Hyperon and charmed baryons masses from twisted mass Lattice QCD
We present results on the masses of the low-lying hyperons and charmed baryons using Nf=2+1+1 ensembles of twisted mass fermions. Included are preliminary results from a Nf=2 twisted mass clover-improved ensemble at the physical pion mass.
(Nf = 2 + 1 + 1 TMF, Nf = 2 TMF+plus Clover) Christos Kallidonis Computation-based Science and Technology Research Center The Cyprus Institute C. Alexandrou et al. arXiv:1406.4310 with C. Alexandrou, V. Drach, K, Hadjiyiannakou, K. Jansen, G. Koutsou Rheinische Friedrich-Wilhelms-Universit¨ at Bonn Bonn, Germany 1 April 2015 C. Kallidonis (CyI) Baryon Spectrum Bonn University 1 / 27
easy to calculate first quantities one calculates before proceeding with more complex observables large signal to noise ratio reliable way to study lattice effects significant for on-going experiments observation of doubly-charmed Ξ baryons (SELEX, hep-ex/0208014, hep-ex/0209075, hep-ex/0406033) - interest in charmed baryon spectroscopy (G. Bali et al. arXiv:1503.08440, M. Padmanath et al. arXiv:1502.01845) are the experimentally known masses reproduced? safe and reliable predictions for the rest C. Kallidonis (CyI) Baryon Spectrum Bonn University 3 / 27
+ 1 + 1 doublet of light quarks: ψ = u d R. Frezzotti et al. arXiv:hep-lat/0306014 Transformation of quark fields: ψ(x) = 1 √ 2 1 1 + iτ3γ5 χ(x) ψ(x) = χ(x) 1 √ 2 1 1 + iτ3γ5 mass term ψmψ → χiγ5τ3mχ S(l) F = a4 x χ(x) 1 2 γµ(∇µ + ∇∗ µ ) − ar 2 ∇µ∇∗ µ + m0,l + iγ5τ3µ χ(x) heavy quarks: χh = s c In the sea we use the action: R. Frezzotti et al. arXiv:hep-lat/0311008 S(h) F = a4 x χh (x) 1 2 γµ(∇µ + ∇∗ µ ) − ar 2 ∇µ∇∗ µ + m0,h + iµσγ5τ1 + τ3µδ χh(x) presence of τ1 introduces mixing of the strange and charm flavors valence sector: use Osterwalder-Seiler valence heavy quarks χ(s) = (s+, s−) , χ(c) = (c+, c−) re-tuning of the strange and charm quark masses required Wilson TM at maximal twist cut-off effects are automatically O(a) improved no operator improvement is needed (important for nucleon structure) C. Kallidonis (CyI) Baryon Spectrum Bonn University 4 / 27
plus clover S(l) F = a4 x χ(x) 1 2 γµ(∇µ + ∇∗ µ ) − ar 2 ∇µ∇∗ µ + m0,l + iγ5τ3µ + i 4 CSW σµνFµν(U) χ(x) Clover term stable simulations control O(a2) effects O(a) improvement remains! CSW = 1.57551 B. Sheikholeslami et al. Nucl.Phys. B259 (1985), S. Aoki et al. hep-lat/0508031 C. Kallidonis (CyI) Baryon Spectrum Bonn University 5 / 27
quantum numbers of the baryon in interest 4 quark flavors baryons (qqq) SU(3) subgroups of SU(4) Examples p (uud) J = abc uT a Cγ5db uc Σ0 (uds) J = 1 √ 2 abc uT a Cγ5sb dc + dT a Cγ5sb uc Ξ+ c (usc) J = abc uT a Cγ5sb cc Ξ 0 (uss) Jµ = abc sT a Cγµub sc Σ ++ c (uuc) Jµ = 1 √ 3 abc uT a Cγµub cc + 2 cT a Cγµub uc Ω 0 c (ssc) Jµ = abc sT a Cγµcb sc 20plet of spin-1/2 baryons 20 = 8 ⊕ 6 ⊕ 3 ⊕ 3 20plet of spin-3/2 baryons 20 = 10 ⊕ 6 ⊕ 3 ⊕ 1 C. Kallidonis (CyI) Baryon Spectrum Bonn University 9 / 27
2 + 1 + 1) use Ω− for strange quark and Λ+ c for charm quark fix renormalized strange and charm masses using non-perturbatively determined renormalization constants (N. Carrasco et al. arXiv:1403.4504) in the MS scheme at 2 GeV Strange quark mass tuning use a set of strange quark masses to interpolate the mass of Ω− to a given value of mR s and extrapolate to the continuum and physical pion mass using mΩ = m0 Ω − 4c(1) Ω m2 π + da2 match with physical mass of Ω− mΩ phys 1.6 1.65 1.7 1.75 1.8 85 90 95 100 105 110 115 mΩ- (GeV) ms R (MeV) ms R = 92.4(6) MeV 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 0 0.05 0.1 0.15 0.2 0.25 mΩ- (GeV) mπ 2 (GeV2) β=1.90, L/a=32 β=1.95, L/a=32 β=2.10, L/a=48 Continuum limit MS : mR s (2 GeV) = 92.4(6)(2.0) MeV C. Kallidonis (CyI) Baryon Spectrum Bonn University 11 / 27
