Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Bayesian Optimal Pricing

Bayesian Optimal Pricing

Pricing is a common problem faced by businesses, and one that can be addressed effectively by Bayesian statistical methods. We'll step through a simple example and build the background necessary to extend get involved with this approach.

Avatar for Chad Scherrer

Chad Scherrer

June 05, 2018
Tweet

Other Decks in Business

Transcript

  1. Optimal Pricing • Given historical sales data… • Model demand

    across prices • Use this to set future prices
  2. Disclaimer • Real life: • Lots of products • Competitors

    • Income fluctuations • Consumer psychology • This is a toy example on fake data • I am not an economist!!
  3. Model Setup • An economist may write • Statistically, it’s

    more like this: • Or, in the usual GLM form: Q = aPc <latexit sha1_base64="OZogS+coDW04A+FlKHrgGwk2c9g=">AAAB7nicbVDLSgNBEOyNrxhfUY96GAyCp7DrRS9C0IvHBMwDkjXMTmaTIbOzy0yvEJZ8hBcPinj1E/wOb978FCePgyYWNBRV3XR3BYkUBl33y8mtrK6tb+Q3C1vbO7t7xf2DholTzXidxTLWrYAaLoXidRQoeSvRnEaB5M1geDPxmw9cGxGrOxwl3I9oX4lQMIpWatauKKnes26x5JbdKcgy8eakVDn+qH0DQLVb/Oz0YpZGXCGT1Ji25yboZ1SjYJKPC53U8ISyIe3ztqWKRtz42fTcMTm1So+EsbalkEzV3xMZjYwZRYHtjCgOzKI3Ef/z2imGl34mVJIiV2y2KEwlwZhMfic9oTlDObKEMi3srYQNqKYMbUIFG4K3+PIyaZyXPbfs1Wwa1zBDHo7gBM7AgwuowC1UoQ4MhvAIz/DiJM6T8+q8zVpzznzmEP7Aef8BWz6RIQ==</latexit> <latexit sha1_base64="QCNlW5sLbtIzuM79kYzg2DKM71c=">AAAB7nicbVDLSgNBEOz1GeMr6lGRwSB4Crte9CIEvXhMwDwgWcPsZJIMmZ1dZnqFsOToB3jxoIhXPyHf4c1v8CecPA6aWNBQVHXT3RXEUhh03S9naXlldW09s5Hd3Nre2c3t7VdNlGjGKyySka4H1HApFK+gQMnrseY0DCSvBf2bsV974NqISN3hIOZ+SLtKdASjaKVa+YqS0j1r5fJuwZ2ALBJvRvLFo1H5+/F4VGrlPpvtiCUhV8gkNabhuTH6KdUomOTDbDMxPKasT7u8YamiITd+Ojl3SE6t0iadSNtSSCbq74mUhsYMwsB2hhR7Zt4bi/95jQQ7l34qVJwgV2y6qJNIghEZ/07aQnOGcmAJZVrYWwnrUU0Z2oSyNgRv/uVFUj0veG7BK9s0rmGKDBzCCZyBBxdQhFsoQQUY9OEJXuDViZ1n5815n7YuObOZA/gD5+MHOYOShw==</latexit> <latexit sha1_base64="QCNlW5sLbtIzuM79kYzg2DKM71c=">AAAB7nicbVDLSgNBEOz1GeMr6lGRwSB4Crte9CIEvXhMwDwgWcPsZJIMmZ1dZnqFsOToB3jxoIhXPyHf4c1v8CecPA6aWNBQVHXT3RXEUhh03S9naXlldW09s5Hd3Nre2c3t7VdNlGjGKyySka4H1HApFK+gQMnrseY0DCSvBf2bsV974NqISN3hIOZ+SLtKdASjaKVa+YqS0j1r5fJuwZ2ALBJvRvLFo1H5+/F4VGrlPpvtiCUhV8gkNabhuTH6KdUomOTDbDMxPKasT7u8YamiITd+Ojl3SE6t0iadSNtSSCbq74mUhsYMwsB2hhR7Zt4bi/95jQQ7l34qVJwgV2y6qJNIghEZ/07aQnOGcmAJZVrYWwnrUU0Z2oSyNgRv/uVFUj0veG7BK9s0rmGKDBzCCZyBBxdQhFsoQQUY9OEJXuDViZ1n5815n7YuObOZA/gD5+MHOYOShw==</latexit> <latexit