Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Alexa x 機械学習でスキルをよりリッチにする方法
Search
chao2suke
April 06, 2019
Technology
0
1.7k
Alexa x 機械学習でスキルをよりリッチにする方法
2019/04/06 Alexa Day 2019 登壇資料
chao2suke
April 06, 2019
Tweet
Share
More Decks by chao2suke
See All by chao2suke
天井カメラで捉えた人物をコンピュータビジョンで解析した3年間のトライアンドエラーとこれから
chao2suke
0
2.4k
結局普通のエンジニアが今SageMaker使うと何ができるのかわかるLT
chao2suke
0
1.7k
機械学習の知識ゼロでも動かせるAIツールキットの世界
chao2suke
0
1.8k
「今」のAI技術と「3年後」のAI技術のご紹介
chao2suke
0
1.1k
Alexaに詳しい人は普段Alexaをどう扱っているか
chao2suke
0
930
奥深きAPLの世界
chao2suke
0
130
Alexaスキル & レジレスCafeにおけるStripe活用の取り組み
chao2suke
0
2k
#AAJUG vol.2 APL ハンズオン
chao2suke
0
2.9k
Alexaスキルを安心安全に開発運用するためのAWS自動化ソリューション
chao2suke
0
790
Other Decks in Technology
See All in Technology
さくらのクラウド開発ふりかえり2025
kazeburo
2
1.2k
2025-12-18_AI駆動開発推進プロジェクト運営について / AIDD-Promotion project management
yayoi_dd
0
160
フィッシュボウルのやり方 / How to do a fishbowl
pauli
2
390
「もしもデータ基盤開発で『強くてニューゲーム』ができたなら今の僕はどんなデータ基盤を作っただろう」
aeonpeople
0
250
AIエージェント開発と活用を加速するワークフロー自動生成への挑戦
shibuiwilliam
5
870
SQLだけでマイグレーションしたい!
makki_d
0
1.2k
AgentCoreとStrandsで社内d払いナレッジボットを作った話
motojimayu
1
980
AI with TiDD
shiraji
1
300
ESXi のAIOps だ!2025冬
unnowataru
0
390
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
6
2.4k
マイクロサービスへの5年間 ぶっちゃけ何をしてどうなったか
joker1007
21
8.2k
2025年のデザインシステムとAI 活用を振り返る
leveragestech
0
300
Featured
See All Featured
Navigating Weather and Climate Data
rabernat
0
53
Save Time (by Creating Custom Rails Generators)
garrettdimon
PRO
32
1.9k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
How to build a perfect <img>
jonoalderson
0
4.7k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
51
Unsuck your backbone
ammeep
671
58k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
32
2.8k
4 Signs Your Business is Dying
shpigford
186
22k
How STYLIGHT went responsive
nonsquared
100
6k
職位にかかわらず全員がリーダーシップを発揮するチーム作り / Building a team where everyone can demonstrate leadership regardless of position
madoxten
51
46k
How to Create Impact in a Changing Tech Landscape [PerfNow 2023]
tammyeverts
55
3.2k
The Organizational Zoo: Understanding Human Behavior Agility Through Metaphoric Constructive Conversations (based on the works of Arthur Shelley, Ph.D)
kimpetersen
PRO
0
200
Transcript
Alexa x ػցֶशͰ εΩϧΛΑΓϦονʹ͢Δํ๏ Ϋϥεϝιουגࣜձࣾͤʔͷ
ਗ਼ ߶࢙ʢͤʔͷʣ Ϋϥεϝιουגࣜձࣾ ࡳຈΦϑΟεॴଐ ׆ಈ༰ ίϛϡχςΟʮAlexa Salonʯओ࠵ ίϛϡχςΟʮAmazon Alexa Japan
User GroupʯӡӦ Amazonೝఆ Alexa ΤʔδΣϯγʔ ॻ੶ʮ͡ΊͯͷAlexaεΩϧ։ൃʯࣥච Classmethod, Inc. AI Solution Department Alexa Technical Evangelist / VUI Architect
ػցֶश
Alexa ASR (Auto Speech Recognition) NLU(Natural Language Understantding) TTS(Text to
Speech)
όοΫΤϯυ
ࣗͰϞσϧΛߏங͢Δ
AIΛར༻͢Δࡍͷ՝ʢෳճʣ "*ʹ͍ͭͯͷཧղ͕ෆ͍ͯ͠Δ ಋೖޮՌ͕ಘΒΕΔ͔ෆ҆ खܰʹಋೖͰ͖Δ"*ͷαʔϏε͕ͳ͍ ಋೖඅ༻͕ߴ͍ "*ͷΤϯδχΞ͕ෆ͍ͯ͠Δ "*ͷಋೖࣄྫ͕ෆ͍ͯ͠Δ
AIಋೖͷޮՌ ظ௨ΓͷޮՌ͕ग़ͨ ޮՌΛଌఆ͍ͯ͠ͳ͍ ಋೖ͔ͨ͠ΓͷͨΊ·ͩޮՌ͕Θ͔Βͳ͍ ͲͪΒͱ͍͑ͳ͍
͍ํ͕Θ͔Βͳ͍
Agenda ɾػցֶशͷ؆୯ͳઆ໌ ɾػցֶशΛೖΕΔલʹߟ͑Δ͜ͱ ɾϢʔβʔԿΛٻΊ͍ͯΔͷ͔ ɾؾΛ͚ͭͨํ͕͍͍͜ͱ
ػցֶशͷ؆୯ͳઆ໌
ڭࢣ͋Γֶश(ྨ) ҟৗݕ ը૾ೝࣝ
ڭࢣ͋Γֶश(ճؼ) ച্༧ଌ धཁ༧ଌ
ڧԽֶश(Reinforcement Learning)
ڧԽֶश ήʔϜ ࣗಈӡస
DeepRacer
DeepRacerಉձ 5/16 େࡕ։࠵ܾఆ!!
