Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Alexa x 機械学習でスキルをよりリッチにする方法
Search
chao2suke
April 06, 2019
Technology
0
1.7k
Alexa x 機械学習でスキルをよりリッチにする方法
2019/04/06 Alexa Day 2019 登壇資料
chao2suke
April 06, 2019
Tweet
Share
More Decks by chao2suke
See All by chao2suke
天井カメラで捉えた人物をコンピュータビジョンで解析した3年間のトライアンドエラーとこれから
chao2suke
0
2.4k
結局普通のエンジニアが今SageMaker使うと何ができるのかわかるLT
chao2suke
0
1.7k
機械学習の知識ゼロでも動かせるAIツールキットの世界
chao2suke
0
1.8k
「今」のAI技術と「3年後」のAI技術のご紹介
chao2suke
0
1.1k
Alexaに詳しい人は普段Alexaをどう扱っているか
chao2suke
0
920
奥深きAPLの世界
chao2suke
0
130
Alexaスキル & レジレスCafeにおけるStripe活用の取り組み
chao2suke
0
2k
#AAJUG vol.2 APL ハンズオン
chao2suke
0
2.9k
Alexaスキルを安心安全に開発運用するためのAWS自動化ソリューション
chao2suke
0
770
Other Decks in Technology
See All in Technology
機密情報の漏洩を防げ! Webフロントエンド開発で意識すべき漏洩パターンとその対策
mizdra
PRO
10
3.6k
ECS組み込みのBlue/Greenデプロイを動かしてELB側の動きを観察してみる
yuki_ink
1
130
クレジットカードの不正を防止する技術
yutadayo
17
7.7k
AI × クラウドで シイタケの収穫時期を判定してみた
lamaglama39
1
360
SRE視点で振り返るメルカリのアーキテクチャ変遷と普遍的な考え
foostan
1
170
JAWS-UG SRE支部 #14 LT
okaru
0
110
DDD x Microservice Architecture : Findy Architecture Conf 2025
syobochim
1
290
LINEスキマニ/LINEバイトにおけるバックエンド開発
lycorptech_jp
PRO
0
310
Rubyist入門: The Way to The Timeless Way of Programming
snoozer05
PRO
7
520
リアーキテクティングのその先へ 〜品質と開発生産性の壁を越えるプラットフォーム戦略〜 / architecture-con2025
visional_engineering_and_design
0
350
未回答質問の回答一覧 / 開発をリードする品質保証 QAエンジニアと開発者の未来を考える-Findy Online Conference -
findy_eventslides
0
230
【M3】攻めのセキュリティの実践!プロアクティブなセキュリティ対策の実践事例
axelmizu
0
170
Featured
See All Featured
Principles of Awesome APIs and How to Build Them.
keavy
127
17k
Creating an realtime collaboration tool: Agile Flush - .NET Oxford
marcduiker
34
2.3k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Making Projects Easy
brettharned
120
6.5k
We Have a Design System, Now What?
morganepeng
54
7.9k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
2.9k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.7k
Thoughts on Productivity
jonyablonski
73
4.9k
Rebuilding a faster, lazier Slack
samanthasiow
84
9.3k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
12
1.3k
Evolution of real-time – Irina Nazarova, EuRuKo, 2024
irinanazarova
9
1k
Into the Great Unknown - MozCon
thekraken
40
2.2k
Transcript
Alexa x ػցֶशͰ εΩϧΛΑΓϦονʹ͢Δํ๏ Ϋϥεϝιουגࣜձࣾͤʔͷ
ਗ਼ ߶࢙ʢͤʔͷʣ Ϋϥεϝιουגࣜձࣾ ࡳຈΦϑΟεॴଐ ׆ಈ༰ ίϛϡχςΟʮAlexa Salonʯओ࠵ ίϛϡχςΟʮAmazon Alexa Japan
User GroupʯӡӦ Amazonೝఆ Alexa ΤʔδΣϯγʔ ॻ੶ʮ͡ΊͯͷAlexaεΩϧ։ൃʯࣥච Classmethod, Inc. AI Solution Department Alexa Technical Evangelist / VUI Architect
ػցֶश
Alexa ASR (Auto Speech Recognition) NLU(Natural Language Understantding) TTS(Text to
Speech)
όοΫΤϯυ
ࣗͰϞσϧΛߏங͢Δ
AIΛར༻͢Δࡍͷ՝ʢෳճʣ "*ʹ͍ͭͯͷཧղ͕ෆ͍ͯ͠Δ ಋೖޮՌ͕ಘΒΕΔ͔ෆ҆ खܰʹಋೖͰ͖Δ"*ͷαʔϏε͕ͳ͍ ಋೖඅ༻͕ߴ͍ "*ͷΤϯδχΞ͕ෆ͍ͯ͠Δ "*ͷಋೖࣄྫ͕ෆ͍ͯ͠Δ
AIಋೖͷޮՌ ظ௨ΓͷޮՌ͕ग़ͨ ޮՌΛଌఆ͍ͯ͠ͳ͍ ಋೖ͔ͨ͠ΓͷͨΊ·ͩޮՌ͕Θ͔Βͳ͍ ͲͪΒͱ͍͑ͳ͍
͍ํ͕Θ͔Βͳ͍
Agenda ɾػցֶशͷ؆୯ͳઆ໌ ɾػցֶशΛೖΕΔલʹߟ͑Δ͜ͱ ɾϢʔβʔԿΛٻΊ͍ͯΔͷ͔ ɾؾΛ͚ͭͨํ͕͍͍͜ͱ
ػցֶशͷ؆୯ͳઆ໌
ڭࢣ͋Γֶश(ྨ) ҟৗݕ ը૾ೝࣝ
ڭࢣ͋Γֶश(ճؼ) ച্༧ଌ धཁ༧ଌ
ڧԽֶश(Reinforcement Learning)
ڧԽֶश ήʔϜ ࣗಈӡస
DeepRacer
DeepRacerಉձ 5/16 େࡕ։࠵ܾఆ!!