sha1_base64="TuFKA4fBa7HjGPzeTGveP2FaE80=">AAAB7nicbVA9SwNBEJ2LXzF+RS1tFoNgFe5sTCMEbSwTMB+QnGFvs5cs2ds7dueEcORH2FgoYuvvsfPfuEmu0MQHA4/3ZpiZFyRSGHTdb6ewsbm1vVPcLe3tHxwelY9P2iZONeMtFstYdwNquBSKt1Cg5N1EcxoFkneCyd3c7zxxbUSsHnCacD+iIyVCwShaqdO8oaTxyAblilt1FyDrxMtJBXI0BuWv/jBmacQVMkmN6Xlugn5GNQom+azUTw1PKJvQEe9ZqmjEjZ8tzp2RC6sMSRhrWwrJQv09kdHImGkU2M6I4tisenPxP6+XYljzM6GSFLliy0VhKgnGZP47GQrNGcqpJZRpYW8lbEw1ZWgTKtkQvNWX10n7quq5Va/pVuq3eRxFOINzuAQPrqEO99CAFjCYwDO8wpuTOC/Ou/OxbC04+cwp/IHz+QNLRI7c</latexit> Q ⇠ Poisson(aPc) <latexit sha1_base64="j9iGk5ZqglrsaVHf/oDg/i7Gw40=">AAACBXicbVC7SgNBFL3r2/hatdRiMAgRIezaaBm0sYxgHpCNYXYy0cHZmWXmrhiWNDb+hqWNhSK2/oOdf+PkUfg6cOFwzr3ce0+cSmExCD69qemZ2bn5hcXC0vLK6pq/vlG3OjOM15iW2jRjarkUitdQoOTN1HCaxJI34uuTod+44cYKrc6xn/J2Qi+V6AlG0Ukdf/uMRFYkJEJ+i3lVC2u1GpQoqV6wvY5fDMrBCOQvCSekWNmJ9h8AoNrxP6KuZlnCFTJJrW2FQYrtnBoUTPJBIcosTym7ppe85aiiCbftfPTFgOw6pUt62rhSSEbq94mcJtb2k9h1JhSv7G9vKP7ntTLsHbVzodIMuWLjRb1MEtRkGAnpCsMZyr4jlBnhbiXsihrK0AVXcCGEv1/+S+oH5TAoh2cujWMYYwG2YAdKEMIhVOAUqlADBnfwCM/w4t17T96r9zZunfImM5vwA977F4GdmWU=</latexit> <latexit sha1_base64="p1CcGchD9yM1j5uigb+D+AAazEY=">AAACBXicbVC7SgNBFJ2NrxhfUUsthgQhIoRdGy2DNpYJmAdkY5idTJIhszPLzF0xLGls/AE/wsZCEVv/wS5/4+RRaOKBC4dz7uXee4JIcAOuO3ZSK6tr6xvpzczW9s7uXnb/oGZUrCmrUiWUbgTEMMElqwIHwRqRZiQMBKsHg+uJX79n2nAlb2EYsVZIepJ3OSVgpXb2uIJ9w0PsA3uApKy4MUqOCgSX7+hpO5t3i+4UeJl4c5Iv5fyz53FpWG5nv/2OonHIJFBBjGl6bgSthGjgVLBRxo8NiwgdkB5rWipJyEwrmX4xwidW6eCu0rYk4Kn6eyIhoTHDMLCdIYG+WfQm4n9eM4buZSvhMoqBSTpb1I0FBoUnkeAO14yCGFpCqOb2Vkz7RBMKNriMDcFbfHmZ1M6Lnlv0KjaNKzRDGh2hHCogD12gErpBZVRFFD2iF/SG3p0n59X5cD5nrSlnPnOI/sD5+gGLB5rr</latexit> <latexit sha1_base64="p1CcGchD9yM1j5uigb+D+AAazEY=">AAACBXicbVC7SgNBFJ2NrxhfUUsthgQhIoRdGy2DNpYJmAdkY5idTJIhszPLzF0xLGls/AE/wsZCEVv/wS5/4+RRaOKBC4dz7uXee4JIcAOuO3ZSK6tr6xvpzczW9s7uXnb/oGZUrCmrUiWUbgTEMMElqwIHwRqRZiQMBKsHg+uJX79n2nAlb2EYsVZIepJ3OSVgpXb2uIJ9w0PsA3uApKy4MUqOCgSX7+hpO5t3i+4UeJl4c5Iv5fyz53FpWG5nv/2OonHIJFBBjGl6bgSthGjgVLBRxo8NiwgdkB5rWipJyEwrmX4xwidW6eCu0rYk4Kn6eyIhoTHDMLCdIYG+WfQm4n9eM4buZSvhMoqBSTpb1I0FBoUnkeAO14yCGFpCqOb2Vkz7RBMKNriMDcFbfHmZ1M6Lnlv0KjaNKzRDGh2hHCogD12gErpBZVRFFD2iF/SG3p0n59X5cD5nrSlnPnOI/sD5+gGLB5rr</latexit> <latexit sha1_base64="G0nFr7TUL9+8+dPMLJZYAV+koPA=">AAACBXicbVC7TgMxEPSFVwivACUUFhFSaKI7GigjaCgvEnlIuRD5HF9ixWef7D1EdEpDw6/QUIAQLf9Ax9/gPApIGGml0cyudnfCRHADrvvt5FZW19Y38puFre2d3b3i/kHDqFRTVqdKKN0KiWGCS1YHDoK1Es1IHArWDIfXE795z7ThSt7CKGGdmPQljzglYKVu8biGA8NjHAB7gMxX3Bglx2WC/Tt61i2W3Io7BV4m3pyU0Bx+t/gV9BRNYyaBCmJM23MT6GREA6eCjQtBalhC6JD0WdtSSWJmOtn0izE+tUoPR0rbkoCn6u+JjMTGjOLQdsYEBmbRm4j/ee0UostOxmWSApN0tihKBQaFJ5HgHteMghhZQqjm9lZMB0QTCja4gg3BW3x5mTTOK55b8WpuqXo1jyOPjtAJKiMPXaAqukE+qiOKHtEzekVvzpPz4rw7H7PWnDOfOUR/4Hz+AG8el9w=</latexit> log