Upgrade to Pro — share decks privately, control downloads, hide ads and more …

自然言語処理を用いた効果的な広告テキストの自動生成【CADC2022】

 自然言語処理を用いた効果的な広告テキストの自動生成【CADC2022】

インターネット広告は年々増加の一途をたどっており、その激しい新陳代謝から人手による制作は限界を迎えています。さらに、近年の人工知能技術の成功から、広告クリエイティブ、特に自然言語処理技術を使った広告テキストの自動生成には大きな期待が寄せられています。この発表では、NAACL や EMNLP などの難関国際会議にも採択され、AI Lab と極プロダクトを中心に研究開発してきた、自然言語生成技術を用いた広告効果を考慮した広告テキストの自動生成手法と、その周辺の取り組みについてご紹介します。

CyberAgent

March 24, 2022
Tweet

More Decks by CyberAgent

Other Decks in Technology

Transcript

  1. ڧԽֶशͷऔΓೖΕ ڧԽֶश 4$45 Λಋೖͨ͠޿ࠂจͷࣗಈੜ੒Ϟσϧͷશମਤ<,BNJHBJUPFUBM /""$-> If you are nding the

    most popular insurance ... Decoder Output by Sampling!y! Decoder Output by MLE!y* Input!x BiLSTM Layer Attention Layer Context Vector c Calculating Rewards r Advertisement Quality score calculated with GBRT Fluency score calculated with LSTM Language Model Relevance score calculated with Keyword Matching Lmle : Loss of Maximum Likelihood Estimation Lrl : Loss of Reinforcement Learning Model Parameters Reference y Which insurance is the best ... Checkout the most popular insurance ... Document Tag Keywords Contents of a web-page r = rF + rR + rQ    "*-BCɺࣗવݴޠॲཧ෼໺ͷτοϓΧϯϑΝϨϯεʮ/""$-)-5ʯʹͯڞஶ࿦จ࠾୒ɹʕ޿ࠂޮՌΛߟྀͨ͠޿ࠂจੜ੒ख๏ΛఏҊʕ cגࣜձࣾαΠόʔΤʔδΣϯτ
  2. ڧԽֶशͷऔΓೖΕ ڧԽֶश 4$45 ʹΑΓ޿ࠂޮՌ΍ͦͷଞͷࢦඪΛใुͱͯ͠ѻ͏͜ͱͰֶशՄೳʹ If you are nding the most

    popular insurance ... Decoder Output by Sampling!y! Decoder Output by MLE!y* Input!x BiLSTM Layer Attention Layer Context Vector c Calculating Rewards r Advertisement Quality score calculated with GBRT Fluency score calculated with LSTM Language Model Relevance score calculated with Keyword Matching Lmle : Loss of Maximum Likelihood Estimation Lrl : Loss of Reinforcement Learning Model Parameters Reference y Which insurance is the best ... Checkout the most popular insurance ... Document Tag Keywords Contents of a web-page r = rF + rR + rQ    "*-BCɺࣗવݴޠॲཧ෼໺ͷτοϓΧϯϑΝϨϯεʮ/""$-)-5ʯʹͯڞஶ࿦จ࠾୒ɹʕ޿ࠂޮՌΛߟྀͨ͠޿ࠂจੜ੒ख๏ΛఏҊʕ cגࣜձࣾαΠόʔΤʔδΣϯτ If you are nding the most popular insurance ... Decoder Output by Sampling!y! Decoder Output by MLE!y* Input!x BiLSTM Layer Attention Layer Context Vector c Calculating Rewards r Advertisement Quality score calculated with GBRT Fluency score calculated with LSTM Language Model Relevance score calculated with Keyword Matching Lmle : Loss of Maximum Likelihood Estimation Lrl : Loss of Reinforcement Learning Model Parameters Reference y Which insurance is the best ... Checkout the most popular insurance ... Document Tag Keywords Contents of a web-page r = rF + rR + rQ    ࣗવ͞ɺྲྀெ͞ Flu  ੜ੒݁Ռʹରͯ͠ɺݴޠϞσϧͰ ࢉग़͞ΕΔʮΒ͠͞ʯ ݕࡧΩʔϫʔυͱͷؔ࿈ੑ Rel  ੜ੒݁ՌͷΩʔϫʔυʹର͢ΔΧόʔ཰ͱ ΩʔϫʔυͷҐஔ ޿ࠂ഑৴࣮੷ QS  ੜ੒݁Ռʹରͯ͠ɺաڈͷ޿ࠂ഑৴ͰಘΒΕͨ σʔλͰ܇࿅ͨ͠ճؼϞσϧʹΑͬͯࢉग़͞ΕΔ ਪఆ඼࣭஋
  3. ΦϑϥΠϯධՁ ਓखධՁͰ͸ɺ޿ࠂ੍࡞ऀͱΤϯυϢʔβʔΛ૝ఆͨ͠ Ϋϥ΢υιʔγϯάͦΕͧΕʹΑΔԼͷ߲໨ͷධՁ w ྲྀெੑ Fluency  w ັྗ Attractive.

