Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
pycon_delhi_lightening
Search
Devashish Deshpande
September 24, 2016
Technology
0
1.5k
pycon_delhi_lightening
Lightening talk delivered at PyCon India 2016
Devashish Deshpande
September 24, 2016
Tweet
Share
Other Decks in Technology
See All in Technology
JAZUG 15周年記念 × JAT「AI Agent開発者必見:"今"のOracle技術で拡張するAzure × OCIの共存アーキテクチャ」
shisyu_gaku
0
130
『OCI で学ぶクラウドネイティブ 実践 × 理論ガイド』 書籍概要
oracle4engineer
PRO
2
140
10年の共創が示す、これからの開発者と企業の関係 ~ Crossroad
soracom
PRO
1
620
pprof vs runtime/trace (FlightRecorder)
task4233
0
180
英語は話せません!それでも海外チームと信頼関係を作るため、対話を重ねた2ヶ月間のまなび
niioka_97
0
130
20201008_ファインディ_品質意識を育てる役目は人かAIか___2_.pdf
findy_eventslides
2
550
VCC 2025 Write-up
bata_24
0
180
空間を設計する力を考える / 20251004 Naoki Takahashi
shift_evolve
PRO
4
440
データエンジニアがこの先生きのこるには...?
10xinc
0
460
"プロポーザルってなんか怖そう"という境界を超えてみた@TSUDOI by giftee Tech #1
shilo113
0
130
スタートアップにおけるこれからの「データ整備」
shomaekawa
1
300
多野優介
tanoyusuke
1
480
Featured
See All Featured
Code Review Best Practice
trishagee
72
19k
Testing 201, or: Great Expectations
jmmastey
45
7.7k
ピンチをチャンスに:未来をつくるプロダクトロードマップ #pmconf2020
aki_iinuma
127
53k
Into the Great Unknown - MozCon
thekraken
40
2.1k
4 Signs Your Business is Dying
shpigford
185
22k
Dealing with People You Can't Stand - Big Design 2015
cassininazir
367
27k
Six Lessons from altMBA
skipperchong
28
4k
Building Applications with DynamoDB
mza
96
6.6k
Stop Working from a Prison Cell
hatefulcrawdad
271
21k
Learning to Love Humans: Emotional Interface Design
aarron
274
41k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
16k
How GitHub (no longer) Works
holman
315
140k
Transcript
News classification with Gensim Devashish Deshpande Undergraduate student RaRe Technologies
Incubator Program Github: dsquareindia Blogs: https://rare-technologies.com/blog/
Gensim: Topic modeling in python
Problem of News (mis)classification
Screenshots from play newsstand
Topic-word coloring with LDA Image taken from LDA paper by
David Blei
What is a good LDA model? • Come up with
good topics • Infer topic distribution (United topic): mourinho, red_devils, old_trafford, bad_team... (Arsenal topic): wenger, henry, invincibles,.... (City topic): aguero, etihad, england, premier_league (Chelsea topic): blues, football, roman, bridge,... Football LDA model
Evaluating topic models • Manually – Look at the topics.
See if they are interpretable. – Comparing different topic models Qualititative
None
Topic Coherence • Quantitave
Topic Coherence • Assign a number to the human interpretability!
Comparing topic models becomes much easier
Topic Coherence • Better LDA -> Better topics -> Better
classification Topics from topic modeling tutorial on Lee corpus
Join the community! • Pick up issues from: https://github.com/RaRe-Technologies/gensim •
Come for the sprint!