Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Hyperon and charmed baryons masses from twisted...

Hyperon and charmed baryons masses from twisted mass Lattice QCD

We present results on the masses of the low-lying hyperons and charmed baryons using Nf=2+1+1 ensembles of twisted mass fermions. Included are preliminary results from a Nf=2 twisted mass clover-improved ensemble at the physical pion mass.

Christos Kallidonis

April 01, 2015
Tweet

More Decks by Christos Kallidonis

Other Decks in Science

Transcript

  1. Hyperon and charmed baryon masses from twisted mass Lattice QCD

    (Nf = 2 + 1 + 1 TMF, Nf = 2 TMF+plus Clover) Christos Kallidonis Computation-based Science and Technology Research Center The Cyprus Institute C. Alexandrou et al. arXiv:1406.4310 with C. Alexandrou, V. Drach, K, Hadjiyiannakou, K. Jansen, G. Koutsou Rheinische Friedrich-Wilhelms-Universit¨ at Bonn Bonn, Germany 1 April 2015 C. Kallidonis (CyI) Baryon Spectrum Bonn University 1 / 27
  2. Outline 1 Introduction - Motivation 2 Lattice evaluation Wilson twisted

    mass action Simulation details Scale setting Interpolating fields - Effective mass 3 Tuning of the strange and charm quark mass 4 Results Chiral and continuum extrapolation for Nf = 2 + 1 + 1 Isospin symmetry breaking 5 Comparison 6 Conclusions C. Kallidonis (CyI) Baryon Spectrum Bonn University 2 / 27
  3. Introduction - Motivation Why we want to calculate baryon masses?

    easy to calculate first quantities one calculates before proceeding with more complex observables large signal to noise ratio reliable way to study lattice effects significant for on-going experiments observation of doubly-charmed Ξ baryons (SELEX, hep-ex/0208014, hep-ex/0209075, hep-ex/0406033) - interest in charmed baryon spectroscopy (G. Bali et al. arXiv:1503.08440, M. Padmanath et al. arXiv:1502.01845) are the experimentally known masses reproduced? safe and reliable predictions for the rest C. Kallidonis (CyI) Baryon Spectrum Bonn University 3 / 27
  4. Lattice evaluation Wilson twisted mass action for Nf = 2

    + 1 + 1 doublet of light quarks: ψ = u d R. Frezzotti et al. arXiv:hep-lat/0306014 Transformation of quark fields: ψ(x) = 1 √ 2 1 1 + iτ3γ5 χ(x) ψ(x) = χ(x) 1 √ 2 1 1 + iτ3γ5      mass term ψmψ → χiγ5τ3mχ S(l) F = a4 x χ(x) 1 2 γµ(∇µ + ∇∗ µ ) − ar 2 ∇µ∇∗ µ + m0,l + iγ5τ3µ χ(x) heavy quarks: χh = s c In the sea we use the action: R. Frezzotti et al. arXiv:hep-lat/0311008 S(h) F = a4 x χh (x) 1 2 γµ(∇µ + ∇∗ µ ) − ar 2 ∇µ∇∗ µ + m0,h + iµσγ5τ1 + τ3µδ χh(x) presence of τ1 introduces mixing of the strange and charm flavors valence sector: use Osterwalder-Seiler valence heavy quarks χ(s) = (s+, s−) , χ(c) = (c+, c−) re-tuning of the strange and charm quark masses required Wilson TM at maximal twist cut-off effects are automatically O(a) improved no operator improvement is needed (important for nucleon structure) C. Kallidonis (CyI) Baryon Spectrum Bonn University 4 / 27
  5. Lattice evaluation Wilson twisted mass action for Nf = 2

    plus clover S(l) F = a4 x χ(x) 1 2 γµ(∇µ + ∇∗ µ ) − ar 2 ∇µ∇∗ µ + m0,l + iγ5τ3µ + i 4 CSW σµνFµν(U) χ(x) Clover term stable simulations control O(a2) effects O(a) improvement remains! CSW = 1.57551 B. Sheikholeslami et al. Nucl.Phys. B259 (1985), S. Aoki et al. hep-lat/0508031 C. Kallidonis (CyI) Baryon Spectrum Bonn University 5 / 27
  6. Lattice evaluation Simulation details Total of 10 Nf = 2

