Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
ログ監視システムにおける時間ベース遅延の可視化 / Apache Kafka Meetup J...
Search
CyberAgent
PRO
April 09, 2019
Technology
0
1.8k
ログ監視システムにおける時間ベース遅延の可視化 / Apache Kafka Meetup Japan
4月9日開催
Apache Kafka Meetup Japan
ログ監視システムにおける時間ベース遅延の可視化
秋葉原ラボ:大平哲也
CyberAgent
PRO
April 09, 2019
Tweet
Share
More Decks by CyberAgent
See All by CyberAgent
未来のテレビを形づくる ABEMAのグロース戦略:ユーザー体験と品質向上のアプローチ
cyberagentdevelopers
PRO
0
280
IBC 2024 動画技術関連レポート / IBC 2024 Report
cyberagentdevelopers
PRO
1
130
生成AIは安心・安全に貢献できるのか
cyberagentdevelopers
PRO
0
17
AIの血肉となるアノテーションデータのために大事にしている事
cyberagentdevelopers
PRO
2
20
ABEMA NEWSにおける映像データを活用した記事生成AI 〜記事制作者に寄り添ったソリューションにするまで〜
cyberagentdevelopers
PRO
0
36
ACL 2024 参加報告
cyberagentdevelopers
PRO
0
52
生成AIの強みと弱みを理解して、生成AIがもたらすパワーをプロダクトの価値へ繋げるために実践したこと / advance-ai-generating
cyberagentdevelopers
PRO
1
290
SNSマーケティングに革新! ABEMA サッカー動画切り出しを生成AIで自動化し、業務効率化を狙う! / abema-ai-marketing
cyberagentdevelopers
PRO
2
160
新卒1年目が挑む!生成AI × マルチエージェントで実現する次世代オンボーディング / operation-ai-onboarding
cyberagentdevelopers
PRO
1
250
Other Decks in Technology
See All in Technology
心が動くエンジニアリング ── 私が夢中になる理由
16bitidol
0
130
Next.jsとNuxtが混在? iframeでなんとかする!
ypresto
2
2k
偶有的複雑性と戦うためのアーキテクチャとチームトポロジー
knih
7
4.2k
アプリエンジニアのためのGraphQL入門.pdf
spycwolf
0
140
20241120_JAWS_東京_ランチタイムLT#17_AWS認定全冠の先へ
tsumita
2
340
OCI 運用監視サービス 概要
oracle4engineer
PRO
0
4.9k
あなたの知らない Function.prototype.toString() の世界
mizdra
PRO
4
2.6k
SDNという名のデータプレーンプログラミングの歴史
ebiken
PRO
2
260
生成AIが変えるデータ分析の全体像
ishikawa_satoru
0
300
個人でもIAM Identity Centerを使おう!(アクセス管理編)
ryder472
4
260
SDN の Hype Cycle を一通り経験してみて思うこと / Going through the Hype Cycle of SDN
mshindo
3
300
10XにおけるData Contractの導入について: Data Contract事例共有会
10xinc
7
750
Featured
See All Featured
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
169
50k
Embracing the Ebb and Flow
colly
84
4.5k
Fashionably flexible responsive web design (full day workshop)
malarkey
405
65k
The World Runs on Bad Software
bkeepers
PRO
65
11k
Scaling GitHub
holman
458
140k
Mobile First: as difficult as doing things right
swwweet
222
8.9k
Rails Girls Zürich Keynote
gr2m
94
13k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
PRO
10
740
Designing Experiences People Love
moore
138
23k
What's new in Ruby 2.0
geeforr
343
31k
RailsConf & Balkan Ruby 2019: The Past, Present, and Future of Rails at GitHub
eileencodes
131
33k
A better future with KSS
kneath
238
17k
Transcript
ログ監視システムに おける時間ベース遅延の可視化 大平哲也
1. 自己紹介 2. 秋葉原ラボの紹介 3. オフセットを用いた遅延計測の問題点 4. 時間ベース遅延の可視化 5. オフセットの地点のデータ取得の高速化