ػցֶश։ൃ
։ൃ
ओͳOSS Caffe Berkeley ը૾ೝ͖ࣝɾߴ TensorFlow Google Ϣʔβʔ࠷ଟ Chainer PFN ͍͍͢
CNTK Microsoft RNNʹڧ͍ MXNet Apacheࡒஂ AWSͱͷ૬ੑ͕ྑ͍
ֶश
ओͳAIΫϥυαʔϏε ৫໊ αʔϏε໊ ରܕπʔϧ Google Google Cloud Machine Learning Google
Colaboratory Amazon Amazon AI Amazon SageMaker Microsoft Azure Machine Learning Azure Notebooks IBM Watson Data Platform DataScience Experience
ਪ
ػցֶशΛೖΕΔ લʹߟ͑Δ͜ͱ
ϧʔϧϕʔεͱֶशϕʔε ਫ਼ີʹΑ͚ͬͯΔ
VUIͰͬͨํ͕͍͍ʁ
εϚϗͷํ͕͘Ͷʁ
͜Εػցֶश͏ʁ
ϧʔϧϕʔε
ϧʔϧϕʔε = Ifจͷ࿈ଓ
ϧʔϧϕʔε A B
ϧʔϧϕʔε If ( Λങͬͨ) { } Λ͓͢͢Ί͢Δ;
ϧʔϧϕʔε If ( Λങͬͨ) { } Λ͓͢͢Ί͢Δ; ηοτׂҾ͢Δ;
ϧʔϧϕʔεͷ͍͍ͱ͜Ζ = ࣮֬ੑ͕ߴ͍
ϧʔϧϕʔεͷۤखͳͱ͜Ζ = ༥௨͕͖͔ͳ͍
ɾ࣮֬ੑ͕ߴ͍ ɾීวత ɾ৽͍͠ൃݟ͕গͳ͍ ɾݟ͕ੵΈॏͳ͍ͬͯΔ = ϧʔϧϕʔε
ΞμϓςΟϒϥʔχϯά
ֶ
ؔ ͱࣜ ฏ໘ɾۭؒ ߴ2 ࡾ֯ؔɺࢦؔɺରؔ ࣜͱূ໌ɺߴ࣍ํఔࣜɺ ඍੵ ฏ໘ϕΫτϧɺ ۭؒϕΫτϧ ߴ1
ೋ࣍ؔɺࡾ֯ൺ ͱࣜɺํఔࣜɺෆࣜ ฏ໘ਤܗ த3 ೋ࣍ؔ ฏํࠜɺల։ɺҼղɺ ೋ࣍ํఔࣜ ૬ࣅɺࡾฏํͷఆཧ ԁͷੑ࣭ த2 Ұ࣍ؔ ࿈ཱೋݩҰ࣍ํఔࣜ ߹ಉ த1 ൺྫɺൺྫ ਖ਼ෛɺҰݩҰ࣍ํఔࣜ ҠಈɺӨ খ6 ൺɺൺྫ ҟͷআ ֦େɺॖখɺରশ
ίετ
ϚωʔδυαʔϏε
AWSͷओͳAIܥϚωʔδυαʔϏε "NB[PO.- ճؼੳɺೋ߲ྨɺଟ߲ྨͷֶशɺਪ͕ߦ͑Δ "NB[PO3FLPHOJUJPO ը૾ੳͷʮ3FLPHOJUJPOJNBHFʯͱಈըੳͷʮ3FLPHOJUJPO7JEFPʯ "NB[PO$PNQSFIFOE ςΩετͰΠϯαΠτؔੑΛݕग़͢ΔࣗવݴޠॲཧαʔϏε "NB[PO5SBOTDSJCF ԻΛςΩετʹม͢Δ
ֶशࡁΈϞσϧ
ओͳֶशࡁΈϞσϧ "MFY/FU ࠷ॳظͷը૾ೝࣝ༻χϡʔϥϧωοτϫʔΫϞσϧ HPPH-F/FU (PPHMF͕։ൃͨ͠ը૾ೝࣝ༻χϡʔϥϧωοτϫʔΫΛ#7-$ ͕ಠࣗʹֶशͨ͠ͷ 1MBDFT$// ֶशͨࣸ͠ਅ͔ΒॴΛਪఆ͢Δ %FFQ)BOE खͷܗΛೝࣝ͢Δ
