Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sistemas de Recomendação
Search
Celso Crivelaro
January 27, 2020
Science
2
220
Sistemas de Recomendação
Celso Crivelaro
January 27, 2020
Tweet
Share
More Decks by Celso Crivelaro
See All by Celso Crivelaro
Big Data para Gerentes de Projetos
celsocrivelaro
0
64
FileSystems em Ruby com FUSE
celsocrivelaro
2
68
Padrões e Boas Práticas de Teste de Tela
celsocrivelaro
0
420
Projeto de APIs
celsocrivelaro
0
160
Testing Network Conditions with ToxiProxy
celsocrivelaro
1
390
Testing Network Conditions with ToxiProxy
celsocrivelaro
0
83
Actor Model in Ruby
celsocrivelaro
0
250
Separando as regras de negócios do Rails
celsocrivelaro
0
180
InfluxDB + Grafana
celsocrivelaro
0
260
Other Decks in Science
See All in Science
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
130
データベース01: データベースを使わない世界
trycycle
PRO
1
920
HajimetenoLT vol.17
hashimoto_kei
1
110
機械学習 - pandas入門
trycycle
PRO
0
380
MCMCのR-hatは分散分析である
moricup
0
520
機械学習 - K-means & 階層的クラスタリング
trycycle
PRO
0
1.2k
Distributional Regression
tackyas
0
210
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
0
130
データベース11: 正規化(1/2) - 望ましくない関係スキーマ
trycycle
PRO
0
1k
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
170
Cross-Media Technologies, Information Science and Human-Information Interaction
signer
PRO
3
31k
AIによる科学の加速: 各領域での革新と共創の未来
masayamoriofficial
0
300
Featured
See All Featured
Making Projects Easy
brettharned
120
6.5k
A Tale of Four Properties
chriscoyier
162
23k
Become a Pro
speakerdeck
PRO
31
5.7k
Cheating the UX When There Is Nothing More to Optimize - PixelPioneers
stephaniewalter
285
14k
A designer walks into a library…
pauljervisheath
210
24k
Bash Introduction
62gerente
615
210k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Designing Experiences People Love
moore
143
24k
Site-Speed That Sticks
csswizardry
13
1k
Building Flexible Design Systems
yeseniaperezcruz
330
39k
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
31
3k
Context Engineering - Making Every Token Count
addyosmani
9
500
Transcript
Sistemas de Recomendação Celso Crivelaro
Software Engineering @ Manager Professor IA e @ Big DaTa
Celso Crivelaro T: @celsocrivelaro E:
[email protected]
O que é um Sistema de Recomendação?
Trazer os tops itens para os Usuários Sistemas de Recomendação
Recomendação <> Busca Diferença: Recomendação é personalizada ao usuário. Busca é para uso geral
https://teses.usp.br/teses/disponiveis/3/3141/tde-26072013-121007/pt-br.php
None
None
None
None
None
Recomendação é um problema de Ranking
Muito provável clicar Menos provável
Muito provável clicar Estou em pânico Menos provável
Técnicas
Filtragem Baseada em Conteúdo
Usa-se os atributos dos itens para comparação Filtragem Baseada em
Conteúdo A recomendação se dá pela proximidade de um item aos itens consumidos pelo usuário Os itens com melhor ranking, aparecem no topo
Preciso definir quais atributos dos itens são relevantes Filtragem Baseada
em Conteúdo Definir pesos e utilidades de cada atributo e instância Os itens com melhor ranking, aparecem no topo
Gênero Atributos Ano de Publicação Palavras-chave
Algoritmo Clássico: IDF - TF
Mesmo usado pela busca (Lucene, engine do ELK, Solr) TF
- IDF Term Frequency - Inverse of Document Frequency Prioriza itens (documentos) com os atributos mais raros
Quando o uso é interessante
Em uma página, mostrar itens similares Usos Em uma base
nova, com poucas interações dos usuários Quando os itens têm atributos mapeáveis
Pontos Fracos
Forte tendência a indicar itens muito parecidos
Filtragem Colaborativa
Princípio: Pessoas parecidas têm gostos próximos Filtragem Colaborativa A recomendação
se dá pela proximidade de um item aos itens consumidos pelo usuário Parecido com o mundo real: Pessoas recomendam no boca-a-boca
Algoritmo Clássico: kNN
Primeiro: Mede-se quanto um usuário é igual aos outros
Segundo: Ao recomendar um item, tira-se a média ponderada pela
similaridade + fator de avaliação (nota)
Quando o uso é interessante
Quando a interação do usuário é fácil de buscar Usos
Aspecto social forte Repetição de padrões de comportamento de usuários
Pontos Fracos
Problema do novo Usuário: Como o usuário não tem itens,
qual recomendar? Pontos Fracos Idem para problema do novo Item Computação cara, precisa de várias heurísticas
Híbridos
Podemos usar as 2 abordagens aos mesmo tempo Sistemas Híbridos
Um pode ser filtro do outro ou dar boost no ranking Podemos usar Regras Conhecidas para filtrar resultados
Decaimento
Problema do Harry Potter
Itens com altíssimo ranking são recomendados sempre Problema do Harry
Potter
O que pode ser decaimento: Tempo, Distância, Volume Usar funções
de Decaimento Decaimento Exponencial
Como se avalia um RecSys?
Top N recomendações. Ideal: N = 5 Avaliação Precisão Recall
Precisão@N Recall@N
Como achamos que Recomendação pode ajudar?
Obrigado!