6. 遅延の可視化 7. まとめ 発表の流れ
大平 哲也 (おおだいら てつや) 内定者期間中に秋葉原ラボでログ遅延監視ツールの開発 今年度入社。只今研修中 最近興味のある分野:ストリーム処理、Dataflow、進化計算 趣味:コーヒー、自転車、電子工作 自己紹介 だいら
@tdaira_
「データを活用」してサービスと会社の発展に寄与する 秋葉原ラボについて
サイバーエージェントで扱うサービス
不正なログをフィルタリングして後続へ流すシステム 許容可能な遅延時間内にフィルタリングを行う必要がある ログの品質管理システム Input topic NG topic OK topic Validator
ログ転送 システム DWH サーチエンジン サイバーエージェントにおけるデータの品質管理について https://www.slideshare.net/cyberagent/cwt2016
KafkaのOffsetの管理 パーティション Offsetによりどこまで各 Consumerが値を読み 取ったかが管理されて いる Offsetの遅延 [Lag] = [最新レコードのOffset]
- [ConsumerのOffset] Consumer Aのラグ [Lag] = 12 - 9 = 3 Consumer Bのラグ [Lag] = 12 - 11 = 1
オフセットはKafkaのコマンドラインツールやkafka-manager等の 監視ツールで確認することができる オフセットの確認作業 Consumerの Offset 最新レコードの Offset Offsetの遅延
古いログがどれくらい溜まっているかわからない ログが溜まる原因を切り分けられない オフセットを用いた遅延計測の問題点 Input topic Validator ログ転送 システム ログの流量が 増えた
Validatorの処理 能力が落ちた
ログの流量増えた場合 18:16 18:20 18:25 18:30 18:16 18:17 18:18 18:19 18:26
18:27 18:29 18:30 18:20 18:22 18:25 流量:大 流量:小 同じ処理速度でも流量が多い場合Lagが広がる CURRENT-OFFSET Lag:3 Lag:10 CURRENT-OFFSET LOG-END-OFFSET LOG-END-OFFSET
Consumerの処理速度が落ちた場合 17:20 17:33 18:10 18:30 17:40 17:55 同一流量 同じ流量でも処理速度が落ちた場合Lagが広がる 17:20
17:33 18:10 18:30 17:40 17:55 処理速度:低 処理速度:高 Lag:3 Lag:5 CURRENT-OFFSET CURRENT-OFFSET LOG-END-OFFSET LOG-END-OFFSET
• 経験則でオフセットの遅延から遅延時刻を推定 • メッセージを手動で取得し、タイムスタンプを一つずつ確認 遅延への対応 時間ベースでログの遅延を監視したい
Kafkaの概要 このメッセージと現在時刻の 差が知りたい P:Partition C:Consumer Partition
時間ベースの遅延計算 ①オフセット情報の一覧を取得 ②各パーティションからのオフセット地点のメッセージ を取得 ③現在時刻とtimestampの差を計算 0 1 2 3 81
82 ・・・ 83 84 0 1 2 3 53 54 ・・・ 55 56 0 1 2 3 77 78 ・・・ 79 80 offset offset offset Partition1 Partition2 Partition3 Partition1: 81 Partition2: 54 Partition3: 80 Partition1: {“timestamp”: “2019-01-01 11:23”, ”data”: ...} Partition2: {“timestamp”: “2019-01-01 11:18”, ”data”: ...} Partition3: {“timestamp”: “2019-01-01 12:10”, ”data”: ...} Partition1: now - [2019-01-01 11:23] = 520 sec Partition2: now - [2019-01-01 11:18] = 820 sec Partition3: now - [2019-01-01 11:30] = 100 sec
Consumerグループ一覧の問い合わせ ↓ Consumerグループが読んでいるパーティションの取り出し ↓ パーティションのOffsetを問い合わせ ↓ パーティションにメッセージを問い合わせ ↓ メッセージからタイムスタンプを取りだして遅延を計算 ↓
一覧にして出力 プログラム上の処理の流れ
実行結果はConsumerGroupのパーティションごとに出力 実行結果 > sbt “runMain command.LagReaderCommand -b [boot-strap-server] -c consumer_group"
ConsumerGroup TopicPartition Lag consumer_group 0 10sec consumer_group 1 45sec consumer_group 2 15sec 最終的にこれを全パーティション分取得して監視したい
一つ一つのパーティションを順番に読んでいくと データの取り出しに時間がかかる (パーティション数が100程度のstg環境で17分) 実行時間の問題点 複数パーティションから同時購読を行い高速化
複数パーティションをまとめて購読しデータ取得 流量の関係で一度に全てのパーティションのメッセージを取得することができない 複数パーティション同時購読の課題 Partition1 Partition2 Partition3 Partition4 Consumer グループ :