E[Q|P] = log a + c log P <latexit sha1_base64="pi6URaTk18hVg0ZHd7a0NtO8nrI=">AAACEXicbVDLSsNAFL3xWeur6tLN0CIUCiVxoxuhKILLFuwDklAm02k7dPJgZiKU2F9w4w/4EW5cKOLWnTv/xknShbYeGDiccy5z7/EizqQyzW9jZXVtfWOzsFXc3tnd2y8dHHZkGAtC2yTkoeh5WFLOAtpWTHHaiwTFvsdp15tcpX73jgrJwuBWTSPq+ngUsCEjWGmpX6o6PBwhx8dq7HnJ9cxu3TdddIEyGaMaIjlt9ksVs25mQMvEmpNKo+zUngBA57+cQUhinwaKcCylbZmRchMsFCOczopOLGmEyQSPqK1pgH0q3SS7aIZOtDJAw1DoFyiUqb8nEuxLOfU9nUxXl4teKv7n2bEanrsJC6JY0YDkHw1jjlSI0nrQgAlKFJ9qgolgeldExlhgonSJRV2CtXjyMumc1i2zbrV0G5eQowDHUIYqWHAGDbiBJrSBwAM8wyu8GY/Gi/FufOTRFWM+cwR/YHz+AHTdnPI=</latexit> <latexit sha1_base64="/LuWEewHBoUHzRsA2wqLEJVbDnc=">AAACEXicbVDLSsNAFJ3UV62vqks3Q4tQKJTEjW6EogguW7APSEKZTCft0MkkzEyEEPsLbvRT3LhQxK07d/0bJ00X2npg4HDOucy9x4sYlco0Z0ZhbX1jc6u4XdrZ3ds/KB8edWUYC0w6OGSh6HtIEkY56SiqGOlHgqDAY6TnTa4zv3dPhKQhv1NJRNwAjTj1KUZKS4NyzWHhCDoBUmPPS2+mdvuh5cJLOJcRrEOc09agXDUb5hxwlVgLUm1WnPrzrJno/LczDHEcEK4wQ1LalhkpN0VCUczItOTEkkQIT9CI2JpyFBDppvOLpvBUK0Poh0I/ruBc/T2RokDKJPB0MltdLnuZ+J9nx8q/cFPKo1gRjvOP/JhBFcKsHjikgmDFEk0QFlTvCvEYCYSVLrGkS7CWT14l3bOGZTastm7jCuQoghNQATVggXPQBLegBToAg0fwAt7Au/FkvBofxmceLRiLmWPwB8bXD35Hnng=</latexit> <latexit sha1_base64="/LuWEewHBoUHzRsA2wqLEJVbDnc=">AAACEXicbVDLSsNAFJ3UV62vqks3Q4tQKJTEjW6EogguW7APSEKZTCft0MkkzEyEEPsLbvRT3LhQxK07d/0bJ00X2npg4HDOucy9x4sYlco0Z0ZhbX1jc6u4XdrZ3ds/KB8edWUYC0w6OGSh6HtIEkY56SiqGOlHgqDAY6TnTa4zv3dPhKQhv1NJRNwAjTj1KUZKS4NyzWHhCDoBUmPPS2+mdvuh5cJLOJcRrEOc09agXDUb5hxwlVgLUm1WnPrzrJno/LczDHEcEK4wQ1LalhkpN0VCUczItOTEkkQIT9CI2JpyFBDppvOLpvBUK0Poh0I/ruBc/T2RokDKJPB0MltdLnuZ+J9nx8q/cFPKo1gRjvOP/JhBFcKsHjikgmDFEk0QFlTvCvEYCYSVLrGkS7CWT14l3bOGZTastm7jCuQoghNQATVggXPQBLegBToAg0fwAt7Au/FkvBofxmceLRiLmWPwB8bXD35Hnng=</latexit> <latexit sha1_base64="6RpsyYdzR+NmPWRseD0c6gNTWmw=">AAACEXicbVDLSgMxFM3UV62vqks3wSIUhDLjRjdCUQSXLdgHzAwlk2ba0EwyJBmhjP0FN/6KGxeKuHXnzr8xM52Fth4IHM45l9x7gphRpW372yqtrK6tb5Q3K1vbO7t71f2DrhKJxKSDBROyHyBFGOWko6lmpB9LgqKAkV4wuc783j2Rigp+p6cx8SM04jSkGGkjDap1j4kR9CKkx0GQ3szc9kPLh5cwlxE8hXhOW4NqzW7YOeAycQpSAwVM/ssbCpxEhGvMkFKuY8faT5HUFDMyq3iJIjHCEzQirqEcRUT5aX7RDJ4YZQhDIc3jGubq74kURUpNo8Aks9XVopeJ/3luosMLP6U8TjTheP5RmDCoBczqgUMqCdZsagjCkppdIR4jibA2JVZMCc7iycuke9Zw7IbTtmvNq6KOMjgCx6AOHHAOmuAWtEAHYPAInsEreLOerBfr3fqYR0tWMXMI/sD6/AFiXptp</latexit>
  4. Inference with PyMC3 • Build the model: • Sample: •

