Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Angular-Apps smarter machen mit Generative AI: ...

Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig

Generative AI ist in aller Munde: Adobe Photoshop erlaubt das Austauschen von Objekten per einfacher Texteingabe und Microsoft Copilot steht Anwendern in Office und Windows zur Seite. Mit WebLLM und WebSD bringen wir generative AI auch in Ihre Angular-App: Lokal und offlinefähig. Wir generieren Bilder aus Texteingaben und fügen einer Todo-Anwendung einen Chatbot hinzu.

Christian Liebel

October 23, 2024
Tweet

More Decks by Christian Liebel

Other Decks in Programming

Transcript

  1. Hello, it’s me. Angular-Apps smarter machen mit Generative AI: lokal

    und offlinefähig Christian Liebel X: @christianliebel Email: christian.liebel @thinktecture.com Angular & PWA Slides: thinktecture.com /christian-liebel
  2. 09:00–10:30 Block 1 10:30–11:00 Coffee Break 11:00–12:30 Block 2 Angular-Apps

    smarter machen mit Generative AI: lokal und offlinefähig Timetable
  3. What to expect Focus on web app development Focus on

    Generative AI Up-to-date insights: the ML/AI field is evolving fast Live demos on real hardware Hands-on labs What not to expect Deep dive into AI specifics, RAG, model finetuning or training Stable libraries or specifications WebSD in Angular 1:1 Support Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Expectations
  4. Setup complete? (Node.js, Google Chrome, Editor, Git, macOS/Windows, 20 GB

    free disk space, 6 GB VRAM) Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Setup (1/2) LAB #0
  5. git clone https://github.com/thinktecture/angular- days-2024-fall-genai.git cd angular-days-2024-fall-genai npm i npm start

    -- --open Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Setup (2/2) LAB #0
  6. Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Generative

    AI everywhere Source: https://www.apple.com/chde/apple-intelligence/
  7. Run locally on the user’s system Angular-Apps smarter machen mit

    Generative AI: lokal und offlinefähig Single-Page Applications Server- Logik Web API Push Service Web API DBs HTML, JS, CSS, Assets Webserver Webbrowser SPA Client- Logik View HTML/CSS View HTML/CSS View HTML/CSS HTTPS WebSockets HTTPS HTTPS
  8. Make SPAs offline-capable Angular-Apps smarter machen mit Generative AI: lokal

    und offlinefähig Progressive Web Apps Service Worker Internet Website HTML/JS Cache fetch
  9. Overview Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig

    Generative AI Text OpenAI GPT Mistral … Speech OpenAI Whisper tortoise-tts … Images DALL·E Stable Diffusion … Audio/Music Musico Soundraw …
  10. Overview Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig

    Generative AI Text OpenAI GPT Mistral … Speech OpenAI Whisper tortoise-tts … Images DALL·E Stable Diffusion … Audio/Music Musico Soundraw …
  11. Drawbacks Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig

    Generative AI Cloud Providers Require a (stable) internet connection Subject to network latency and server availability Data is transferred to the cloud service Require a subscription
  12. Large: Trained on lots of data Language: Process and generate

    text Models: Programs/neural networks Examples: – GPT (ChatGPT, Bing Chat, …) – Gemini, Gemma (Google) – LLaMa (Meta AI) Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Large Language Models
  13. Token A meaningful unit of text (e.g., a word, a

    part of a word, a character). Context Window The maximum amount of tokens the model can process. Parameters/weights Internal variables learned during training, used to make predictions. Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Large Language Models
  14. Prompts serve as the universal interface Unstructured text conveying specific

    semantics Paradigm shift in software architecture Natural language becomes a first-class citizen Caveats Non-determinism and hallucination, prompt injections Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Large Language Models
  15. Size Comparison Model:Parameters Size phi3:3b 2.2 GB mistral:7b 4.1 GB

    llama3:8b 4.7 GB gemma2:9b 5.4 GB gemma2:27b 16 GB llama3:70b 40 GB Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Large Language Models
  16. (1/3) In app.component.ts, add the following lines: protected readonly progress

    = signal(0); protected readonly ready = signal(false); protected engine?: MLCEngine; Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Downloading a model LAB #2
  17. (2/3) In app.component.ts (ngOnInit()), add the following lines: const model

