Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Alexa x 機械学習でスキルをよりリッチにする方法
Search
chao2suke
April 06, 2019
Technology
0
1.6k
Alexa x 機械学習でスキルをよりリッチにする方法
2019/04/06 Alexa Day 2019 登壇資料
chao2suke
April 06, 2019
Tweet
Share
More Decks by chao2suke
See All by chao2suke
天井カメラで捉えた人物をコンピュータビジョンで解析した3年間のトライアンドエラーとこれから
chao2suke
0
2.2k
結局普通のエンジニアが今SageMaker使うと何ができるのかわかるLT
chao2suke
0
1.6k
機械学習の知識ゼロでも動かせるAIツールキットの世界
chao2suke
0
1.6k
「今」のAI技術と「3年後」のAI技術のご紹介
chao2suke
0
1k
Alexaに詳しい人は普段Alexaをどう扱っているか
chao2suke
0
860
奥深きAPLの世界
chao2suke
0
120
Alexaスキル & レジレスCafeにおけるStripe活用の取り組み
chao2suke
0
1.9k
#AAJUG vol.2 APL ハンズオン
chao2suke
0
2.7k
Alexaスキルを安心安全に開発運用するためのAWS自動化ソリューション
chao2suke
0
690
Other Decks in Technology
See All in Technology
テストを書かないためのテスト/ Tests for not writing tests
sinsoku
1
170
FODにおけるホーム画面編成のレコメンド
watarukudo
PRO
2
270
ABWGのRe:Cap!
hm5ug
1
120
Docker Desktop で Docker を始めよう
zembutsu
PRO
0
160
実践! ソフトウェアエンジニアリングの価値の計測 ── Effort、Output、Outcome、Impact
nomuson
0
2k
My small contributions - Fujiwara Tech Conference 2025
ijin
0
1.4k
Amazon Q Developerで.NET Frameworkプロジェクトをモダナイズしてみた
kenichirokimura
1
200
#TRG24 / David Cuartielles / Post Open Source
tarugoconf
0
580
2024AWSで個人的にアツかったアップデート
nagisa53
1
110
[IBM TechXchange Dojo]Watson Discoveryとwatsonx.aiでRAGを実現!座学①
siyuanzh09
0
110
re:Invent 2024のふりかえり
beli68
0
110
2025年のARグラスの潮流
kotauchisunsun
0
790
Featured
See All Featured
Six Lessons from altMBA
skipperchong
27
3.6k
For a Future-Friendly Web
brad_frost
176
9.5k
Thoughts on Productivity
jonyablonski
68
4.4k
Bootstrapping a Software Product
garrettdimon
PRO
305
110k
jQuery: Nuts, Bolts and Bling
dougneiner
62
7.6k
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
44
7k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
3.6k
Optimizing for Happiness
mojombo
376
70k
Into the Great Unknown - MozCon
thekraken
34
1.6k
What’s in a name? Adding method to the madness
productmarketing
PRO
22
3.2k
Writing Fast Ruby
sferik
628
61k
Large-scale JavaScript Application Architecture
addyosmani
510
110k
Transcript
Alexa x ػցֶशͰ εΩϧΛΑΓϦονʹ͢Δํ๏ Ϋϥεϝιουגࣜձࣾͤʔͷ
ਗ਼ ߶࢙ʢͤʔͷʣ Ϋϥεϝιουגࣜձࣾ ࡳຈΦϑΟεॴଐ ׆ಈ༰ ίϛϡχςΟʮAlexa Salonʯओ࠵ ίϛϡχςΟʮAmazon Alexa Japan
User GroupʯӡӦ Amazonೝఆ Alexa ΤʔδΣϯγʔ ॻ੶ʮ͡ΊͯͷAlexaεΩϧ։ൃʯࣥච Classmethod, Inc. AI Solution Department Alexa Technical Evangelist / VUI Architect
ػցֶश
Alexa ASR (Auto Speech Recognition) NLU(Natural Language Understantding) TTS(Text to
Speech)
όοΫΤϯυ
ࣗͰϞσϧΛߏங͢Δ
AIΛར༻͢Δࡍͷ՝ʢෳճʣ "*ʹ͍ͭͯͷཧղ͕ෆ͍ͯ͠Δ ಋೖޮՌ͕ಘΒΕΔ͔ෆ҆ खܰʹಋೖͰ͖Δ"*ͷαʔϏε͕ͳ͍ ಋೖඅ༻͕ߴ͍ "*ͷΤϯδχΞ͕ෆ͍ͯ͠Δ "*ͷಋೖࣄྫ͕ෆ͍ͯ͠Δ
AIಋೖͷޮՌ ظ௨ΓͷޮՌ͕ग़ͨ ޮՌΛଌఆ͍ͯ͠ͳ͍ ಋೖ͔ͨ͠ΓͷͨΊ·ͩޮՌ͕Θ͔Βͳ͍ ͲͪΒͱ͍͑ͳ͍
͍ํ͕Θ͔Βͳ͍
Agenda ɾػցֶशͷ؆୯ͳઆ໌ ɾػցֶशΛೖΕΔલʹߟ͑Δ͜ͱ ɾϢʔβʔԿΛٻΊ͍ͯΔͷ͔ ɾؾΛ͚ͭͨํ͕͍͍͜ͱ
ػցֶशͷ؆୯ͳઆ໌
ڭࢣ͋Γֶश(ྨ) ҟৗݕ ը૾ೝࣝ
ڭࢣ͋Γֶश(ճؼ) ച্༧ଌ धཁ༧ଌ
ڧԽֶश(Reinforcement Learning)
ڧԽֶश ήʔϜ ࣗಈӡస
DeepRacer
DeepRacerಉձ 5/16 େࡕ։࠵ܾఆ!!