2 plus clover) use Ω− for strange quark and Λ+ c for charm quark use a set of strange and charm quark masses and interpolate to the physical Ω− and Λ+ c mass mphys Ω 1.6 1.65 1.7 1.75 0.023 0.024 0.025 0.026 0.027 0.028 mΩ (GeV) aμs aμs phys = 0.0264(3) mphys Λc + 2.15 2.2 2.25 2.3 2.35 2.4 0.3 0.31 0.32 0.33 0.34 0.35 0.36 mΛc + (GeV) aμc aμc phys = 0.3346(15) interpolate all the rest hyperons and charmed baryons to the tuned values of aµs and aµc C. Kallidonis (CyI) Baryon Spectrum Bonn University 13 / 27
isospin symmetry explicitly to O(a2) it is expected to be zero in the continuum limit manifests itself as mass splitting between baryons belonging to the same isospin multiplets due to lattice artifacts u ←→ d is a symmetry, e.g. ∆++(uuu), ∆−(ddd) and ∆+(uud), ∆0(ddu) are degenerate C. Kallidonis (CyI) Baryon Spectrum Bonn University 18 / 27
0.04 0.08 0.12 0 0.002 0.004 0.006 0.008 0.01 Δm (GeV) a2 (fm2) Δ++,- - Δ+,0 isospin splitting effects are consistent with zero for all lattice spacings and pion masses C. Kallidonis (CyI) Baryon Spectrum Bonn University 19 / 27
1.3 1.4 1.5 1.6 1.7 1.8 N Λ Σ Ξ Δ Σ* Ξ* Ω M (GeV) ETMC Nf =2+1+1 ETMC Nf =2 with CSW BMW Nf =2+1 PACS-CS Nf =2+1 QCDSF-UKQCD Nf =2+1 S. Durr et al. arXiV:0906.3599, A. Aoki et al. arXiV:0807.1661, W. Bietenholz et al. arXiV:1102.5300, Particle Data Group C. Kallidonis (CyI) Baryon Spectrum Bonn University 23 / 27
3 3.2 3.4 3.6 3.8 Λc Σc Ξc Ξ' c Ωc Ξcc Ωcc M (GeV) ETMC Nf =2+1+1 ETMC Nf =2 with CSW PACS-CS Nf =2+1 Na et al. Nf =2+1 Briceno et al. Nf =2+1+1 Liu et al. Nf =2+1 G. Bali et al. Nf =2+1 R. A. Briceno et al. arXiV:1207.3536, H. Na et al. arXiV:0812.1235, H. Na et al. arXiV:0710.1422, L. Liu et al. arXiV:0909.3294, G. Bali et al. arXiv:1503.08440, Particle Data Group C. Kallidonis (CyI) Baryon Spectrum Bonn University 24 / 27
4.5 5 Σc * Ξc * Ωc * Ξcc * Ωcc * Ωccc M (GeV) ETMC Nf =2+1+1 ETMC Nf =2 with CSW PACS-CS Nf =2+1 Na et al. Nf =2+1 Briceno et al. Nf =2+1+1 G. Bali et al. Nf =2+1 R. A. Briceno et al. arXiV:1207.3536, H. Na et al. arXiV:0812.1235, H. Na et al. arXiV:0710.1422, G. Bali et al. arXiv:1503.08440, Particle Data Group C. Kallidonis (CyI) Baryon Spectrum Bonn University 25 / 27
the Nf = 2 plus clover ensemble proceed with calculation of other observables (gA,...) new implementation in twisted mass CG inverter to accelerate inversions using deflation leads to large speed-up! (might become even larger...) - Arnoldi algorithm and ARPACK package more gauge ensembles from ETMC at the physical pion mass / with Nf = 2 plus clover action (?) C. Kallidonis (CyI) Baryon Spectrum Bonn University 26 / 27
+ 1 flavors provides a good framework to study baryon spectrum promising results from Nf = 2 plus clover ensemble at the physical pion mass physical nucleon mass appropriate to fix lattice spacing when studying baryon masses isospin symmetry breaking effects are small and vanish as the continuum limit is approached cut-off effects are small and under control good agreement with other lattice calculations and with experiment - reliable predictions of the Ξ∗ cc , Ωcc, Ω∗ cc and Ωccc masses Thank you The Project Cy-Tera (NEA YΠO∆OMH/ΣTPATH/0308/31) is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation C. Kallidonis (CyI) Baryon Spectrum Bonn University 27 / 27
80 90 100 σπN (MeV) ETMC Nf = 2 + 1 + 1 (this work) C. Alexandrou et al. (ETMC) arXiv:0910.2419 G. Bali et al. (QCDSF) arXiv:1111.1600 L. Alvarez-Ruso et al. arXiv:1304.0483 X.-L. Ren et al. arXiv:1404.4799 M.F.M. Lutz et al. arXiv:1401.7805 S. Durr et al. (BMW) arXiv:1109.4265 R. Horsley et al. (QCDSF-UKQCD) arXiv:1110.4971 C. Kallidonis (CyI) Baryon Spectrum Bonn University 2 / 3