    Default is No-U-Turn Sampler (“NUTS”)
  5. Second Attempt: Centering log E[Q|P] = ↵ + (log P

    log P0) <latexit sha1_base64="ku00EG7pfDNqpNFGlzYzTyx1V6g=">AAACLXicbVDLSgMxFL3j2/qqunQTFKFSLDNudCOID3DZgtVCZyh30rQNZiZDkhHK2H9x7cZfEcFFRdz6G2ZaF2o9EDiccx+5J0wE18Z1h87U9Mzs3PzCYmFpeWV1rbi+ca1lqiirUymkaoSomeAxqxtuBGskimEUCnYT3p7l/s0dU5rL+Mr0ExZE2I15h1M0VmoVz30hu8SP0PTCMLsYNGv31YAcEx9F0kNSJn7IDJLSqKxK9okv7bh8WzaWWu5gr1XccSvuCGSSeN9k52TbLz8AQLVVfPHbkqYRiw0VqHXTcxMTZKgMp4INCn6qWYL0FrusaWmMEdNBNrp2QHat0iYdqeyLDRmpPzsyjLTuR6GtzM/Sf71c/M9rpqZzFGQ8TlLDYjpe1EkFMZLk0ZE2V4wa0bcEqeL2r4T2UCE1NuCCDcH7e/IkuT6oeG7Fq9k0TmGMBdiCbSiBB4dwApdQhTpQeIRnGMKb8+S8Ou/Ox7h0yvnu2YRfcD6/AJTVp/U=</latexit> <latexit sha1_base64="FYm/MXlIKfGsrxTn8jYs+BgeoX0=">AAACLXicbVDLSsNAFJ3Ud31FXboZFKFSLIkb3QjFB7isYLWQhHIznbZDJ5kwMxFK7F/4FW78FRFcVMStv+GkcaHWAwOHc+5j7gkTzpR2nLFVmpmdm19YXCovr6yurdsbmzdKpJLQJhFcyFYIinIW06ZmmtNWIilEIae34eAs92/vqFRMxNd6mNAggl7MuoyANlLbPve56GE/At0Pw+xi5F3dNwJ8gn3gSR9wFfsh1YArk7IGPsC+MOPybVkhtZ3RftvedWrOBHiauN9kt77jVx/G9WGjbb/4HUHSiMaacFDKc51EBxlIzQino7KfKpoAGUCPeobGEFEVZJNrR3jPKB3cFdK8WOOJ+rMjg0ipYRSayvws9dfLxf88L9Xd4yBjcZJqGpNiUTflWAucR4c7TFKi+dAQIJKZv2LSBwlEm4DLJgT378nT5Oaw5jo198qkcYoKLKJttIMqyEVHqI4uUQM1EUGP6BmN0Zv1ZL1a79ZHUVqyvnu20C9Yn1+eP6l7</latexit> <latexit sha1_base64="FYm/MXlIKfGsrxTn8jYs+BgeoX0=">AAACLXicbVDLSsNAFJ3Ud31FXboZFKFSLIkb3QjFB7isYLWQhHIznbZDJ5kwMxFK7F/4FW78FRFcVMStv+GkcaHWAwOHc+5j7gkTzpR2nLFVmpmdm19YXCovr6yurdsbmzdKpJLQJhFcyFYIinIW06ZmmtNWIilEIae34eAs92/vqFRMxNd6mNAggl7MuoyANlLbPve56GE/At0Pw+xi5F3dNwJ8gn3gSR9wFfsh1YArk7IGPsC+MOPybVkhtZ3RftvedWrOBHiauN9kt77jVx/G9WGjbb/4HUHSiMaacFDKc51EBxlIzQino7KfKpoAGUCPeobGEFEVZJNrR3jPKB3cFdK8WOOJ+rMjg0ipYRSayvws9dfLxf88L9Xd4yBjcZJqGpNiUTflWAucR4c7TFKi+dAQIJKZv2LSBwlEm4DLJgT378nT5Oaw5jo198qkcYoKLKJttIMqyEVHqI4uUQM1EUGP6BmN0Zv1ZL1a79ZHUVqyvnu20C9Yn1+eP6l7</latexit> <latexit sha1_base64="XQYJgXa0pO2MqG+ZyuTI13CjiAc=">AAACLXicbVDLSgMxFM3UV62vUZdugkWoiGXGjW6E4gNctmAf0BnKnTRtQzOTIckIZewPufFXRHBREbf+hpm2C60eCBzOuY/cE8ScKe04Eyu3tLyyupZfL2xsbm3v2Lt7DSUSSWidCC5kKwBFOYtoXTPNaSuWFMKA02YwvM785gOVionoXo9i6ofQj1iPEdBG6tg3Hhd97IWgB0GQ3o7btceqjy+xBzweAD7BXkA14NK0rIpPsSfMuGxbOpM6zvi4YxedsjMF/kvcOSmiOaod+9XrCpKENNKEg1Jt14m1n4LUjHA6LniJojGQIfRp29AIQqr8dHrtGB8ZpYt7QpoXaTxVf3akECo1CgNTmZ2lFr1M/M9rJ7p34acsihNNIzJb1Es41gJn0eEuk5RoPjIEiGTmr5gMQALRJuCCCcFdPPkvaZyVXafs1pxi5WoeRx4doENUQi46RxV0h6qojgh6Qi9ogt6tZ+vN+rA+Z6U5a96zj37B+voGglambA==</latexit>
  6. Bayesian Model Diagnostics: Posterior Predictive Checks • Sample “replicated” observed

    data for each posterior sample • How do these compare to original data? • Example: Bayesian p-values • Should be uniform for out-of-sample data • For more detail, evaluate each cdf (next slide)
  7. Sensitivity Analysis • How confident are we in this result?