7JEFP5FYU@7(( ಈը͔ΒςΩετΛࣗಈੜ͢Δ "HFBOE(FOEFS ྸٴͼੑผΛೝࣝ͢Δ (PPHMF/FU@DBST ࣗಈंͷछผΛೝࣝ͢Δ )PMJTUJDBMMZ/FTUFE&EHF %FUFDUJPO ྠֲΛݕग़͢Δ
ਪରশσʔλ AlexaҎ֎ͷσόΠεݕ౼͢Δ
࿈ܞσόΠε Χϝϥ ϚΠΫ ηϯαʔ
εϚʔτϑΥϯ
ϢʔβʔԿΛٻΊ͍ͯΔͷ͔ʁ
ศར͞
ϢʔβʔԿʹͳΒ͓ۚΛ͏ͷ͔?
ਪͷྲྀΕ ޮԽ ࣗಈԽ ՃՁΛ্͛Δ ଟ༷Խ
Mobileeye
झຯᅂʹ͋ͬͨσʔλͷԠ༻
ޮԽɾࣗಈԽ
ޮԽɾࣗಈԽ ҟৗݕ ӡ༌ RPA
ϖΞഊऀ
A͞Μ B͞Μ A͕͍͍ʂ A͍ B͕͍͍ʂ
A͞Μ C͞Μ A͕͍͍ʂ A͍ C͕͍͍ʂ
A͞Μ C͞Μ A͕͍͍ʂ B͕͍͍ʂ C͕͍͍ʂ B͞Μ
Ԡੜ
ϨεϙϯεΛࣗಈੜ͢Δ
ཁ ʹText Summarization Model (TensorFlow)
ՃՁΛ͋͛Δ
ՃՁΛ͋͛Δ IoT Ϩίϝϯυ
ిؾͷফ͠Ε
ిؾͷফ͠Ε
AMAZON.MessageAlert.Activated (ProActive API)
COBOTTA(ඒిؾۀʣ
ՃՁΛ͋͛Δ IoT Ϩίϝϯυ
υϥΠϒεϧʔ
ଟ༷Խ
ՃՁΛ͋͛Δ ۚ༥ ڭҭ ҩྍ
ਓͱAI͕ڠௐ͠ɺͱʹ͢Δ ख़࿅ऀ ػցֶश ॳڃऀ
ؾΛ͚ͭͨํ͕͍͍͜ͱ
σʔλͷऩू
:BIPPσʔληοτ ZBIPPܙାσʔλ ָఱσʔληοτ ָఱࢢσʔλͱϨϏϡʔσʔλɺָఱτϥϕϧͷࢪઃσʔλͱϨϏϡʔσʔλʣ χίχίσʔληοτʢχίχίಈըίϝϯτσʔλʣ ϦΫϧʔτσʔληοτʢϗοτϖούʔϏϡʔςΟʔσʔλʣ ΫοΫύουσʔληοτʢϨγϐσʔλͳͲʣ -*'6--)0.&`4σʔληοτʢି݅σʔλͳͲʣ ΠϯςʔδɾσʔληοτʢJTTQσʔλ57 1$
εϚϗͰͷϝσΟΞ৮σʔλͳͲʣ Φʔϓϯσʔληοτ
*NBHF/FU Ұൠը૾ΛूΊͯྨͨ͠ͷ ./*45 खॻ͖ࣈ .4$0$0 ը૾ηϚϯςΟοΫηάϝϯςʔγϣϯ༻ 8.5 ӳޠͱϑϥϯεޠɺυΠπޠɺεϖΠϯޠͳͲͷର༁ू $PSOFMM.PWJF%JBMPHT$PSQVT өըͷࣈນΛ·ͱΊͨͷ
7(('BDF%BUBTFU إը૾ )VNBO1PTF&TUJNBUF%BUBTFU ਓؒͷϙʔζਪఆΛֶश͢ΔͨΊͷͷ ڞ༗σʔληοτ
σʔλͷ֬อํ๏ ਫ૿͢͠Δ సҠֶश
#vuishow Ͱݕࡧ