ػցֶश։ൃ
։ൃ
ओͳOSS Caffe Berkeley ը૾ೝ͖ࣝɾߴ TensorFlow Google Ϣʔβʔ࠷ଟ Chainer PFN ͍͍͢
CNTK Microsoft RNNʹڧ͍ MXNet Apacheࡒஂ AWSͱͷ૬ੑ͕ྑ͍
ֶश
ओͳAIΫϥυαʔϏε ৫໊ αʔϏε໊ ରܕπʔϧ Google Google Cloud Machine Learning Google
Colaboratory Amazon Amazon AI Amazon SageMaker Microsoft Azure Machine Learning Azure Notebooks IBM Watson Data Platform DataScience Experience
ਪ
ػցֶशΛೖΕΔ લʹߟ͑Δ͜ͱ
ϧʔϧϕʔεͱֶशϕʔε ਫ਼ີʹΑ͚ͬͯΔ
VUIͰͬͨํ͕͍͍ʁ
εϚϗͷํ͕͘Ͷʁ
͜Εػցֶश͏ʁ
ϧʔϧϕʔε
ϧʔϧϕʔε = Ifจͷ࿈ଓ
ϧʔϧϕʔε A B
ϧʔϧϕʔε If ( Λങͬͨ) { } Λ͓͢͢Ί͢Δ;
ϧʔϧϕʔε If ( Λങͬͨ) { } Λ͓͢͢Ί͢Δ; ηοτׂҾ͢Δ;
ϧʔϧϕʔεͷ͍͍ͱ͜Ζ = ࣮֬ੑ͕ߴ͍
ϧʔϧϕʔεͷۤखͳͱ͜Ζ = ༥௨͕͖͔ͳ͍
ɾ࣮֬ੑ͕ߴ͍ ɾීวత ɾ৽͍͠ൃݟ͕গͳ͍ ɾݟ͕ੵΈॏͳ͍ͬͯΔ = ϧʔϧϕʔε
ΞμϓςΟϒϥʔχϯά
ֶ
ؔ ͱࣜ ฏ໘ɾۭؒ ߴ2 ࡾ֯ؔɺࢦؔɺରؔ ࣜͱূ໌ɺߴ࣍ํఔࣜɺ ඍੵ ฏ໘ϕΫτϧɺ ۭؒϕΫτϧ ߴ1
ೋ࣍ؔɺࡾ֯ൺ ͱࣜɺํఔࣜɺෆࣜ ฏ໘ਤܗ த3 ೋ࣍ؔ ฏํࠜɺల։ɺҼղɺ ೋ࣍ํఔࣜ ૬ࣅɺࡾฏํͷఆཧ ԁͷੑ࣭ த2 Ұ࣍ؔ ࿈ཱೋݩҰ࣍ํఔࣜ ߹ಉ த1 ൺྫɺൺྫ ਖ਼ෛɺҰݩҰ࣍ํఔࣜ ҠಈɺӨ খ6 ൺɺൺྫ ҟͷআ ֦େɺॖখɺରশ
ίετ
ϚωʔδυαʔϏε
AWSͷओͳAIܥϚωʔδυαʔϏε "NB[PO.- ճؼੳɺೋ߲ྨɺଟ߲ྨͷֶशɺਪ͕ߦ͑Δ "NB[PO3FLPHOJUJPO ը૾ੳͷʮ3FLPHOJUJPOJNBHFʯͱಈըੳͷʮ3FLPHOJUJPO7JEFPʯ "NB[PO$PNQSFIFOE ςΩετͰΠϯαΠτؔੑΛݕग़͢ΔࣗવݴޠॲཧαʔϏε "NB[PO5SBOTDSJCF ԻΛςΩετʹม͢Δ
ֶशࡁΈϞσϧ
ओͳֶशࡁΈϞσϧ "MFY/FU ࠷ॳظͷը૾ೝࣝ༻χϡʔϥϧωοτϫʔΫϞσϧ HPPH-F/FU (PPHMF͕։ൃͨ͠ը૾ೝࣝ༻χϡʔϥϧωοτϫʔΫΛ#7-$ ͕ಠࣗʹֶशͨ͠ͷ 1MBDFT$// ֶशͨࣸ͠ਅ͔ΒॴΛਪఆ͢Δ %FFQ)BOE खͷܗΛೝࣝ͢Δ