    + 1 + 1 gauge ensembles produced by ETMC Nf = 2 plus clover ensemble at the physical pion mass R. Baron et al. (ETMC) arXiV:1004.5284, A. Abdel-Rehim et al. arXiv:1311.4522 β = 1.90, a = 0.0936(13) fm 323 × 64, L = 3.0 fm aµ 0.0030 0.0040 0.0050 No. of Confs 200 200 200 mπ (GeV) 0.2607 0.2975 0.3323 mπL 3.97 4.53 5.05 β = 1.95, a = 0.0823(10) fm 323 × 64, L = 2.6 fm aµ 0.0025 0.0035 0.0055 0.0075 No. of Confs 200 200 200 200 mπ (GeV) 0.2558 0.3018 0.3716 0.4316 mπL 3.42 4.03 4.97 5.77 β = 2.10, a = 0.0646(7) fm 483 × 96, L = 3.1 fm aµ 0.0015 0.002 0.003 No. of Confs 196 184 200 mπ (GeV) 0.2128 0.2455 0.2984 mπL 3.35 3.86 4.69 β = 2.10, a = 0.0941(12) fm 483 × 96, L = 4.5 fm aµ 0.0009 No. of Confs 524 mπ (GeV) 0.1303 mπL 2.99 two lattice volumes pion masses from 210-430 MeV → chiral extrapolations three values of the lattice spacing → investigation of finite lattice effects C. Kallidonis (CyI) Baryon Spectrum Bonn University 6 / 27
  7. Lattice evaluation Scale setting for baryon masses → physical nucleon

    mass dedicated high statistics analysis on 17 Nf = 2 + 1 + 1 ensembles use HBχPT leading one-loop order result mN = m(0) N − 4c1m2 π − 3g2 A 16πf2 π m3 π fit simultaneously for Nf = 2 + 1 + 1 and Nf = 2 plus clover for all β values systematic error due to the chiral extrapolation → use O(p4) HBχPT with explicit ∆-degrees of freedom 0.8 0.9 1 1.1 1.2 1.3 1.4 0 0.05 0.1 0.15 0.2 0.25 mN (GeV) mπ 2 (GeV2) β=1.90, L/a=32, L=3.0fm β=1.90, L/a=24, L=2.2fm β=1.90, L/a=20, L=1.9fm β=1.95, L/a=32, L=2.6fm β=1.95, L/a=24, L=2.0fm β=2.10, L/a=48, L=3.1fm β=2.10, L/a=32, L=2.1fm β=2.10, CSW=1.57551, L/a=48, L=4.5fm β a (fm) 1.90 0.0936(13)(35) 1.95 0.0823(10)(35) 2.10 0.0646(7)(25) 2.10 0.0941(12)(2) fitting for each β separately yields consistent values - negligible cut-off effects for the nucleon case light σ-term for nucleon σπN = 64.9(1.5)(13.2) MeV C. Kallidonis (CyI) Baryon Spectrum Bonn University 7 / 27
  8. Lattice evaluation Effective mass Effective masses are obtained from two-point

    correlation functions C± B (t, p = 0) = xsink 1 4 Tr (1 ± γ0) JB (xsink) ¯ JB (xsource) , t = tsink − tsource Gaussian smearing at source and sink, APE smearing at spatial links source position chosen randomly amB eff (t) = log CB(t) CB(t + 1) 0 0.4 0.8 1.2 1.6 2 4 6 8 10 12 14 16 18 ameff t/a Σc *++ Λc + Ω Ξ0 N C. Kallidonis (CyI) Baryon Spectrum Bonn University 8 / 27
  9. Lattice evaluation Interpolating fields constructed such that they have the

    quantum numbers of the baryon in interest 4 quark flavors baryons (qqq)    SU(3) subgroups of SU(4) Examples p (uud) J = abc uT a Cγ5db uc Σ0 (uds) J = 1 √ 2 abc uT a Cγ5sb dc + dT a Cγ5sb uc Ξ+ c (usc) J = abc uT a Cγ5sb cc Ξ 0 (uss) Jµ = abc sT a Cγµub sc Σ ++ c (uuc) Jµ = 1 √ 3 abc uT a Cγµub cc + 2 cT a Cγµub uc Ω 0 c (ssc) Jµ = abc sT a Cγµcb sc 20plet of spin-1/2 baryons 20 = 8 ⊕ 6 ⊕ 3 ⊕ 3 20plet of spin-3/2 baryons 20 = 10 ⊕ 6 ⊕ 3 ⊕ 1 C. Kallidonis (CyI) Baryon Spectrum Bonn University 9 / 27
  10. Lattice evaluation Interpolating fields incorporation of spin-3/2 and spin-1/2 projectors

