Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Sistemas de Recomendação
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
Celso Crivelaro
January 27, 2020
Science
2
230
Sistemas de Recomendação
Celso Crivelaro
January 27, 2020
Tweet
Share
More Decks by Celso Crivelaro
See All by Celso Crivelaro
Big Data para Gerentes de Projetos
celsocrivelaro
0
66
FileSystems em Ruby com FUSE
celsocrivelaro
2
72
Padrões e Boas Práticas de Teste de Tela
celsocrivelaro
0
430
Projeto de APIs
celsocrivelaro
0
160
Testing Network Conditions with ToxiProxy
celsocrivelaro
1
390
Testing Network Conditions with ToxiProxy
celsocrivelaro
0
83
Actor Model in Ruby
celsocrivelaro
0
260
Separando as regras de negócios do Rails
celsocrivelaro
0
180
InfluxDB + Grafana
celsocrivelaro
0
260
Other Decks in Science
See All in Science
白金鉱業Meetup_Vol.20 効果検証ことはじめ / Introduction to Impact Evaluation
brainpadpr
2
1.6k
A Guide to Academic Writing Using Generative AI - A Workshop
ks91
PRO
0
210
【RSJ2025】PAMIQ Core: リアルタイム継続学習のための⾮同期推論・学習フレームワーク
gesonanko
0
640
安心・効率的な医療現場の実現へ ~オンプレAI & ノーコードワークフローで進める業務改革~
siyoo
0
450
良書紹介04_生命科学の実験デザイン
bunnchinn3
0
120
なぜ21は素因数分解されないのか? - Shorのアルゴリズムの現在と壁
daimurat
0
290
データマイニング - ウェブとグラフ
trycycle
PRO
0
240
Hakonwa-Quaternion
hiranabe
1
170
Amusing Abliteration
ianozsvald
0
100
Rashomon at the Sound: Reconstructing all possible paleoearthquake histories in the Puget Lowland through topological search
cossatot
0
510
中央大学AI・データサイエンスセンター 2025年第6回イブニングセミナー 『知能とはなにか ヒトとAIのあいだ』
tagtag
PRO
0
120
My Little Monster
juzishuu
0
560
Featured
See All Featured
Heart Work Chapter 1 - Part 1
lfama
PRO
5
35k
Fashionably flexible responsive web design (full day workshop)
malarkey
408
66k
Utilizing Notion as your number one productivity tool
mfonobong
3
220
Reality Check: Gamification 10 Years Later
codingconduct
0
2k
Discover your Explorer Soul
emna__ayadi
2
1.1k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
234
17k
Rebuilding a faster, lazier Slack
samanthasiow
85
9.4k
Navigating Team Friction
lara
192
16k
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
69
VelocityConf: Rendering Performance Case Studies
addyosmani
333
24k
Building Flexible Design Systems
yeseniaperezcruz
330
40k
Test your architecture with Archunit
thirion
1
2.2k
Transcript
Sistemas de Recomendação Celso Crivelaro
Software Engineering @ Manager Professor IA e @ Big DaTa
Celso Crivelaro T: @celsocrivelaro E:
[email protected]
O que é um Sistema de Recomendação?
Trazer os tops itens para os Usuários Sistemas de Recomendação
Recomendação <> Busca Diferença: Recomendação é personalizada ao usuário. Busca é para uso geral
https://teses.usp.br/teses/disponiveis/3/3141/tde-26072013-121007/pt-br.php
None
None
None
None
None
Recomendação é um problema de Ranking
Muito provável clicar Menos provável
Muito provável clicar Estou em pânico Menos provável
Técnicas
Filtragem Baseada em Conteúdo
Usa-se os atributos dos itens para comparação Filtragem Baseada em
Conteúdo A recomendação se dá pela proximidade de um item aos itens consumidos pelo usuário Os itens com melhor ranking, aparecem no topo
Preciso definir quais atributos dos itens são relevantes Filtragem Baseada
em Conteúdo Definir pesos e utilidades de cada atributo e instância Os itens com melhor ranking, aparecem no topo
Gênero Atributos Ano de Publicação Palavras-chave
Algoritmo Clássico: IDF - TF
Mesmo usado pela busca (Lucene, engine do ELK, Solr) TF
- IDF Term Frequency - Inverse of Document Frequency Prioriza itens (documentos) com os atributos mais raros
Quando o uso é interessante
Em uma página, mostrar itens similares Usos Em uma base
nova, com poucas interações dos usuários Quando os itens têm atributos mapeáveis
Pontos Fracos
Forte tendência a indicar itens muito parecidos
Filtragem Colaborativa
Princípio: Pessoas parecidas têm gostos próximos Filtragem Colaborativa A recomendação
se dá pela proximidade de um item aos itens consumidos pelo usuário Parecido com o mundo real: Pessoas recomendam no boca-a-boca
Algoritmo Clássico: kNN
Primeiro: Mede-se quanto um usuário é igual aos outros
Segundo: Ao recomendar um item, tira-se a média ponderada pela
similaridade + fator de avaliação (nota)
Quando o uso é interessante
Quando a interação do usuário é fácil de buscar Usos
Aspecto social forte Repetição de padrões de comportamento de usuários
Pontos Fracos
Problema do novo Usuário: Como o usuário não tem itens,
qual recomendar? Pontos Fracos Idem para problema do novo Item Computação cara, precisa de várias heurísticas
Híbridos
Podemos usar as 2 abordagens aos mesmo tempo Sistemas Híbridos
Um pode ser filtro do outro ou dar boost no ranking Podemos usar Regras Conhecidas para filtrar resultados
Decaimento
Problema do Harry Potter
Itens com altíssimo ranking são recomendados sempre Problema do Harry
Potter
O que pode ser decaimento: Tempo, Distância, Volume Usar funções
de Decaimento Decaimento Exponencial
Como se avalia um RecSys?
Top N recomendações. Ideal: N = 5 Avaliação Precisão Recall
Precisão@N Recall@N
Como achamos que Recomendação pode ajudar?
Obrigado!