vision library
Text Recognition @BrittBarak
Face Detection @BrittBarak
Barcode Scanning @BrittBarak
Image Labelling @BrittBarak
Landmark Recognition @BrittBarak
Custom Models @BrittBarak
Example @BrittBarak
@BrittBarak
@BrittBarak
Detector detector .execute(image) Result: @BrittBarak “Ben & Jerry’s pistachio ice
cream”
1. Setup Detector @BrittBarak
Local or cloud? @BrittBarak
@BrittBarak
Local •Realtime •Offline support •Security / Privacy •Bandwith •… @BrittBarak
Cloud •More accuracy & features •But more latency •Pricing @BrittBarak
1. Setup Detector @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .onDeviceTextRecognizer @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .cloudTextRecognizer @BrittBarak
2. Process input @BrittBarak
FirebaseVisionImage •Bitmap •image Uri •Media Image •byteArray •byteBuffer @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Text Detector
3. Execute the model @BrittBarak
Text Detector textDetector.processImage(image) @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { } @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { firebaseVisionTexts -> processOutput(fbVisionTexts) } @BrittBarak
4. Process output @BrittBarak
firebaseVisionTexts.text @BrittBarak
someTextView.text = firebaseVisionTexts.text @BrittBarak UI
Result @BrittBarak
Result @BrittBarak
(another) Example : Labelling @BrittBarak
Detector detector .execute(image) Result: @BrittBarak ice cream pint
Vegetables Deserts Vegetables
1. Setup Detector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() .visionLabelDetector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance .visionCloudLabelDetector @BrittBarak
2. Process input @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Image Classifier
3. Execute the model @BrittBarak
Image Classifier imageDetector.detectInImage(image) @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ } @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ fBLabels -> processOutput(fBLabels) } @BrittBarak
4. Process output @BrittBarak
fbLabel.label fbLabel.confidence fbLabel.entityId @BrittBarak
UI for (fbLabel in labels) { s = "${fbLabel.label} :
${fbLabel.confidence}" } @BrittBarak
Result
Result
It is an ML-ful world Enjoy!
Thank you! Keep in touch!