    Pµν 3/2 = δµν − 1 3 γµγν , J µ B3/2 = Pµν 3/2 JνB Pµν 1/2 = δµν − Pµν 3/2 , J µ B1/2 = Pµν 1/2 JνB 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0 4 8 12 16 20 ame↵ ⌃⇤++ c t/a 3/2 projection 1/2 projection No projection 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 4 8 12 16 20 ame↵ ⌃⇤+ t/a 3/2 projection 1/2 projection No projection 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 2 4 6 8 10 12 14 16 ame↵ t/a J ⌅⇤0 3/2 projection J ⌅⇤0 1/2 projection J ⌅⇤0 No projection J ⌅0 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 2 4 6 8 10 12 14 16 ame↵ t/a J ⌅⇤ 3/2 projection J ⌅⇤ 1/2 projection J ⌅⇤ No projection J ⌅ C. Kallidonis (CyI) Baryon Spectrum Bonn University 10 / 27
  11. Tuning of the strange and charm quark mass (Nf =

    2 + 1 + 1) use Ω− for strange quark and Λ+ c for charm quark fix renormalized strange and charm masses using non-perturbatively determined renormalization constants (N. Carrasco et al. arXiv:1403.4504) in the MS scheme at 2 GeV Strange quark mass tuning use a set of strange quark masses to interpolate the mass of Ω− to a given value of mR s and extrapolate to the continuum and physical pion mass using mΩ = m0 Ω − 4c(1) Ω m2 π + da2 match with physical mass of Ω− mΩ phys 1.6 1.65 1.7 1.75 1.8 85 90 95 100 105 110 115 mΩ- (GeV) ms R (MeV) ms R = 92.4(6) MeV 1.5 1.55 1.6 1.65 1.7 1.75 1.8 1.85 0 0.05 0.1 0.15 0.2 0.25 mΩ- (GeV) mπ 2 (GeV2) β=1.90, L/a=32 β=1.95, L/a=32 β=2.10, L/a=48 Continuum limit MS : mR s (2 GeV) = 92.4(6)(2.0) MeV C. Kallidonis (CyI) Baryon Spectrum Bonn University 11 / 27
  12. Tuning of the strange and charm quark mass (Nf =

    2 + 1 + 1) Charm quark mass tuning follow the same procedure using Λ+ c and fit using mΛc = m0 Λc + c1m2 π + c2m3 π + da2 mΛc phys 2.26 2.28 2.3 2.32 1150 1160 1170 1180 1190 1200 mΛc + (GeV) mc R (MeV) mc R = 1173.0(2.4) MeV 2.2 2.25 2.3 2.35 2.4 2.45 2.5 2.55 2.6 0 0.05 0.1 0.15 0.2 0.25 mΛc + (GeV) mπ 2 (GeV2) β=1.90, L/a=32 β=1.95, L/a=32 β=2.10, L/a=48 Continuum limit MS : mR c (2 GeV) = 1173.0(2.4)(17.0) MeV C. Kallidonis (CyI) Baryon Spectrum Bonn University 12 / 27
  13. Tuning of the strange and charm quark mass (Nf =

    2 plus clover) use Ω− for strange quark and Λ+ c for charm quark use a set of strange and charm quark masses and interpolate to the physical Ω− and Λ+ c mass mphys Ω 1.6 1.65 1.7 1.75 0.023 0.024 0.025 0.026 0.027 0.028 mΩ (GeV) aμs aμs phys = 0.0264(3) mphys Λc + 2.15 2.2 2.25 2.3 2.35 2.4 0.3 0.31 0.32 0.33 0.34 0.35 0.36 mΛc + (GeV) aμc aμc phys = 0.3346(15) interpolate all the rest hyperons and charmed baryons to the tuned values of aµs and aµc C. Kallidonis (CyI) Baryon Spectrum Bonn University 13 / 27
  14. Tuning of the strange and charm quark mass (Nf =

