Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sistemas de Recomendação
Search
Celso Crivelaro
January 27, 2020
Science
2
210
Sistemas de Recomendação
Celso Crivelaro
January 27, 2020
Tweet
Share
More Decks by Celso Crivelaro
See All by Celso Crivelaro
Big Data para Gerentes de Projetos
celsocrivelaro
0
57
FileSystems em Ruby com FUSE
celsocrivelaro
2
64
Padrões e Boas Práticas de Teste de Tela
celsocrivelaro
0
410
Projeto de APIs
celsocrivelaro
0
160
Testing Network Conditions with ToxiProxy
celsocrivelaro
1
380
Testing Network Conditions with ToxiProxy
celsocrivelaro
0
80
Actor Model in Ruby
celsocrivelaro
0
250
Separando as regras de negócios do Rails
celsocrivelaro
0
180
InfluxDB + Grafana
celsocrivelaro
0
260
Other Decks in Science
See All in Science
データベース02: データベースの概念
trycycle
PRO
2
900
高校生就活へのDA導入の提案
shunyanoda
0
5.9k
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
160
機械学習 - SVM
trycycle
PRO
1
880
オンプレミス環境にKubernetesを構築する
koukimiura
0
340
白金鉱業Meetup Vol.16_数理最適化案件のはじめかた・すすめかた
brainpadpr
4
2k
MCMCのR-hatは分散分析である
moricup
0
440
NASの容量不足のお悩み解決!災害対策も兼ねた「Wasabi Cloud NAS」はここがスゴイ
climbteam
0
120
How To Buy, Verified Venmo Accounts in 2025 This year
usaallshop68
4
270
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
130
生成AIと学ぶPythonデータ分析再入門-Pythonによるクラスタリング・可視化をサクサク実施-
datascientistsociety
PRO
4
1.8k
Trend Classification of InSAR Displacement Time Series Using SAE–CNN
satai
4
620
Featured
See All Featured
The Invisible Side of Design
smashingmag
301
51k
jQuery: Nuts, Bolts and Bling
dougneiner
64
7.9k
Designing for humans not robots
tammielis
253
25k
Optimising Largest Contentful Paint
csswizardry
37
3.4k
The Cult of Friendly URLs
andyhume
79
6.6k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
656
61k
Product Roadmaps are Hard
iamctodd
PRO
54
11k
A Tale of Four Properties
chriscoyier
160
23k
Git: the NoSQL Database
bkeepers
PRO
431
66k
GitHub's CSS Performance
jonrohan
1032
460k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
RailsConf 2023
tenderlove
30
1.2k
Transcript
Sistemas de Recomendação Celso Crivelaro
Software Engineering @ Manager Professor IA e @ Big DaTa
Celso Crivelaro T: @celsocrivelaro E:
[email protected]
O que é um Sistema de Recomendação?
Trazer os tops itens para os Usuários Sistemas de Recomendação
Recomendação <> Busca Diferença: Recomendação é personalizada ao usuário. Busca é para uso geral
https://teses.usp.br/teses/disponiveis/3/3141/tde-26072013-121007/pt-br.php
None
None
None
None
None
Recomendação é um problema de Ranking
Muito provável clicar Menos provável
Muito provável clicar Estou em pânico Menos provável
Técnicas
Filtragem Baseada em Conteúdo
Usa-se os atributos dos itens para comparação Filtragem Baseada em
Conteúdo A recomendação se dá pela proximidade de um item aos itens consumidos pelo usuário Os itens com melhor ranking, aparecem no topo
Preciso definir quais atributos dos itens são relevantes Filtragem Baseada
em Conteúdo Definir pesos e utilidades de cada atributo e instância Os itens com melhor ranking, aparecem no topo
Gênero Atributos Ano de Publicação Palavras-chave
Algoritmo Clássico: IDF - TF
Mesmo usado pela busca (Lucene, engine do ELK, Solr) TF
- IDF Term Frequency - Inverse of Document Frequency Prioriza itens (documentos) com os atributos mais raros
Quando o uso é interessante
Em uma página, mostrar itens similares Usos Em uma base
nova, com poucas interações dos usuários Quando os itens têm atributos mapeáveis
Pontos Fracos
Forte tendência a indicar itens muito parecidos
Filtragem Colaborativa
Princípio: Pessoas parecidas têm gostos próximos Filtragem Colaborativa A recomendação
se dá pela proximidade de um item aos itens consumidos pelo usuário Parecido com o mundo real: Pessoas recomendam no boca-a-boca
Algoritmo Clássico: kNN
Primeiro: Mede-se quanto um usuário é igual aos outros
Segundo: Ao recomendar um item, tira-se a média ponderada pela
similaridade + fator de avaliação (nota)
Quando o uso é interessante
Quando a interação do usuário é fácil de buscar Usos
Aspecto social forte Repetição de padrões de comportamento de usuários
Pontos Fracos
Problema do novo Usuário: Como o usuário não tem itens,
qual recomendar? Pontos Fracos Idem para problema do novo Item Computação cara, precisa de várias heurísticas
Híbridos
Podemos usar as 2 abordagens aos mesmo tempo Sistemas Híbridos
Um pode ser filtro do outro ou dar boost no ranking Podemos usar Regras Conhecidas para filtrar resultados
Decaimento
Problema do Harry Potter
Itens com altíssimo ranking são recomendados sempre Problema do Harry
Potter
O que pode ser decaimento: Tempo, Distância, Volume Usar funções
de Decaimento Decaimento Exponencial
Como se avalia um RecSys?
Top N recomendações. Ideal: N = 5 Avaliação Precisão Recall
Precisão@N Recall@N
Como achamos que Recomendação pode ajudar?
Obrigado!