    • PPC doesn’t apply here • Maybe we can just bootstrap? • Unfortunately, it’s not so simple! Bootstrap Results
  8. Analysis • Start with • Set and solve: • Diverges

    as ! ⇡ = (P K)µ log µ = ↵ + (log P log P0) <latexit sha1_base64="d1e7wc6f45UKUNtBZNc6HkSSQTg=">AAACNXicbVDLSgMxFM34tr6qLt1cLEpFLDMi6EYQ3Qi6qGBVaEq5k6ZtMDMZkoxQhv6UG//DlS5cKOLWXzDTduHrQOBwzn3knjCRwljff/bGxicmp6ZnZgtz8wuLS8XllSujUs14jSmp9E2IhksR85oVVvKbRHOMQsmvw9uT3L++49oIFV/aXsIbEXZi0RYMrZOaxXOaCNg8hHJ152yLRilQWqBSdSDnTqcoky7CNtCQW4TywKvCDlDlxuZbs6HU9PtbzWLJr/gDwF8SjEiJjFBtFh9pS7E04rFlEo2pB35iGxlqK5jk/QJNDU+Q3WKH1x2NMeKmkQ2u7sOGU1rQVtq92MJA/d6RYWRMLwpdZYS2a357ufifV09t+6CRiThJLY/ZcFE7lWAV5BFCS2jOrOw5gkwL91dgXdTIrAu64EIIfp/8l1ztVgK/ElzslY6OR3HMkDWyTsokIPvkiJySKqkRRu7JE3klb96D9+K9ex/D0jFv1LNKfsD7/ALWUKdZ</latexit> <latexit sha1_base64="d1e7wc6f45UKUNtBZNc6HkSSQTg=">AAACNXicbVDLSgMxFM34tr6qLt1cLEpFLDMi6EYQ3Qi6qGBVaEq5k6ZtMDMZkoxQhv6UG//DlS5cKOLWXzDTduHrQOBwzn3knjCRwljff/bGxicmp6ZnZgtz8wuLS8XllSujUs14jSmp9E2IhksR85oVVvKbRHOMQsmvw9uT3L++49oIFV/aXsIbEXZi0RYMrZOaxXOaCNg8hHJ152yLRilQWqBSdSDnTqcoky7CNtCQW4TywKvCDlDlxuZbs6HU9PtbzWLJr/gDwF8SjEiJjFBtFh9pS7E04rFlEo2pB35iGxlqK5jk/QJNDU+Q3WKH1x2NMeKmkQ2u7sOGU1rQVtq92MJA/d6RYWRMLwpdZYS2a357ufifV09t+6CRiThJLY/ZcFE7lWAV5BFCS2jOrOw5gkwL91dgXdTIrAu64EIIfp/8l1ztVgK/ElzslY6OR3HMkDWyTsokIPvkiJySKqkRRu7JE3klb96D9+K9ex/D0jFv1LNKfsD7/ALWUKdZ</latexit> <latexit sha1_base64="d1e7wc6f45UKUNtBZNc6HkSSQTg=">AAACNXicbVDLSgMxFM34tr6qLt1cLEpFLDMi6EYQ3Qi6qGBVaEq5k6ZtMDMZkoxQhv6UG//DlS5cKOLWXzDTduHrQOBwzn3knjCRwljff/bGxicmp6ZnZgtz8wuLS8XllSujUs14jSmp9E2IhksR85oVVvKbRHOMQsmvw9uT3L++49oIFV/aXsIbEXZi0RYMrZOaxXOaCNg8hHJ152yLRilQWqBSdSDnTqcoky7CNtCQW4TywKvCDlDlxuZbs6HU9PtbzWLJr/gDwF8SjEiJjFBtFh9pS7E04rFlEo2pB35iGxlqK5jk/QJNDU+Q3WKH1x2NMeKmkQ2u7sOGU1rQVtq92MJA/d6RYWRMLwpdZYS2a357ufifV09t+6CRiThJLY/ZcFE7lWAV5BFCS2jOrOw5gkwL91dgXdTIrAu64EIIfp/8l1ztVgK/ElzslY6OR3HMkDWyTsokIPvkiJySKqkRRu7JE3klb96D9+K9ex/D0jFv1LNKfsD7/ALWUKdZ</latexit> <latexit sha1_base64="d1e7wc6f45UKUNtBZNc6HkSSQTg=">AAACNXicbVDLSgMxFM34tr6qLt1cLEpFLDMi6EYQ3Qi6qGBVaEq5k6ZtMDMZkoxQhv6UG//DlS5cKOLWXzDTduHrQOBwzn3knjCRwljff/bGxicmp6ZnZgtz8wuLS8XllSujUs14jSmp9E2IhksR85oVVvKbRHOMQsmvw9uT3L++49oIFV/aXsIbEXZi0RYMrZOaxXOaCNg8hHJ152yLRilQWqBSdSDnTqcoky7CNtCQW4TywKvCDlDlxuZbs6HU9PtbzWLJr/gDwF8SjEiJjFBtFh9pS7E04rFlEo2pB35iGxlqK5jk/QJNDU+Q3WKH1x2NMeKmkQ2u7sOGU1rQVtq92MJA/d6RYWRMLwpdZYS2a357ufifV09t+6CRiThJLY/ZcFE7lWAV5BFCS2jOrOw5gkwL91dgXdTIrAu64EIIfp/8l1ztVgK/ElzslY6OR3HMkDWyTsokIPvkiJySKqkRRu7JE3klb96D9+K9ex/D0jFv1LNKfsD7/ALWUKdZ</latexit> d⇡ dP = 0 <latexit sha1_base64="8oNUUT55bQwkdVg8EMGHeq3Tclk=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4KokbuxGKblxWsA9oQplMJu3QySTMTJQS8yluXCji1g8Rd678FaePhbYeuHA4517uvSdIOVPacb6sldW19Y3N0lZ5e2d3b9+uHLRVkklCWyThiewGWFHOBG1ppjntppLiOOC0E4yuJn7njkrFEnGrxyn1YzwQLGIEayP17YoXSUzy0EtZkYfN4sLp21Wn5kyBlok7J9VG/fsDAUCzb396YUKymApNOFaq5zqp9nMsNSOcFmUvUzTFZIQHtGeowDFVfj49vUAnRglRlEhTQqOp+nsix7FS4zgwnTHWQ7XoTcT/vF6mo7qfM5FmmgoyWxRlHOkETXJAIZOUaD42BBPJzK2IDLHJQpu0yiYEd/HlZdI+q7lOzb0xaVzCDCU4gmM4BRfOoQHX0IQWELiHR3iGF+vBerJerbdZ64o1nzmEP7DefwBPsZY6</latexit> <latexit sha1_base64="pqYCcqaAwUoOgMCQ+71XsRGsPNc=">AAAB+nicbVC7SgNBFL3rM8bXRgsRm8EgWIVdG9MIQRvLCOYB2SXMzs4mQ2YfzMwqYd1PsbFQxNYPETttbP0MJ49CEw9cOJxzL/fe4yWcSWVZH8bC4tLyymphrbi+sbm1bZZ2mjJOBaENEvNYtD0sKWcRbSimOG0nguLQ47TlDS5GfuuGCsni6FoNE+qGuBexgBGstNQ1S04gMMl8J2F55tfzM6trlq2KNQaaJ/aUlGvVr7e9z+/9etd8d/yYpCGNFOFYyo5tJcrNsFCMcJoXnVTSBJMB7tGOphEOqXSz8ek5OtKKj4JY6IoUGqu/JzIcSjkMPd0ZYtWXs95I/M/rpCqouhmLklTRiEwWBSlHKkajHJDPBCWKDzXBRDB9KyJ9rLNQOq2iDsGefXmeNE8qtlWxr3Qa5zBBAQ7gEI7BhlOowSXUoQEEbuEeHuHJuDMejGfjZdK6YExnduEPjNcfvwqYDA==</latexit> <latexit sha1_base64="pqYCcqaAwUoOgMCQ+71XsRGsPNc=">AAAB+nicbVC7SgNBFL3rM8bXRgsRm8EgWIVdG9MIQRvLCOYB2SXMzs4mQ2YfzMwqYd1PsbFQxNYPETttbP0MJ49CEw9cOJxzL/fe4yWcSWVZH8bC4tLyymphrbi+sbm1bZZ2mjJOBaENEvNYtD0sKWcRbSimOG0nguLQ47TlDS5GfuuGCsni6FoNE+qGuBexgBGstNQ1S04gMMl8J2F55tfzM6trlq2KNQaaJ/aUlGvVr7e9z+/9etd8d/yYpCGNFOFYyo5tJcrNsFCMcJoXnVTSBJMB7tGOphEOqXSz8ek5OtKKj4JY6IoUGqu/JzIcSjkMPd0ZYtWXs95I/M/rpCqouhmLklTRiEwWBSlHKkajHJDPBCWKDzXBRDB9KyJ9rLNQOq2iDsGefXmeNE8qtlWxr3Qa5zBBAQ7gEI7BhlOowSXUoQEEbuEeHuHJuDMejGfjZdK6YExnduEPjNcfvwqYDA==</latexit> <latexit sha1_base64="PUYqf6wT2X9FKlQNiJdtmc+RBoc=">AAAB+nicbVBNS8NAEJ3Ur1q/Uj16CRbBU9l40YtQ9OKxgv2AJpTNZtMu3WzC7kYpMT/FiwdFvPpLvPlv3LY5aOuDgcd7M8zMC1LOlEbo26qsrW9sblW3azu7e/sHdv2wq5JMEtohCU9kP8CKciZoRzPNaT+VFMcBp71gcjPzew9UKpaIez1NqR/jkWARI1gbaWjXvUhikodeyoo8bBdXaGg3UBPN4awStyQNKNEe2l9emJAspkITjpUauCjVfo6lZoTTouZliqaYTPCIDgwVOKbKz+enF86pUUInSqQpoZ25+nsix7FS0zgwnTHWY7XszcT/vEGmo0s/ZyLNNBVksSjKuKMTZ5aDEzJJieZTQzCRzNzqkDE2WWiTVs2E4C6/vEq6500XNd071Ghdl3FU4RhO4AxcuIAW3EIbOkDgEZ7hFd6sJ+vFerc+Fq0Vq5w5gj+wPn8AO+aT8w==</latexit> ˆ P = K 1 + <latexit