Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
pycon_delhi_lightening
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
Devashish Deshpande
September 24, 2016
Technology
0
1.5k
pycon_delhi_lightening
Lightening talk delivered at PyCon India 2016
Devashish Deshpande
September 24, 2016
Tweet
Share
Other Decks in Technology
See All in Technology
配列に見る bash と zsh の違い
kazzpapa3
3
160
AIエージェントに必要なのはデータではなく文脈だった/ai-agent-context-graph-mybest
jonnojun
0
110
2026年、サーバーレスの現在地 -「制約と戦う技術」から「当たり前の実行基盤」へ- /serverless2026
slsops
2
260
プロポーザルに込める段取り八分
shoheimitani
1
470
OWASP Top 10:2025 リリースと 少しの日本語化にまつわる裏話
okdt
PRO
3
820
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
6
68k
コミュニティが変えるキャリアの地平線:コロナ禍新卒入社のエンジニアがAWSコミュニティで見つけた成長の羅針盤
kentosuzuki
0
130
Data Hubグループ 紹介資料
sansan33
PRO
0
2.7k
M&A 後の統合をどう進めるか ─ ナレッジワーク × Poetics が実践した組織とシステムの融合
kworkdev
PRO
1
480
レガシー共有バッチ基盤への挑戦 - SREドリブンなリアーキテクチャリングの取り組み
tatsukoni
0
220
Bedrock PolicyでAmazon Bedrock Guardrails利用を強制してみた
yuu551
0
250
Bill One 開発エンジニア 紹介資料
sansan33
PRO
5
17k
Featured
See All Featured
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.4k
The Anti-SEO Checklist Checklist. Pubcon Cyber Week
ryanjones
0
69
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
Ten Tips & Tricks for a 🌱 transition
stuffmc
0
70
Fantastic passwords and where to find them - at NoRuKo
philnash
52
3.6k
Product Roadmaps are Hard
iamctodd
PRO
55
12k
Introduction to Domain-Driven Design and Collaborative software design
baasie
1
590
Navigating Weather and Climate Data
rabernat
0
110
Designing Powerful Visuals for Engaging Learning
tmiket
0
240
Claude Code のすすめ
schroneko
67
210k
AI in Enterprises - Java and Open Source to the Rescue
ivargrimstad
0
1.1k
The Cost Of JavaScript in 2023
addyosmani
55
9.5k
Transcript
News classification with Gensim Devashish Deshpande Undergraduate student RaRe Technologies
Incubator Program Github: dsquareindia Blogs: https://rare-technologies.com/blog/
Gensim: Topic modeling in python
Problem of News (mis)classification
Screenshots from play newsstand
Topic-word coloring with LDA Image taken from LDA paper by
David Blei
What is a good LDA model? • Come up with
good topics • Infer topic distribution (United topic): mourinho, red_devils, old_trafford, bad_team... (Arsenal topic): wenger, henry, invincibles,.... (City topic): aguero, etihad, england, premier_league (Chelsea topic): blues, football, roman, bridge,... Football LDA model
Evaluating topic models • Manually – Look at the topics.
See if they are interpretable. – Comparing different topic models Qualititative
None
Topic Coherence • Quantitave
Topic Coherence • Assign a number to the human interpretability!
Comparing topic models becomes much easier
Topic Coherence • Better LDA -> Better topics -> Better
classification Topics from topic modeling tutorial on Lee corpus
Join the community! • Pick up issues from: https://github.com/RaRe-Technologies/gensim •
Come for the sprint!