    2 plus clover) Interpolation Hyperons - Charmed baryons mass Mint μ1 μ2 μt μ3 μ Charmed baryons with strange quarks mass μc = μc,1 Ms,1 μs,1 μs,2 μs,t μs,3 μs mass μc = μc,2 Ms,2 μs,1 μs,2 μs,t μs,3 μs ... mass Mint μc,1 μc,2 μc,t μc,3 μc C. Kallidonis (CyI) Baryon Spectrum Bonn University 14 / 27
  15. Results I: Chiral and continuum extrapolation for Nf = 2

    + 1 + 1 fit in the whole pion mass range 210-430 MeV include all β’s allow for cut-off effects by including a term ∝ a2 Hyperons use leading one-loop order continuum HBχPT systematic error due to the chiral extrapolation → use O(p4) HBχPT 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 0 0.05 0.1 0.15 0.2 0.25 mΣ0 (GeV) mπ 2 (GeV2) NLO HBχPT LO HBχPT β=2.10, L/a=48 β=1.95, L/a=32 β=1.90, L/a=32 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75 1.8 0 0.05 0.1 0.15 0.2 0.25 mΞ* (GeV) mπ 2 (GeV2) NLO HBχPT LO HBχPT β=2.10, L/a=48 β=1.95, L/a=32 β=1.90, L/a=32 C. Kallidonis (CyI) Baryon Spectrum Bonn University 15 / 27
  16. Results I: Chiral and continuum extrapolation for Nf = 2

    + 1 + 1 Charmed baryons use Ansatz mB = m(0) B + c1m2 π + c2m3 π + da2 systematic error due to the chiral extrapolation → set c2 = 0 and restrict mπ < 300 MeV 2.35 2.4 2.45 2.5 2.55 2.6 0 0.05 0.1 0.15 0.2 0.25 mΞc 0 (GeV) mπ 2 (GeV2) mπ < 0.300GeV mπ < 0.432GeV β=2.10, L/a=48 β=1.95, L/a=32 β=1.90, L/a=32 2.4 2.45 2.5 2.55 2.6 2.65 2.7 2.75 0 0.05 0.1 0.15 0.2 0.25 mΣc * (GeV) mπ 2 (GeV2) mπ < 0.300GeV mπ < 0.432GeV β=2.10, L/a=48 β=1.95, L/a=32 β=1.90, L/a=32 systematic error due to the tuning for all baryons finite-a corrections ∼ 1% − 9% - cut-off effects are small reproduction of experimentally known baryon masses → Predictions C. Kallidonis (CyI) Baryon Spectrum Bonn University 16 / 27
  17. Results I: Chiral and continuum extrapolation for Nf = 2

    + 1 + 1 Cut-off effects Baryon d (GeV3) % correction β = 1.90 β = 1.95 β = 2.10 Ξcc 1.08(7) 6.3 5.0 3.1 Ξ∗ cc 1.01(10) 5.9 4.6 2.9 Ωcc 1.20(5) 6.9 5.4 3.4 Ω∗ cc 1.10(7) 6.2 4.9 3.0 Ωccc 1.15(5) 5.1 4.1 2.6 1.6 1.65 1.7 1.75 1.8 1.85 1.9 0 0.05 0.1 0.15 0.2 0.25 mΩ (GeV) a2 (1/GeV2) mΩ = 1.672(7) + 0.466(4) a2 4.7 4.8 4.9 5 5.1 0 0.05 0.1 0.15 0.2 0.25 mΩccc (GeV) a2 (1/GeV2) mΩccc = 4.734(9) + 1.154(10) a2 C. Kallidonis (CyI) Baryon Spectrum Bonn University 17 / 27
  18. Results II: Isospin symmetry breaking Wilson twisted mass action breaks

    isospin symmetry explicitly to O(a2) it is expected to be zero in the continuum limit manifests itself as mass splitting between baryons belonging to the same isospin multiplets due to lattice artifacts u ←→ d is a symmetry, e.g. ∆++(uuu), ∆−(ddd) and ∆+(uud), ∆0(ddu) are degenerate C. Kallidonis (CyI) Baryon Spectrum Bonn University 18 / 27
  19. Results II: Isospin symmetry breaking ∆ baryons -0.08 -0.04 0