sha1_base64="U7pkSRq8RCh32fuNolbL2bm81Pw=">AAACCnicbZC7SgNBFIbPxluMt6ilzWgQBCHs2mgjBm0EmwjmAtkQZiezyZDZCzNnhbAE7Gx8FRsLRWx9Ae2sfBUnl0ITfxj4+M85nDm/F0uh0ba/rMzc/MLiUnY5t7K6tr6R39yq6ihRjFdYJCNV96jmUoS8ggIlr8eK08CTvOb1Lob12i1XWkThDfZj3gxoJxS+YBSN1crvul2KaXlATskVcX1FWep6HOkgdQ7H0MoX7KI9EpkFZwKF0tn3xx0AlFv5T7cdsSTgITJJtW44dozNlCoUTPJBzk00jynr0Q5vGAxpwHUzHZ0yIPvGaRM/UuaFSEbu74mUBlr3A890BhS7ero2NP+rNRL0T5qpCOMEecjGi/xEEozIMBfSFoozlH0DlClh/kpYl5o80KSXMyE40yfPQvWo6NhF59qkcQ5jZWEH9uAAHDiGElxCGSrA4B4e4RlerAfryXq13satGWsysw1/ZL3/ANBVnJ0=</latexit> <latexit sha1_base64="u/crDL446xG+DaZC+eb/AiSzV7k=">AAACCnicbZC7SgNBFIZn4y3G26qlzWgQBDHs2phGDFoo2EQwF8guYXYymwyZvTBzVgzL1ja+io2FIra+gHZWvoqTS6HRHwY+/nMOZ87vxYIrsKxPIzczOze/kF8sLC2vrK6Z6xt1FSWSshqNRCSbHlFM8JDVgINgzVgyEniCNbz+2bDeuGFS8Si8hkHM3IB0Q+5zSkBbbXPb6RFIqxk+xpfY8SWhqeMxIFlq74+hbRatkjUS/gv2BIqVk6/324PyebVtfjidiCYBC4EKolTLtmJwUyKBU8GygpMoFhPaJ13W0hiSgCk3HZ2S4V3tdLAfSf1CwCP350RKAqUGgac7AwI9NV0bmv/VWgn4ZTflYZwAC+l4kZ8IDBEe5oI7XDIKYqCBUMn1XzHtEZ0H6PQKOgR7+uS/UD8s2VbJvtJpnKKx8mgL7aA9ZKMjVEEXqIpqiKI79ICe0LNxbzwaL8bruDVnTGY20S8Zb9+rUp1B</latexit> <latexit sha1_base64="u/crDL446xG+DaZC+eb/AiSzV7k=">AAACCnicbZC7SgNBFIZn4y3G26qlzWgQBDHs2phGDFoo2EQwF8guYXYymwyZvTBzVgzL1ja+io2FIra+gHZWvoqTS6HRHwY+/nMOZ87vxYIrsKxPIzczOze/kF8sLC2vrK6Z6xt1FSWSshqNRCSbHlFM8JDVgINgzVgyEniCNbz+2bDeuGFS8Si8hkHM3IB0Q+5zSkBbbXPb6RFIqxk+xpfY8SWhqeMxIFlq74+hbRatkjUS/gv2BIqVk6/324PyebVtfjidiCYBC4EKolTLtmJwUyKBU8GygpMoFhPaJ13W0hiSgCk3HZ2S4V3tdLAfSf1CwCP350RKAqUGgac7AwI9NV0bmv/VWgn4ZTflYZwAC+l4kZ8IDBEe5oI7XDIKYqCBUMn1XzHtEZ0H6PQKOgR7+uS/UD8s2VbJvtJpnKKx8mgL7aA9ZKMjVEEXqIpqiKI79ICe0LNxbzwaL8bruDVnTGY20S8Zb9+rUp1B</latexit> <latexit sha1_base64="5Nhpu6fvhl52HTg3QKeKg4dmYjA=">AAACCnicbZDLSsNAFIYn9VbrLerSzWgRBKEkbnQjFN0IbirYCzShTKaTduhkEmZOhBKyduOruHGhiFufwJ1v47TNQlt/GPj4zzmcOX+QCK7Bcb6t0tLyyupaeb2ysbm1vWPv7rV0nCrKmjQWseoERDPBJWsCB8E6iWIkCgRrB6PrSb39wJTmsbyHccL8iAwkDzklYKyefegNCWSNHF/iW+yFitDMCxiQPHNPZ9Czq07NmQovgltAFRVq9Owvrx/TNGISqCBad10nAT8jCjgVLK94qWYJoSMyYF2DkkRM+9n0lBwfG6ePw1iZJwFP3d8TGYm0HkeB6YwIDPV8bWL+V+umEF74GZdJCkzS2aIwFRhiPMkF97liFMTYAKGKm79iOiQmDzDpVUwI7vzJi9A6q7lOzb1zqvWrIo4yOkBH6AS56BzV0Q1qoCai6BE9o1f0Zj1ZL9a79TFrLVnFzD76I+vzBzC0me4=</latexit> ! 