メッセージ 流量の多い パーティションに偏る
複数Consumerグループが同一のパーティションを参照することがあるので 一つのパーティションから異なるオフセットのメッセージを取り出す必要がある 複数回シークを行う必要があり非効率 複数パーティション同時購読の課題 0 1 2 3 81 82
・・・ 83 84 offset1 Partition offset2 Consumer グループ1 offset1: 81 Consumer グループ2 offset1: 83
Consumerグループ一覧の問い合わせ ↓ Consumerが読んでいるパーティションの取り出し ↓ パーティションのOffsetを問い合わせ ↓ パーティションにメッセージを問い合わせ ↓ メッセージからタイムスタンプを取りだして遅延を計算 ↓
一覧にして出力 プログラム上の処理の流れ(修正前)
Consumerグループ一覧の問い合わせ ↓ Consumerが読んでいるパーティションの取り出し ↓ パーティションのOffsetを問い合わせ ↓ Offsetの重複排除 ↓ パーティションに並列に問い合わせ ↓
メッセージを取得できなかったパーティションがないか確認 ↓ メッセージからタイムスタンプを取りだして遅延を計算 ↓ 一覧にして出力 プログラム上の処理の流れ(修正後)
Consumerグループ2 - Topic1 Partition1: 100 - Topic2 Partition1: 150 -
Topic2 Partition2: 220 Consumerグループ1 - Topic2 Partition1: 80 - Topic2 Partition2: 300 Consumerグループ3 - Topic1 Partition1: 130 オフセット情報の一覧を取得 この単位でまとめて問い合わせできない Partition1 Partition1 Partition2 Consumer グループ2 Consumer グループ1 Kafka Cluster Consumerグループ一 覧の取得 Consumerグループに対 応するパーティションの Offsetを取り出す パーティションの重 複排除 Consumerグループ1 Consumerグループ2 Consumerグループ3 Consumerグループ2 - Topic2 Partition1: 150 - Topic2 Partition2: 220 Consumerグループ3 - Topic1 Partition1: 130 Consumerグループ1 - Topic2 Partition1: 80 - Topic2 Partition2: 300 Consumerグループ2 - Topic1 Partition1: 100 重複しない単位でまとめ直す Consumer グループ3 Topic2 Topic1
Consumerグループ一覧の問い合わせ ↓ Consumerが読んでいるパーティションの取り出し ↓ パーティションのOffsetを問い合わせ ↓ Offsetの重複排除 ↓ パーティションに並列に問い合わせ ↓
メッセージを取得できなかったパーティションがないか確認 ↓ メッセージからタイムスタンプを取りだして遅延を計算 ↓ 一覧にして出力 プログラム上の処理の流れ(修正後)
並列にメッセージを取得 重複排除後のオフセット Consumerグループ1 - Partition2: 80 - Partition4: 300 Consumerグループ2
- Partition1: 100 Partition1 Partition2 Partition3 Partition4 メッセージを取得 Kafka Cluster 問い合わせ1回目 Partition1 Partition2 Partition3 Partition4 メッセージを取得 Kafka Cluster 問い合わせ2回目 取得できなかったパーティション からメッセージを取得
並列にメッセージを取得 重複排除後のオフセット Consumerグループ1 - Partition2: 80 - Partition4: 300 Consumerグループ2
- Partition1: 100 Partition1 Partition2 Partition3 Partition4 メッセージを取得 Kafka Cluster 問い合わせ1回目 Partition1 Partition2 Partition3 Partition4 メッセージを取得 Kafka Cluster 問い合わせ2回目 取得できなかったパーティション からメッセージを取得
7分半→1分半へ高速化 比率にすると1/5程度の時間に短縮 1分半ほどの実行時間であれば常時回しておけば遅延監視には十分な速度 高速化結果
取得したデータは常時監視したいのでPrometheusで可視化 遅延の可視化 遅延計算プログラム 常時各パーティションの 遅延を計測 蓄積されたデータの 取得 (Exporter) consumer1 partition0
100sec consumer1 partition1 200sec consumer2 partition0 180sec consumer3 partition0 50sec ・ ・ ・
Prometheusの画面 オフセットベース 時間ベース 時刻 ログのオフセット ログの遅延時間 最大の遅延は 23時35分の70万 最大の遅延は 0時0分の25分
時刻 オフセットベースで遅延が広がったタイミングよりもあとで、時間ベースでの遅延が広がっている
• 時間ベースの遅延を可視化 • 複数パーティションの同時購読より遅延取得を高速化 • Prometheusで常時遅延の監視を実現 まとめ