7JEFP5FYU@7(( ಈը͔ΒςΩετΛࣗಈੜ͢Δ "HFBOE(FOEFS ྸٴͼੑผΛೝࣝ͢Δ (PPHMF/FU@DBST ࣗಈंͷछผΛೝࣝ͢Δ )PMJTUJDBMMZ/FTUFE&EHF %FUFDUJPO ྠֲΛݕग़͢Δ
ਪରশσʔλ AlexaҎ֎ͷσόΠεݕ౼͢Δ
࿈ܞσόΠε Χϝϥ ϚΠΫ ηϯαʔ
εϚʔτϑΥϯ
ϢʔβʔԿΛٻΊ͍ͯΔͷ͔ʁ
ศར͞
ϢʔβʔԿʹͳΒ͓ۚΛ͏ͷ͔?
ਪͷྲྀΕ ޮԽ ࣗಈԽ ՃՁΛ্͛Δ ଟ༷Խ
Mobileeye
झຯᅂʹ͋ͬͨσʔλͷԠ༻
ޮԽɾࣗಈԽ
ޮԽɾࣗಈԽ ҟৗݕ ӡ༌ RPA
ϖΞഊऀ
A͞Μ B͞Μ A͕͍͍ʂ A͍ B͕͍͍ʂ
A͞Μ C͞Μ A͕͍͍ʂ A͍ C͕͍͍ʂ
A͞Μ C͞Μ A͕͍͍ʂ B͕͍͍ʂ C͕͍͍ʂ B͞Μ
Ԡੜ
ϨεϙϯεΛࣗಈੜ͢Δ
ཁ ʹText Summarization Model (TensorFlow)
ՃՁΛ͋͛Δ
ՃՁΛ͋͛Δ IoT Ϩίϝϯυ
ిؾͷফ͠Ε
ిؾͷফ͠Ε
AMAZON.MessageAlert.Activated (ProActive API)
COBOTTA(ඒిؾۀʣ
ՃՁΛ͋͛Δ IoT Ϩίϝϯυ
υϥΠϒεϧʔ
ଟ༷Խ
ՃՁΛ͋͛Δ ۚ༥ ڭҭ ҩྍ
ਓͱAI͕ڠௐ͠ɺͱʹ͢Δ ख़࿅ऀ ػցֶश ॳڃऀ
ؾΛ͚ͭͨํ͕͍͍͜ͱ
σʔλͷऩू
:BIPPσʔληοτ ZBIPPܙାσʔλ ָఱσʔληοτ ָఱࢢσʔλͱϨϏϡʔσʔλɺָఱτϥϕϧͷࢪઃσʔλͱϨϏϡʔσʔλʣ χίχίσʔληοτʢχίχίಈըίϝϯτσʔλʣ ϦΫϧʔτσʔληοτʢϗοτϖούʔϏϡʔςΟʔσʔλʣ ΫοΫύουσʔληοτʢϨγϐσʔλͳͲʣ -*'6--)0.&`4σʔληοτʢି݅σʔλͳͲʣ ΠϯςʔδɾσʔληοτʢJTTQσʔλ57 1$
εϚϗͰͷϝσΟΞ৮σʔλͳͲʣ Φʔϓϯσʔληοτ
*NBHF/FU Ұൠը૾ΛूΊͯྨͨ͠ͷ ./*45 खॻ͖ࣈ .4$0$0 ը૾ηϚϯςΟοΫηάϝϯςʔγϣϯ༻ 8.5 ӳޠͱϑϥϯεޠɺυΠπޠɺεϖΠϯޠͳͲͷର༁ू $PSOFMM.PWJF%JBMPHT$PSQVT өըͷࣈນΛ·ͱΊͨͷ
7(('BDF%BUBTFU إը૾ )VNBO1PTF&TUJNBUF%BUBTFU ਓؒͷϙʔζਪఆΛֶश͢ΔͨΊͷͷ ڞ༗σʔληοτ
σʔλͷ֬อํ๏ ਫ૿͢͠Δ సҠֶश
#vuishow Ͱݕࡧ