ػցֶश։ൃ
։ൃ
ओͳOSS Caffe Berkeley ը૾ೝ͖ࣝɾߴ TensorFlow Google Ϣʔβʔ࠷ଟ Chainer PFN ͍͍͢
CNTK Microsoft RNNʹڧ͍ MXNet Apacheࡒஂ AWSͱͷ૬ੑ͕ྑ͍
ֶश
ओͳAIΫϥυαʔϏε ৫໊ αʔϏε໊ ରܕπʔϧ Google Google Cloud Machine Learning Google
Colaboratory Amazon Amazon AI Amazon SageMaker Microsoft Azure Machine Learning Azure Notebooks IBM Watson Data Platform DataScience Experience
ਪ
ػցֶशΛೖΕΔ લʹߟ͑Δ͜ͱ
ϧʔϧϕʔεͱֶशϕʔε ਫ਼ີʹΑ͚ͬͯΔ
VUIͰͬͨํ͕͍͍ʁ
εϚϗͷํ͕͘Ͷʁ
͜Εػցֶश͏ʁ
ϧʔϧϕʔε
ϧʔϧϕʔε = Ifจͷ࿈ଓ
ϧʔϧϕʔε A B
ϧʔϧϕʔε If ( Λങͬͨ) { } Λ͓͢͢Ί͢Δ;
ϧʔϧϕʔε If ( Λങͬͨ) { } Λ͓͢͢Ί͢Δ; ηοτׂҾ͢Δ;
ϧʔϧϕʔεͷ͍͍ͱ͜Ζ = ࣮֬ੑ͕ߴ͍
ϧʔϧϕʔεͷۤखͳͱ͜Ζ = ༥௨͕͖͔ͳ͍
ɾ࣮֬ੑ͕ߴ͍ ɾීวత ɾ৽͍͠ൃݟ͕গͳ͍ ɾݟ͕ੵΈॏͳ͍ͬͯΔ = ϧʔϧϕʔε
ΞμϓςΟϒϥʔχϯά
ֶ
ؔ ͱࣜ ฏ໘ɾۭؒ ߴ2 ࡾ֯ؔɺࢦؔɺରؔ ࣜͱূ໌ɺߴ࣍ํఔࣜɺ ඍੵ ฏ໘ϕΫτϧɺ ۭؒϕΫτϧ ߴ1
ೋ࣍ؔɺࡾ֯ൺ ͱࣜɺํఔࣜɺෆࣜ ฏ໘ਤܗ த3 ೋ࣍ؔ ฏํࠜɺల։ɺҼղɺ ೋ࣍ํఔࣜ ૬ࣅɺࡾฏํͷఆཧ ԁͷੑ࣭ த2 Ұ࣍ؔ ࿈ཱೋݩҰ࣍ํఔࣜ ߹ಉ த1 ൺྫɺൺྫ ਖ਼ෛɺҰݩҰ࣍ํఔࣜ ҠಈɺӨ খ6 ൺɺൺྫ ҟͷআ ֦େɺॖখɺରশ
ίετ
ϚωʔδυαʔϏε
AWSͷओͳAIܥϚωʔδυαʔϏε "NB[PO.- ճؼੳɺೋ߲ྨɺଟ߲ྨͷֶशɺਪ͕ߦ͑Δ "NB[PO3FLPHOJUJPO ը૾ੳͷʮ3FLPHOJUJPOJNBHFʯͱಈըੳͷʮ3FLPHOJUJPO7JEFPʯ "NB[PO$PNQSFIFOE ςΩετͰΠϯαΠτؔੑΛݕग़͢ΔࣗવݴޠॲཧαʔϏε "NB[PO5SBOTDSJCF ԻΛςΩετʹม͢Δ
ֶशࡁΈϞσϧ
ओͳֶशࡁΈϞσϧ "MFY/FU ࠷ॳظͷը૾ೝࣝ༻χϡʔϥϧωοτϫʔΫϞσϧ HPPH-F/FU (PPHMF͕։ൃͨ͠ը૾ೝࣝ༻χϡʔϥϧωοτϫʔΫΛ#7-$ ͕ಠࣗʹֶशͨ͠ͷ 1MBDFT$// ֶशͨࣸ͠ਅ͔ΒॴΛਪఆ͢Δ %FFQ)BOE खͷܗΛೝࣝ͢Δ
