Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to Survive the Titanic
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Daniel Glunz
December 08, 2014
Programming
0
37
How to Survive the Titanic
Machine learnings to avoid iceberg induced death.
Daniel Glunz
December 08, 2014
Tweet
Share
Other Decks in Programming
See All in Programming
Smart Handoff/Pickup ガイド - Claude Code セッション管理
yukiigarashi
0
140
CSC307 Lecture 02
javiergs
PRO
1
780
AWS re:Invent 2025参加 直前 Seattle-Tacoma Airport(SEA)におけるハードウェア紛失インシデントLT
tetutetu214
2
120
FOSDEM 2026: STUNMESH-go: Building P2P WireGuard Mesh Without Self-Hosted Infrastructure
tjjh89017
0
170
疑似コードによるプロンプト記述、どのくらい正確に実行される?
kokuyouwind
0
390
Lambda のコードストレージ容量に気をつけましょう
tattwan718
0
140
AI Schema Enrichment for your Oracle AI Database
thatjeffsmith
0
320
Automatic Grammar Agreementと Markdown Extended Attributes について
kishikawakatsumi
0
200
CSC307 Lecture 10
javiergs
PRO
1
660
【卒業研究】会話ログ分析によるユーザーごとの関心に応じた話題提案手法
momok47
0
200
IFSによる形状設計/デモシーンの魅力 @ 慶應大学SFC
gam0022
1
310
ノイジーネイバー問題を解決する 公平なキューイング
occhi
0
110
Featured
See All Featured
16th Malabo Montpellier Forum Presentation
akademiya2063
PRO
0
52
How to Get Subject Matter Experts Bought In and Actively Contributing to SEO & PR Initiatives.
livdayseo
0
67
The agentic SEO stack - context over prompts
schlessera
0
640
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
128
55k
Groundhog Day: Seeking Process in Gaming for Health
codingconduct
0
94
GraphQLの誤解/rethinking-graphql
sonatard
74
11k
Statistics for Hackers
jakevdp
799
230k
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.7k
Balancing Empowerment & Direction
lara
5
890
A better future with KSS
kneath
240
18k
A Soul's Torment
seathinner
5
2.3k
Transcript
How to Survive the Titanic with Machine Learning
Titanic II …no, I’m not joking
How to Predict Survival
Pandas Make Life Better http://pandas.pydata.org/
What’s the data look like? 2200 Passengers 1500 Died 700
Survived age, sex, class, ticket price, survival
Human Models
Women and Children First
Sex Based Model if ‘male’ then Survived = false ~77%
Accuracy
Adding More Variables sorry kids make way for the rich
Sex & Wealth Model if ‘male’ && ‘poor’ then Survived
= double false ~79% Accuracy
Machine Learning Use half the data to develop model Use
other half to test model accuracy Adjust the model according the results
Starting Decision Tree male dead 100%
Decision Trees dead alive dead alive dead alive male 3rd
2nd 1st 63% 37% 84% 16% 86% 14%
Random Forests
Machine Learning Results ~80% Accuracy
Conclusion Small data sets suck Simple models can be sufficient
If you want to survive, don’t be poor or a man
Try It Yourself http://www.kaggle.com/c/titanic-gettingStarted http://scikit-learn.org/