1 <latexit sha1_base64="tmfYjVGBgVS3oTbN6vbZwtiDUeU=">AAAB/XicbVDJSgNBEK1xjXEbl5seGoPgxTDjRY9BLx4TMAskQ+jp9CRNeha6a5Q4BH/FiwdFvOp3ePPmp9hZDpr4oODxXhVV9fxECo2O82UtLC4tr6zm1vLrG5tb2/bObk3HqWK8ymIZq4ZPNZci4lUUKHkjUZyGvuR1v3818uu3XGkRRzc4SLgX0m4kAsEoGqlt77d8jpS0lOj2kCoV35FTt20XnKIzBpkn7pQUSocflW8AKLftz1YnZmnII2SSat10nQS9jCoUTPJhvpVqnlDWp13eNDSiIddeNr5+SI6N0iFBrExFSMbq74mMhloPQt90hhR7etYbif95zRSDCy8TUZIij9hkUZBKgjEZRUE6QnGGcmAIZUqYWwnrUUUZmsDyJgR39uV5Ujsruk7RrZg0LmGCHBzAEZyAC+dQgmsoQxUY3MMjPMOL9WA9Wa/W26R1wZrO7MEfWO8/s++W7w==</latexit> <latexit sha1_base64="GtbGLrUNYV0nz+/EL0x8vf0cdxI=">AAAB/XicbVDJSgNBEO2JW4zbuNwUaQyCF8OMFz0GvXhMwCyQGUJPp5M06ekZumuUOARP/ocXD4p4Nd/hzW/wJ+wsB018UPB4r4qqekEsuAbH+bIyC4tLyyvZ1dza+sbmlr29U9VRoiir0EhEqh4QzQSXrAIcBKvHipEwEKwW9K5Gfu2WKc0jeQP9mPkh6Uje5pSAkZr2nhcwINhTvNMFolR0h0/dpp13Cs4YeJ64U5IvHgzL34+Hw1LT/vRaEU1CJoEKonXDdWLwU6KAU8EGOS/RLCa0RzqsYagkIdN+Or5+gI+N0sLtSJmSgMfq74mUhFr3w8B0hgS6etYbif95jQTaF37KZZwAk3SyqJ0IDBEeRYFbXDEKom8IoYqbWzHtEkUomMByJgR39uV5Uj0ruE7BLZs0LtEEWbSPjtAJctE5KqJrVEIVRNE9ekIv6NV6sJ6tN+t90pqxpjO76A+sjx+SNJhV</latexit> <latexit sha1_base64="GtbGLrUNYV0nz+/EL0x8vf0cdxI=">AAAB/XicbVDJSgNBEO2JW4zbuNwUaQyCF8OMFz0GvXhMwCyQGUJPp5M06ekZumuUOARP/ocXD4p4Nd/hzW/wJ+wsB018UPB4r4qqekEsuAbH+bIyC4tLyyvZ1dza+sbmlr29U9VRoiir0EhEqh4QzQSXrAIcBKvHipEwEKwW9K5Gfu2WKc0jeQP9mPkh6Uje5pSAkZr2nhcwINhTvNMFolR0h0/dpp13Cs4YeJ64U5IvHgzL34+Hw1LT/vRaEU1CJoEKonXDdWLwU6KAU8EGOS/RLCa0RzqsYagkIdN+Or5+gI+N0sLtSJmSgMfq74mUhFr3w8B0hgS6etYbif95jQTaF37KZZwAk3SyqJ0IDBEeRYFbXDEKom8IoYqbWzHtEkUomMByJgR39uV5Uj0ruE7BLZs0LtEEWbSPjtAJctE5KqJrVEIVRNE9ekIv6NV6sJ6tN+t90pqxpjO76A+sjx+SNJhV</latexit> <latexit sha1_base64="LxP7z3KAHpnuScxlmiBYMSoeL6A=">AAAB/XicbVBNS8NAEN3Ur1q/4sfNy2IRvFgSL3osevFYwbZCE8pmu2mXbnbD7kSpofhXvHhQxKv/w5v/xm2bg7Y+GHi8N8PMvCgV3IDnfTulpeWV1bXyemVjc2t7x93daxmVacqaVAml7yJimOCSNYGDYHepZiSJBGtHw6uJ375n2nAlb2GUsjAhfcljTglYqeseBBEDggPN+wMgWqsHfOp33apX86bAi8QvSBUVaHTdr6CnaJYwCVQQYzq+l0KYEw2cCjauBJlhKaFD0mcdSyVJmAnz6fVjfGyVHo6VtiUBT9XfEzlJjBklke1MCAzMvDcR//M6GcQXYc5lmgGTdLYozgQGhSdR4B7XjIIYWUKo5vZWTAdEEwo2sIoNwZ9/eZG0zmq+V/NvvGr9soijjA7RETpBPjpHdXSNGqiJKHpEz+gVvTlPzovz7nzMWktOMbOP/sD5/AGj9ZSq</latexit>
  9. An Alternate Approach • We now have a way to

    optimize when parameters are given • Let’s do this for each posterior sample, and aggregate • Heavy tail causes instability of mean • Median is scale-invariant • So…
  10. Final Thoughts • “Max-of-means” makes intuitive sense… • But intuition

    can be wrong! • Heavy tails can have dramatic effect on estimation of means • Always check results with PPC or replications!