    0.04 0.08 0.12 0 0.002 0.004 0.006 0.008 0.01 Δm (GeV) a2 (fm2) Δ++,- - Δ+,0 isospin splitting effects are consistent with zero for all lattice spacings and pion masses C. Kallidonis (CyI) Baryon Spectrum Bonn University 19 / 27
  20. Results II: Isospin symmetry breaking Hyperons -0.08 -0.04 0 0.04

    0.08 0.12 0 0.002 0.004 0.006 0.008 0.01 Δm (GeV) a2 (fm2) Ξ0 - Ξ- -0.08 -0.04 0 0.04 0.08 0.12 0 0.002 0.004 0.006 0.008 0.01 Δm (GeV) a2 (fm2) Ξ*0 - Ξ*- small mass splittings for the spin-1/2 hyperons - decreased as a −→ 0 splitting is smaller for the Nf = 2 plus clover ensemble isospin splitting consistent with zero for spin-3/2 hyperons C. Kallidonis (CyI) Baryon Spectrum Bonn University 20 / 27
  21. Results II: Isospin symmetry breaking Charmed baryons -0.08 -0.04 0

    0.04 0.08 0.12 0 0.002 0.004 0.006 0.008 0.01 Δm (GeV) a2 (fm2) Ξcc ++ - Ξcc + -0.08 -0.04 0 0.04 0.08 0.12 0 0.002 0.004 0.006 0.008 0.01 Δm (GeV) a2 (fm2) Ξcc *++ - Ξcc *+ very small effects for spin-1/2 charmed baryons no isospin symmetry breaking for spin-3/2 charmed baryons C. Kallidonis (CyI) Baryon Spectrum Bonn University 21 / 27
  22. Comparison Lattice results from other schemes 0.6 0.8 1 1.2

    1.4 1.6 0 0.05 0.1 0.15 0.2 0.25 mN (GeV) mπ 2 (GeV2) ETMC Nf =2+1+1 ETMC Nf =2 with CSW BMW LHPC QCDSF-UKQCD MILC PACS-CS 0.9 1 1.1 1.2 1.3 1.4 1.5 0 0.05 0.1 0.15 0.2 0.25 mΛ (GeV) mπ 2 (GeV2) ETMC ETMC Nf =2 with CSW BMW PACS-CS LHPC BMW: Nf = 2 + 1 clover fermions S. Durr et al. arXiV:0906.3599 PACS-CS: Nf = 2 + 1 O(a) improved clover fermions A. Aoki et al. arXiV:0807.1661 LHPC: domain wall valence quarks on a staggered fermions sea (hybrid) A. Walker-Loud et al. arXiV:0806.4549 MILC: Nf = 2 + 1 + 1 Kogut-Susskind fermion action C.W. Bernard et al. hep/lat 0104002 QCDSF-UKQCD: Nf = 2 Wilson fermions G. Bali et al. arXiV:1206.7034 C. Kallidonis (CyI) Baryon Spectrum Bonn University 22 / 27
  23. Comparison Experiment Octet - Decuplet spectrum 0.9 1 1.1 1.2

    1.3 1.4 1.5 1.6 1.7 1.8 N Λ Σ Ξ Δ Σ* Ξ* Ω M (GeV) ETMC Nf =2+1+1 ETMC Nf =2 with CSW BMW Nf =2+1 PACS-CS Nf =2+1 QCDSF-UKQCD Nf =2+1 S. Durr et al. arXiV:0906.3599, A. Aoki et al. arXiV:0807.1661, W. Bietenholz et al. arXiV:1102.5300, Particle Data Group C. Kallidonis (CyI) Baryon Spectrum Bonn University 23 / 27
  24. Comparison Experiment Charm baryons, spin-1/2 spectrum 2.2 2.4 2.6 2.8

    3 3.2 3.4 3.6 3.8 Λc Σc Ξc Ξ' c Ωc Ξcc Ωcc M (GeV) ETMC Nf =2+1+1 ETMC Nf =2 with CSW PACS-CS Nf =2+1 Na et al. Nf =2+1 Briceno et al. Nf =2+1+1 Liu et al. Nf =2+1 G. Bali et al. Nf =2+1 R. A. Briceno et al. arXiV:1207.3536, H. Na et al. arXiV:0812.1235, H. Na et al. arXiV:0710.1422, L. Liu et al. arXiV:0909.3294, G. Bali et al. arXiv:1503.08440, Particle Data Group C. Kallidonis (CyI) Baryon Spectrum Bonn University 24 / 27
  25. Comparison Experiment Charm baryons, spin-3/2 spectrum 2.5 3 3.5 4