    = 'Llama-3.2-3B-Instruct-q4f32_1-MLC'; this.engine = await CreateMLCEngine(model, { initProgressCallback: ({ progress }) => this.progress.set(progress) }); this.ready.set(true); Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Downloading a model LAB #2
  18. (3/3) In app.component.html, add the following lines: <div><progress [value]="progress()"></progress></div> <input

    type="text" #prompt> <button (click)="runPrompt(prompt.value)" [disabled]="!ready()"> Ask </button> Launch the app via npm start. The progress bar should begin to move. Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Downloading a model LAB #2
  19. Storing model files locally Angular-Apps smarter machen mit Generative AI:

    lokal und offlinefähig Cache API Internet Website HTML/JS Cache with model files Hugging Face Note: Due to the Same-Origin Policy, models cannot be shared across origins.
  20. Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig WebAssembly

    (Wasm) – Bytecode for the web – Compile target for arbitrary languages – Can be faster than JavaScript – WebLLM uses a model-specific Wasm library to accelerate model computations
  21. Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig WebGPU

    – Grants low-level access to the Graphics Processing Unit (GPU) – Near native performance for machine learning applications – Supported by Chromium-based browsers on Windows and macOS from version 113
  22. – Grants web apps access to the device’s CPU, GPU

    and Neural Processing Unit (NPU) – In specification by the WebML Working Group at W3C – Implementation in progress in Chromium (behind a flag) – Even better performance compared to WebGPU Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig WebNN Source: https://webmachinelearning.github.io/webnn-intro/ DEMO
  23. Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig WebNN:

    near-native inference performance Source: Intel. Browser: Chrome Canary 118.0.5943.0, DUT: Dell/Linux/i7-1260P, single p-core, Workloads: MediaPipe solution models (FP32, batch=1)
  24. (1/3) In app.component.ts, add the following lines at the top

    of the class: protected readonly reply = signal(''); Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Model inference LAB #3
  25. (2/3) In the runPrompt() method, add the following code: await

    this.engine!.resetChat(); this.reply.set('…'); const messages: ChatCompletionMessageParam[] = [ { role: "user", content: userPrompt } ]; const reply = await this.engine!.chat.completions.create({ messages }); this.reply.set(reply.choices[0].message.content ?? ''); Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Model inference LAB #3
  26. (3/3) In app.component.html, add the following line: <pre>{{ reply() }}</pre>

    You should now be able to send prompts to the model and see the responses in the template. Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Model inference LAB #3
  27. 1. In angular.json, increase the bundle size for the Angular

    project (property architect.build.configurations.production.budgets[0] .maximumError) to at least 5MB. 2. Then, run npm run build again. This time, the build should succeed. 3. If you stopped the development server, don’t forget to bring it back up again (npm start). Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Build issues LAB #4
  28. (1/2) In app.component.ts, add the following signal at the top:

    protected readonly todos = signal<Todo[]>([]); Add the following line to the addTodo() method: this.todos.update(todos => [...todos, { done: false, text }]); Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Todo management LAB #5
  29. (2/2) In app.component.html, add the following lines to add todos

    from the UI: <input type="text" #input> <button (click)="addTodo(input.value)">Add</button> <ul> @for(todo of todos(); track $index) { <li>{{ todo.text }}</li> } </ul> Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Todo management LAB #5
  30. In app.component.ts, add the following lines to toggleTodo(): this.todos.update(todos =>

    todos.map((todo, todoIndex) => todoIndex === index ? { ...todo, done: !todo.done } : todo)); In app.component.html, add the following content to the <li> node: <input type="checkbox" [checked]="todo.done" (change)="toggleTodo($index)"> You should now be able to toggle the checkboxes. Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Todo management (extended) LAB #6
  31. Concept and limitations The todo data has to be converted

    into natural language. For the sake of simplicity, we will add all TODOs to the prompt. Remember: LLMs have a context window (Mistral-7B: 8K). If you need to chat with larger sets of text, refer to Retrieval Augmented Generation (RAG). These are the todos: * Wash clothes * Pet the dog * Take out the trash Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Chat with data
  32. System prompt Metaprompt that defines… – character – capabilities/limitations –

    output format – behavior – grounding data Hallucinations and prompt injections cannot be eliminated. You are a helpful assistant. Answer user questions on todos. Generate a valid JSON object. Avoid negative content. These are the user’s todos: … Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Chat with data
  33. Flow System message •The user has these todos: 1. …

    2. … 3. … User message •How many todos do I have? Assistant message •You have three todos. Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Chat with data
  34. Using a system & user prompt Adjust the implementation in

    runPrompt() to include the system prompt: const systemPrompt = `Here's the user's todo list: ${this.todos().map(todo => `* ${todo.text} (${todo.done ? 'done' : 'not done'})`).join('\n')}`; const messages: ChatCompletionMessageParam[] = [ { role: "system", content: systemPrompt }, { role: "user", content: userPrompt } ]; Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Chat with data LAB #7
  35. Techniques – Providing examples (single shot, few shot, …) –