     w Ωʔϫʔυͱͷؔ࿈ੑ Relevance Model Copywriter Crowdsourcing Fluency Attractive. Relevance Fluency Attractive. Relevance Reference 87.5 25.5 24.4 75.6 26.8 29.1 Seq2Seq 83.3 25.1 23.7 64.5 23.8 26.1 + Flu, QS 81.7 25.3 22.8 64.3 24.4 26.6 + Flu, Rel 77.5 24.2 23.7 60.9 24.8 26.2 + Flu, Rel, QS 81.2 23.9 24.3 62.7 25.4 26.9
  4. ΦϯϥΠϯධՁ ࣗಈੜ੒͞Εͨ޿ࠂจΛ࣮ࡍʹ഑৴ͯ͠ҎԼͷ߲໨Λɺ ਓख੍࡞޿ࠂͱͷഒ཰ΛධՁ w දࣔճ਺ Impression  w ΫϦοΫ཰ CTR

     w ফඅ༧ࢉ Cost Model Impression CTR Cost Seq2Seq 3.54x 0.66x 3.31x + Flu, Rel 3.80x 0.52x 3.62x + Flu, Rel, QS 1.32x 0.71x 2.58x
  5. '"45<,BXBNPUPFUBM &./-1> ଞπʔϧͱͷ࢖༻ײͷධՁ w ࡞ۀޮ཰ Efficiency  w ࡞ۀਫ਼౓ Quality

     w ࢖༻ײ Usability Tool Efficiency (!) Quality (") Usability (!) Baseline (Mobile) 6.7 0.98 5.82 FAST (Mobile, Card UI) 4.6 0.97 2.03 FAST (Mobile, Multi-label UI) 4.9 0.97 3.15
  6. ͜Ε͔Β ͞ΒͳΔੜ੒඼࣭ͷ޲্ w ྲྀெੑ w ଟ༷ੑ w ஧࣮ੑ ΑΓଟछͳσʔλͷ׆༻ w

    ϚϧνϞʔμϧʢը૾ɺ-1ϨΠΞ΢τʣ <.VSBLBNJFUBM ݴޠॲཧֶձ> ࢼߦࡨޡͷͨΊͷ؀ڥ w ֤छධՁج൫ͷ੔උ w σʔλऩूͷͨΊͷج൫੔උ
  7. 3FGFSFODFT w<,SJ[IFWTLZFUBM /FVS*14>*NBHF/FU$MBTTJpDBUJPOXJUI%FFQ$POWPMVUJPOBM/FVSBM/FUXPSLT w<4JMWFSFUBM /BUVSF>.BTUFSJOHUIFHBNFPG(PXJUIEFFQOFVSBMOFUXPSLTBOEUSFFTFBSDI w<#SPXOFUBM /FVS*14>-BOHVBHF.PEFMTBSF'FX4IPU-FBSOFST w<#BSU[FUBM &$>/BUVSBMMBOHVBHFHFOFSBUJPOGPSTQPOTPSFETFBSDIBEWFSUJTFNFOUT w<'VKJUBFUBM

    *$&$>"VUPNBUJDHFOFSBUJPOPGMJTUJOHBETCZSFVTJOHQSPNPUJPOBMUFYUT w<5IPNBJEPVFUBM $*,.>"VUPNBUFETOJQQFUHFOFSBUJPOGPSPOMJOFBEWFSUJTJOH w<4VUTLFWFSFUBM /FVS*14>4FRVFODFUP4FRVFODF-FBSOJOHXJUI/FVSBM/FUXPSLT w<3FOOJFFUBM $713>4FMGDSJUJDBM4FRVFODF5SBJOJOHGPS*NBHF$BQUJPOJOH w<,BNJHBJUPFUBM /""$->"O&NQJSJDBM4UVEZPG(FOFSBUJOH5FYUTGPS4FBSDI&OHJOF"EWFSUJTJOH w<,BXBNPUPFUBM &./-1>'"45'BTU"OOPUBUJPOUPPMGPS4NBS5EFWJDFT w<.VSBLBNJFUBM ݴޠॲཧֶձ>-1UP5FYUϚϧνϞʔμϧ޿ࠂจੜ੒