    4.5 5 Σc * Ξc * Ωc * Ξcc * Ωcc * Ωccc M (GeV) ETMC Nf =2+1+1 ETMC Nf =2 with CSW PACS-CS Nf =2+1 Na et al. Nf =2+1 Briceno et al. Nf =2+1+1 G. Bali et al. Nf =2+1 R. A. Briceno et al. arXiV:1207.3536, H. Na et al. arXiV:0812.1235, H. Na et al. arXiV:0710.1422, G. Bali et al. arXiv:1503.08440, Particle Data Group C. Kallidonis (CyI) Baryon Spectrum Bonn University 25 / 27
  26. Ongoing - Future work finalize work on baryon spectrum for

    the Nf = 2 plus clover ensemble proceed with calculation of other observables (gA,...) new implementation in twisted mass CG inverter to accelerate inversions using deflation leads to large speed-up! (might become even larger...) - Arnoldi algorithm and ARPACK package more gauge ensembles from ETMC at the physical pion mass / with Nf = 2 plus clover action (?) C. Kallidonis (CyI) Baryon Spectrum Bonn University 26 / 27
  27. Conclusions twisted mass formulation with Nf = 2 + 1

    + 1 flavors provides a good framework to study baryon spectrum promising results from Nf = 2 plus clover ensemble at the physical pion mass physical nucleon mass appropriate to fix lattice spacing when studying baryon masses isospin symmetry breaking effects are small and vanish as the continuum limit is approached cut-off effects are small and under control good agreement with other lattice calculations and with experiment - reliable predictions of the Ξ∗ cc , Ωcc, Ω∗ cc and Ωccc masses Thank you The Project Cy-Tera (NEA YΠO∆OMH/ΣTPATH/0308/31) is co-financed by the European Regional Development Fund and the Republic of Cyprus through the Research Promotion Foundation C. Kallidonis (CyI) Baryon Spectrum Bonn University 27 / 27
  28. Lattice evaluation Effective mass mB eff (t) = log CB(t)

    CB(t + 1) = mB + log 1 + ∞ i=1 cie−∆it 1 + ∞ i=1 cie−∆i(t+1) −→ t→∞ mB , ∆i = mi − mB mB eff (t) ≈ me B + log 1 + c1e−∆1t 1 + c1e−∆1(t+1) criterion for plateau selection mc B − me B 1 2 (mc B + me B ) ≤ 1 2 σmc B 0.3 0.4 0.5 0.6 0.7 0 4 8 12 16 20 ameff t/a Ξ0 Exponential fit Constant fit C. Kallidonis (CyI) Baryon Spectrum Bonn University 1 / 3
  29. Backup slides Nucleon σ-term 20 30 40 50 60 70

    80 90 100 σπN (MeV) ETMC Nf = 2 + 1 + 1 (this work) C. Alexandrou et al. (ETMC) arXiv:0910.2419 G. Bali et al. (QCDSF) arXiv:1111.1600 L. Alvarez-Ruso et al. arXiv:1304.0483 X.-L. Ren et al. arXiv:1404.4799 M.F.M. Lutz et al. arXiv:1401.7805 S. Durr et al. (BMW) arXiv:1109.4265 R. Horsley et al. (QCDSF-UKQCD) arXiv:1110.4971 C. Kallidonis (CyI) Baryon Spectrum Bonn University 2 / 3
  30. Backup slides Hyperon σ-terms 20 40 60 80 Λ 20

    40 60 80 σπB (MeV) Σ 0 10 20 30 Ξ ETMC Nf = 2 + 1 + 1 (this work) C. Alexandrou et al. (ETMC) [1] X.-L. Ren et al. [2] M.F.M. Lutz et al. [3] S. Durr et al. (BMW) [4] R. Horsley et al. (QCDSF-UKQCD) [5] [1] C. Alexandrou et al. (ETMC) arXiv:0910.2419 [2] X.-L. Ren et al. arXiv:1404.4799 [3] M.F.M. Lutz et al. arXiv:1401.7805 [4] S. Durr et al. (BMW) arXiv:1109.4265 [5] R. Horsley et al. (QCDSF-UKQCD) arXiv:1110.4971 C. Kallidonis (CyI) Baryon Spectrum Bonn University 3 / 3