    Priming outputs – Specify output structure – Repeating instructions – Chain of thought – … Success also depends on the model. Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Prompt Engineering https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/advanced-prompt-engineering
  36. const systemPrompt = `You are a helpful assistant. The user

    will ask questions about their todo list. Briefly answer the questions. Don't try to make up an answer if you don't know it. Here's the user's todo list: ${this.todos().map(todo => `* ${todo.text} (this todo is ${todo.done ? 'done' : 'not done'})`).join('\n')} ${this.todos().length === 0 ? 'The list is empty, there are no todos.' : ''}`; Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Prompt Engineering LAB #8
  37. Alternatives Prompt Engineering Retrieval Augmented Generation Fine-tuning Custom model Angular-Apps

    smarter machen mit Generative AI: lokal und offlinefähig Prompt Engineering Effort
  38. Add the following line to the runPrompt() method: console.log(reply.usage); Ask

    a new question and check your console for performance statistics. Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Performance LAB #9
  39. Comparison 22.98 33.96 19.08 38.75 564.63 0 100 200 300

    400 500 600 WebLLM (Mistral-7b, M1) WebLLM (Mistral-7b, M3) OpenAI (GPT-4) Azure OpenAI (GPT-4) Groq (Mixtral-8x7b) Tokens/sec Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Performance WebLLM/Groq: Own tests (23.03.2024), OpenAI/Azure OpenAI: https://mcplusa.com/comparing-performance-of-openai-gpt-4-and-microsoft-azure-gpt-4/ (31.08.2023)
  40. – Open-source text-to-image model – Generates 512x512px images from a

    prompt – WebSD: special version of Stable Diffusion for the web (2 GB in size) – No npm package this time Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Stable Diffusion Prompt: A guinea pig eating a watermelon
  41. Live Demo Retrofitting AI image generation into an existing drawing

    application (https://paint.js.org) Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Web Stable Diffusion DEMO
  42. Pros & Cons + Data does not leave the browser

    (privacy) + High availability (offline support) + Low latency + Stability (no external API changes) + Low cost – Lower quality – High system (RAM, GPU) and bandwidth requirements – Large model size, models cannot always be shared – Model initialization and inference are relatively slow – APIs are experimental Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Local AI Models
  43. Mitigations Download model in the background if the user is

    not on a metered connection Helpful APIs: – Network Information API to estimate the network quality/determine data saver (negative standards position by Apple and Mozilla) – Storage Manager API to estimate the available free disk space Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Local AI Models
  44. Mitigations Hybrid modes: – Allow the user to switch between

    cloud/local execution (availability, system requirements) – Deploy OSS model on internal/enterprise infrastructure (privacy) Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Local AI Models
  45. Alternatives: Prompt API Angular-Apps smarter machen mit Generative AI: lokal

    und offlinefähig Local AI Models Operating System Website HTML/JS Browser Internet Apple Intelligence Gemini Nano
  46. Alternatives: Prompt API – Exploratory API for local experiments and

    use case determination – Downloads Gemini Nano into Google Chrome – Model is shared across origins – Uses native APIs directly – Related APIs: Translation API, Writing Assistance APIs Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Local AI Models https://developer.chrome.com/docs/ai/built-in
  47. Alternatives: Ollama – Local runner for AI models – Offers

    a local server a website can connect to → allows sharing models across origins – Supported on macOS and Linux (Windows in Preview) https://webml-demo.vercel.app/ https://ollama.ai/ Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Local AI Models
  48. Alternatives: Hugging Face Transformers Pre-trained, specialized, significantly smaller models beyond

    GenAI Examples: – Text generation – Image classification – Translation – Speech recognition – Image-to-text Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Local AI Models
  49. Alternatives: Transformers.js – Pre-trained, specialized, significantly smaller models beyond GenAI

    – JavaScript library to run Hugging Face transformers in the browser – Supports most of the models https://xenova.github.io/transformers.js/ Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Local AI Models
  50. – Cloud-based models remain the most powerful models – Due

    to their size and high system requirements, local generative AI models are currently rather interesting for very special scenarios (e.g., high privacy demands, offline availability) – Small, specialized models are an interesting alternative (if available) – Large language models are becoming more compact and efficient – Vendors start shipping AI models with their devices – Devices are becoming more powerful for running AI tasks – Experiment with the AI APIs and make your Angular App smarter! Angular-Apps smarter machen mit Generative AI: lokal und offlinefähig Summary