Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Postgres What they really use
Search
Craig Kerstiens
November 01, 2013
Technology
6
860
Postgres What they really use
Some insight into what features and functionality people actually use within their database.
Craig Kerstiens
November 01, 2013
Tweet
Share
More Decks by Craig Kerstiens
See All by Craig Kerstiens
Product planning w/ gridding - Effort vs. Impact rule of thirds
craigkerstiens
0
290
Five sharding data models and which is right? PGDay Nordic
craigkerstiens
0
190
Postgres at any scale
craigkerstiens
1
810
Five data models for sharding and which is right
craigkerstiens
0
130
Postgres Performance for Humans - All things Open
craigkerstiens
1
290
Postgres Performance for Humans - PyCaribbean
craigkerstiens
1
140
Postgres present and future
craigkerstiens
1
340
Marketing for Developers
craigkerstiens
0
230
Postgres – A Data Platform
craigkerstiens
2
450
Other Decks in Technology
See All in Technology
AWSLambdaMCPServerを使ってツールとMCPサーバを分離する
tkikuchi
1
3k
ソフトウェア開発現代史: "LeanとDevOpsの科学"の「科学」とは何か? - DORA Report 10年の変遷を追って - #DevOpsDaysTokyo
takabow
0
370
似たような課題が何度も蘇ってくるゾンビふりかえりを撲滅するため、ふりかえりのテーマをフォーカスしてもらった話 / focusing on the theme
naitosatoshi
0
460
4/17/25 - CIJUG - Java Meets AI: Build LLM-Powered Apps with LangChain4j (part 2)
edeandrea
PRO
0
100
ここはMCPの夜明けまえ
nwiizo
4
2.9k
Recap of Next - Google Cloud で実践する クラウドネイティブ最前線 / The Frontlines of Cloud-Native with Insights from Google Cloud
aoto
PRO
1
100
Стильный код: натуральный поиск редких атрибутов по картинке. Юлия Антохина, Data Scientist, Lamoda Tech
lamodatech
0
700
CloudWatch 大好きなSAが語る CloudWatch キホンのキ
o11yfes2023
0
170
LangfuseでAIエージェントの 可観測性を高めよう!/Enhancing AI Agent Observability with Langfuse!
jnymyk
1
220
Road to Go Gem #rubykaigi
sue445
0
430
Webアプリを Lambdaで動かすまでに考えること / How to implement monolithic Lambda Web Application
_kensh
7
1.3k
フロントエンドも盛り上げたい!フロントエンドCBとAmplifyの軌跡
mkdev10
2
270
Featured
See All Featured
For a Future-Friendly Web
brad_frost
176
9.7k
A designer walks into a library…
pauljervisheath
205
24k
Adopting Sorbet at Scale
ufuk
76
9.3k
Fireside Chat
paigeccino
37
3.4k
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
45
9.5k
Unsuck your backbone
ammeep
670
57k
Speed Design
sergeychernyshev
29
900
Building Applications with DynamoDB
mza
94
6.3k
Raft: Consensus for Rubyists
vanstee
137
6.9k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
32
5.4k
Responsive Adventures: Dirty Tricks From The Dark Corners of Front-End
smashingmag
251
21k
It's Worth the Effort
3n
184
28k
Transcript
@craigkerstiens Postgres What they really use
Interrupt me Ask questions craig@heroku.com
None
@craigkerstiens Postgres What they really use
Shameless plugs http://www.postgresweekly.com http://www.craigkerstiens.com http://www.postgresguide.com http://www.postgresapp.com http://postgres.heroku.com
Postgres - TLDR
Postgres - TLDR Datatypes Conditional Indexes Transactional DDL Foreign Data
Wrappers Concurrent Index Creation Extensions Common Table Expressions Fast Column Addition Listen/Notify Table Inheritance Per Transaction sync replication Window functions NoSQL inside SQL Momentum
What they really use ?
Why listen to what I say?
Largest fleet of Postgres in the world
Over 1 billion write transactions a day
What they really use ?
Production
43% on 9.1 2% on 9.0 54% on 9.2 Versions
Extensions
hstore pg_stat_statements postgis uuid-ossp pg_trgm unaccent fuzzystrmatch dblink cube pgcrypto
earthdistance tablefunc citext
extension adoption hstore 11.5% pg_stat_statements 3.5% postgis 3% uuid-ossp 3%
pg_trgm 3% unaccent 1.5% fuzzystrmatch 1.5% dblink 1.5% cube 1% pg_crypto 1% earthdistance 1% tablefunc 0.75% citext 0.5%
17% at least 1 of those 22% have 2 8%
have 3 2.5% have 4 .7% have 5 .2% have 11
PLV8 CREATE FUNCTION js_filter(js_function text, json_arguments text, data json) RETURNS
numeric as $$ var func = eval(js_function); var args = eval(json_arguments); var final_args = [data].concat(args); var result = func.apply(null, final_args); return 0 < result ? 1 : 0; $$ LANGUAGE plv8 IMMUTABLE STRICT;
PLV8 SELECT json_obj FROM some_table_with_json_obj_column WHERE js_filter( 'function (json, age)
{return json.age < age; }', '21', data.json_obj ) = 1; https://github.com/webnuts/full-throttle-postgres
Indexes
99.9% have an index 28% have gin 13% have gist
92% have unique 8% have conditional
Waste?
Unused Indexes
23% over 1000 rows 13% over 10000 rows 5% over
100000 rows 1.5% over 1 million rows 2% over 100 million rows
Bloat
0.1% over 100 GB 1.5% over 10 GB 8.7% over
1 GB 22.9% over 100 MB
2.3% over 100 MB and 5x bloat factor
Pg Extras https://github.com/heroku/heroku-pg-extras/
command usage index_usage 25.5% locks 19.0% cache_hit 18.0% blocking 7.5%
index_size 7.5% outliers 5.5% vacuum_stats 4.0% bloat 4.0% total_index_size 3.0% unused_indexes 2.0%
Problems new users face?
1. What do I need to pay attention to? 2.
How do I setup replication? 3. What editors are available? 4. How do I understand performance? 5. How can I use the cool stuff in my app? Top 5
Questions