7JEFP5FYU@7(( ಈը͔ΒςΩετΛࣗಈੜ͢Δ "HFBOE(FOEFS ྸٴͼੑผΛೝࣝ͢Δ (PPHMF/FU@DBST ࣗಈंͷछผΛೝࣝ͢Δ )PMJTUJDBMMZ/FTUFE&EHF %FUFDUJPO ྠֲΛݕग़͢Δ
ਪରশσʔλ AlexaҎ֎ͷσόΠεݕ౼͢Δ
࿈ܞσόΠε Χϝϥ ϚΠΫ ηϯαʔ
εϚʔτϑΥϯ
ϢʔβʔԿΛٻΊ͍ͯΔͷ͔ʁ
ศར͞
ϢʔβʔԿʹͳΒ͓ۚΛ͏ͷ͔?
ਪͷྲྀΕ ޮԽ ࣗಈԽ ՃՁΛ্͛Δ ଟ༷Խ
Mobileeye
झຯᅂʹ͋ͬͨσʔλͷԠ༻
ޮԽɾࣗಈԽ
ޮԽɾࣗಈԽ ҟৗݕ ӡ༌ RPA
ϖΞഊऀ
A͞Μ B͞Μ A͕͍͍ʂ A͍ B͕͍͍ʂ
A͞Μ C͞Μ A͕͍͍ʂ A͍ C͕͍͍ʂ
A͞Μ C͞Μ A͕͍͍ʂ B͕͍͍ʂ C͕͍͍ʂ B͞Μ
Ԡੜ
ϨεϙϯεΛࣗಈੜ͢Δ
ཁ ʹText Summarization Model (TensorFlow)
ՃՁΛ͋͛Δ
ՃՁΛ͋͛Δ IoT Ϩίϝϯυ
ిؾͷফ͠Ε
ిؾͷফ͠Ε
AMAZON.MessageAlert.Activated (ProActive API)
COBOTTA(ඒిؾۀʣ
ՃՁΛ͋͛Δ IoT Ϩίϝϯυ
υϥΠϒεϧʔ
ଟ༷Խ
ՃՁΛ͋͛Δ ۚ༥ ڭҭ ҩྍ
ਓͱAI͕ڠௐ͠ɺͱʹ͢Δ ख़࿅ऀ ػցֶश ॳڃऀ
ؾΛ͚ͭͨํ͕͍͍͜ͱ
σʔλͷऩू
:BIPPσʔληοτ ZBIPPܙାσʔλ ָఱσʔληοτ ָఱࢢσʔλͱϨϏϡʔσʔλɺָఱτϥϕϧͷࢪઃσʔλͱϨϏϡʔσʔλʣ χίχίσʔληοτʢχίχίಈըίϝϯτσʔλʣ ϦΫϧʔτσʔληοτʢϗοτϖούʔϏϡʔςΟʔσʔλʣ ΫοΫύουσʔληοτʢϨγϐσʔλͳͲʣ -*'6--)0.&`4σʔληοτʢି݅σʔλͳͲʣ ΠϯςʔδɾσʔληοτʢJTTQσʔλ57 1$
εϚϗͰͷϝσΟΞ৮σʔλͳͲʣ Φʔϓϯσʔληοτ
*NBHF/FU Ұൠը૾ΛूΊͯྨͨ͠ͷ ./*45 खॻ͖ࣈ .4$0$0 ը૾ηϚϯςΟοΫηάϝϯςʔγϣϯ༻ 8.5 ӳޠͱϑϥϯεޠɺυΠπޠɺεϖΠϯޠͳͲͷର༁ू $PSOFMM.PWJF%JBMPHT$PSQVT өըͷࣈນΛ·ͱΊͨͷ
7(('BDF%BUBTFU إը૾ )VNBO1PTF&TUJNBUF%BUBTFU ਓؒͷϙʔζਪఆΛֶश͢ΔͨΊͷͷ ڞ༗σʔληοτ
σʔλͷ֬อํ๏ ਫ૿͢͠Δ సҠֶश
#vuishow Ͱݕࡧ