Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
What an ML-ful World! MLKit for Android dev.
Search
Britt Barak
October 12, 2018
Programming
0
130
What an ML-ful World! MLKit for Android dev.
Britt Barak
October 12, 2018
Tweet
Share
More Decks by Britt Barak
See All by Britt Barak
[Vonage] Introducing Conversations
brittbarak
1
120
Kids, Play Nice! Kotlin-Java Interop In Mind
brittbarak
2
360
Sharing is Caring- Getting Started with Kotlin Multiplatform
brittbarak
2
2k
Between JOMO and FOMO: You are reshaping communication.
brittbarak
2
1.2k
Build Apps For The Ones You Love
brittbarak
1
110
Make your app dance with MotionLayout
brittbarak
8
1.3k
Who's afraid of ML? V2 : First steps with MlKit
brittbarak
1
450
Oh, the places you'll go! Cracking Navigation on Android
brittbarak
0
460
The organic evolution - how and why we created peer mentorship program
brittbarak
0
51
Other Decks in Programming
See All in Programming
なまけものオバケたち -PHP 8.4 に入った新機能の紹介-
tanakahisateru
1
120
プロダクトの品質に コミットする / Commit to Product Quality
pekepek
2
770
range over funcの使い道と非同期N+1リゾルバーの夢 / about a range over func
mackee
0
110
暇に任せてProxmoxコンソール 作ってみました
karugamo
1
720
Effective Signals in Angular 19+: Rules and Helpers @ngbe2024
manfredsteyer
PRO
0
130
Mermaid x AST x 生成AI = コードとドキュメントの完全同期への道
shibuyamizuho
0
160
Scalaから始めるOpenFeature入門 / Scalaわいわい勉強会 #4
arthur1
1
300
tidymodelsによるtidyな生存時間解析 / Japan.R2024
dropout009
1
730
Jakarta EE meets AI
ivargrimstad
0
230
LLM Supervised Fine-tuningの理論と実践
datanalyticslabo
3
950
モバイルアプリにおける自動テストの導入戦略
ostk0069
0
110
開発者とQAの越境で自動テストが増える開発プロセスを実現する
92thunder
1
180
Featured
See All Featured
Fireside Chat
paigeccino
34
3.1k
The Illustrated Children's Guide to Kubernetes
chrisshort
48
48k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
How to Think Like a Performance Engineer
csswizardry
22
1.2k
Into the Great Unknown - MozCon
thekraken
33
1.5k
4 Signs Your Business is Dying
shpigford
181
21k
No one is an island. Learnings from fostering a developers community.
thoeni
19
3k
Automating Front-end Workflow
addyosmani
1366
200k
Building Your Own Lightsaber
phodgson
103
6.1k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
330
21k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
How to train your dragon (web standard)
notwaldorf
88
5.7k
Transcript
What an ML-ful world Britt Barak
Once upon a time @BrittBarak
beta @BrittBarak
ML Capability ?! @BrittBarak
Who is afraid of Machine Learning? & First Steps With
ML-Kit @BrittBarak
Britt Barak Developer Experience, Nexmo Google Developer Expert Britt Barak
@brittBarak
None
@BrittBarak
= @BrittBarak
§ What’s the difference? @BrittBarak
…and classify? @BrittBarak
@BrittBarak
This is a strawberry @BrittBarak
This is a strawberry Red Seeds pattern Narrow top leaves
@BrittBarak Pointy at the bottom Round at the top
Strawberry Not Not Not Strawberry Strawberry Not Not Not @BrittBarak
~*~ images ~*~ @BrittBarak
@BrittBarak Vision library
Text Recognition @BrittBarak
Face Detection @BrittBarak
Barcode Scanning @BrittBarak
Image Labelling @BrittBarak
Landmark Recognition @BrittBarak
Custom Models @BrittBarak
Example @BrittBarak
@BrittBarak
@BrittBarak
Detector detector .execute(image) Result: @BrittBarak “Ben & Jerry’s pistachio ice
cream”
1. Setup Detector @BrittBarak
Local or cloud? @BrittBarak
@BrittBarak
Local •Realtime •Offline support •Security / Privacy •Bandwith •… @BrittBarak
Cloud •More accuracy & features •But more latency •Pricing @BrittBarak
1. Setup Detector @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .onDeviceTextRecognizer @BrittBarak
Text Detector textDetector = FirebaseVision.getInstance() .cloudTextRecognizer @BrittBarak
2. Process input @BrittBarak
FirebaseVisionImage •Bitmap •image Uri •Media Image •byteArray •byteBuffer @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Text Detector
3. Execute the model @BrittBarak
Text Detector textDetector.processImage(image) @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { } @BrittBarak
Text Detector textDetector.processImage(image) .addOnSuccessListener { firebaseVisionTexts -> processOutput(fbVisionTexts) } @BrittBarak
4. Process output @BrittBarak
firebaseVisionTexts.text @BrittBarak
someTextView.text = firebaseVisionTexts.text @BrittBarak UI
Result @BrittBarak
Result @BrittBarak
(another) Example : Labelling @BrittBarak
Detector detector .execute(image) Result: @BrittBarak ice cream pint
Vegetables Deserts Vegetables
1. Setup Detector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance() .visionLabelDetector @BrittBarak
Image Classifier imageDetector = FirebaseVision.getInstance .visionCloudLabelDetector @BrittBarak
2. Process input @BrittBarak
image = FirebaseVisionImage.fromBitmap(bitmap) @BrittBarak Image Classifier
3. Execute the model @BrittBarak
Image Classifier imageDetector.detectInImage(image) @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ } @BrittBarak
Image Classifier imageDetector.detectInImage(image) .addOnSuccessListener{ fBLabels -> processOutput(fBLabels) } @BrittBarak
4. Process output @BrittBarak
fbLabel.label fbLabel.confidence fbLabel.entityId @BrittBarak
UI for (fbLabel in labels) { s = "${fbLabel.label} :
${fbLabel.confidence}" } @BrittBarak
Result
Result
It is an ML-ful world Enjoy!
Thank you! Keep in touch!