Upgrade to PRO for Only $50/Year—Limited-Time Offer! 🔥
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to Survive the Titanic
Search
Daniel Glunz
December 08, 2014
Programming
0
36
How to Survive the Titanic
Machine learnings to avoid iceberg induced death.
Daniel Glunz
December 08, 2014
Tweet
Share
Other Decks in Programming
See All in Programming
AIエンジニアリングのご紹介 / Introduction to AI Engineering
rkaga
8
3.3k
LLMで複雑な検索条件アセットから脱却する!! 生成的検索インタフェースの設計論
po3rin
4
970
ELYZA_Findy AI Engineering Summit登壇資料_AIコーディング時代に「ちゃんと」やること_toB LLMプロダクト開発舞台裏_20251216
elyza
2
620
Python札幌 LT資料
t3tra
7
1k
組み合わせ爆発にのまれない - 責務分割 x テスト
halhorn
1
160
Kotlin Multiplatform Meetup - Compose Multiplatform 외부 의존성 아키텍처 설계부터 운영까지
wisemuji
0
120
Deno Tunnel を使ってみた話
kamekyame
0
240
[AtCoder Conference 2025] LLMを使った業務AHCの上⼿な解き⽅
terryu16
6
730
Navigation 3: 적응형 UI를 위한 앱 탐색
fornewid
1
460
脳の「省エネモード」をデバッグする ~System 1(直感)と System 2(論理)の切り替え~
panda728
PRO
0
120
メルカリのリーダビリティチームが取り組む、AI時代のスケーラブルな品質文化
cloverrose
2
380
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
210
Featured
See All Featured
Unlocking the hidden potential of vector embeddings in international SEO
frankvandijk
0
130
How to audit for AI Accessibility on your Front & Back End
davetheseo
0
120
Navigating Weather and Climate Data
rabernat
0
53
Organizational Design Perspectives: An Ontology of Organizational Design Elements
kimpetersen
PRO
0
45
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
16k
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
196
70k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.6k
個人開発の失敗を避けるイケてる考え方 / tips for indie hackers
panda_program
122
21k
Claude Code どこまでも/ Claude Code Everywhere
nwiizo
61
49k
Designing for Timeless Needs
cassininazir
0
93
Transcript
How to Survive the Titanic with Machine Learning
Titanic II …no, I’m not joking
How to Predict Survival
Pandas Make Life Better http://pandas.pydata.org/
What’s the data look like? 2200 Passengers 1500 Died 700
Survived age, sex, class, ticket price, survival
Human Models
Women and Children First
Sex Based Model if ‘male’ then Survived = false ~77%
Accuracy
Adding More Variables sorry kids make way for the rich
Sex & Wealth Model if ‘male’ && ‘poor’ then Survived
= double false ~79% Accuracy
Machine Learning Use half the data to develop model Use
other half to test model accuracy Adjust the model according the results
Starting Decision Tree male dead 100%
Decision Trees dead alive dead alive dead alive male 3rd
2nd 1st 63% 37% 84% 16% 86% 14%
Random Forests
Machine Learning Results ~80% Accuracy
Conclusion Small data sets suck Simple models can be sufficient
If you want to survive, don’t be poor or a man
Try It Yourself http://www.kaggle.com/c/titanic-gettingStarted http://scikit-learn.org/