Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sistemas de Recomendação
Search
Celso Crivelaro
January 27, 2020
Science
2
230
Sistemas de Recomendação
Celso Crivelaro
January 27, 2020
Tweet
Share
More Decks by Celso Crivelaro
See All by Celso Crivelaro
Big Data para Gerentes de Projetos
celsocrivelaro
0
66
FileSystems em Ruby com FUSE
celsocrivelaro
2
69
Padrões e Boas Práticas de Teste de Tela
celsocrivelaro
0
420
Projeto de APIs
celsocrivelaro
0
160
Testing Network Conditions with ToxiProxy
celsocrivelaro
1
390
Testing Network Conditions with ToxiProxy
celsocrivelaro
0
83
Actor Model in Ruby
celsocrivelaro
0
260
Separando as regras de negócios do Rails
celsocrivelaro
0
180
InfluxDB + Grafana
celsocrivelaro
0
260
Other Decks in Science
See All in Science
機械学習 - K近傍法 & 機械学習のお作法
trycycle
PRO
0
1.3k
生成検索エンジン最適化に関する研究の紹介
ynakano
2
1.5k
HajimetenoLT vol.17
hashimoto_kei
1
160
Accelerated Computing for Climate forecast
inureyes
PRO
0
140
データベース05: SQL(2/3) 結合質問
trycycle
PRO
0
860
主成分分析に基づく教師なし特徴抽出法を用いたコラーゲン-グリコサミノグリカンメッシュの遺伝子発現への影響
tagtag
PRO
0
170
データベース10: 拡張実体関連モデル
trycycle
PRO
0
1.1k
academist Prize 4期生 研究トーク延長戦!「美は世界を救う」っていうけど、どうやって?
jimpe_hitsuwari
0
460
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
250
Algorithmic Aspects of Quiver Representations
tasusu
0
150
Celebrate UTIG: Staff and Student Awards 2025
utig
0
420
Featured
See All Featured
Un-Boring Meetings
codingconduct
0
170
Abbi's Birthday
coloredviolet
0
4.2k
Code Review Best Practice
trishagee
74
19k
Agile Leadership in an Agile Organization
kimpetersen
PRO
0
67
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
For a Future-Friendly Web
brad_frost
180
10k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
170
From Legacy to Launchpad: Building Startup-Ready Communities
dugsong
0
120
I Don’t Have Time: Getting Over the Fear to Launch Your Podcast
jcasabona
34
2.6k
Design and Strategy: How to Deal with People Who Don’t "Get" Design
morganepeng
132
19k
Chasing Engaging Ingredients in Design
codingconduct
0
95
Transcript
Sistemas de Recomendação Celso Crivelaro
Software Engineering @ Manager Professor IA e @ Big DaTa
Celso Crivelaro T: @celsocrivelaro E:
[email protected]
O que é um Sistema de Recomendação?
Trazer os tops itens para os Usuários Sistemas de Recomendação
Recomendação <> Busca Diferença: Recomendação é personalizada ao usuário. Busca é para uso geral
https://teses.usp.br/teses/disponiveis/3/3141/tde-26072013-121007/pt-br.php
None
None
None
None
None
Recomendação é um problema de Ranking
Muito provável clicar Menos provável
Muito provável clicar Estou em pânico Menos provável
Técnicas
Filtragem Baseada em Conteúdo
Usa-se os atributos dos itens para comparação Filtragem Baseada em
Conteúdo A recomendação se dá pela proximidade de um item aos itens consumidos pelo usuário Os itens com melhor ranking, aparecem no topo
Preciso definir quais atributos dos itens são relevantes Filtragem Baseada
em Conteúdo Definir pesos e utilidades de cada atributo e instância Os itens com melhor ranking, aparecem no topo
Gênero Atributos Ano de Publicação Palavras-chave
Algoritmo Clássico: IDF - TF
Mesmo usado pela busca (Lucene, engine do ELK, Solr) TF
- IDF Term Frequency - Inverse of Document Frequency Prioriza itens (documentos) com os atributos mais raros
Quando o uso é interessante
Em uma página, mostrar itens similares Usos Em uma base
nova, com poucas interações dos usuários Quando os itens têm atributos mapeáveis
Pontos Fracos
Forte tendência a indicar itens muito parecidos
Filtragem Colaborativa
Princípio: Pessoas parecidas têm gostos próximos Filtragem Colaborativa A recomendação
se dá pela proximidade de um item aos itens consumidos pelo usuário Parecido com o mundo real: Pessoas recomendam no boca-a-boca
Algoritmo Clássico: kNN
Primeiro: Mede-se quanto um usuário é igual aos outros
Segundo: Ao recomendar um item, tira-se a média ponderada pela
similaridade + fator de avaliação (nota)
Quando o uso é interessante
Quando a interação do usuário é fácil de buscar Usos
Aspecto social forte Repetição de padrões de comportamento de usuários
Pontos Fracos
Problema do novo Usuário: Como o usuário não tem itens,
qual recomendar? Pontos Fracos Idem para problema do novo Item Computação cara, precisa de várias heurísticas
Híbridos
Podemos usar as 2 abordagens aos mesmo tempo Sistemas Híbridos
Um pode ser filtro do outro ou dar boost no ranking Podemos usar Regras Conhecidas para filtrar resultados
Decaimento
Problema do Harry Potter
Itens com altíssimo ranking são recomendados sempre Problema do Harry
Potter
O que pode ser decaimento: Tempo, Distância, Volume Usar funções
de Decaimento Decaimento Exponencial
Como se avalia um RecSys?
Top N recomendações. Ideal: N = 5 Avaliação Precisão Recall
Precisão@N Recall@N
Como achamos que Recomendação pode ajudar?
Obrigado!