Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
pycon_delhi_lightening
Search
Devashish Deshpande
September 24, 2016
Technology
0
1.5k
pycon_delhi_lightening
Lightening talk delivered at PyCon India 2016
Devashish Deshpande
September 24, 2016
Tweet
Share
Other Decks in Technology
See All in Technology
Identity Management for Agentic AI 解説
fujie
0
490
AWSの新機能をフル活用した「re:Inventエージェント」開発秘話
minorun365
2
470
100以上の新規コネクタ提供を可能にしたアーキテクチャ
ooyukioo
0
260
ハッカソンから社内プロダクトへ AIエージェント ko☆shi 開発で学んだ4つの重要要素
leveragestech
0
240
Amazon Bedrock Knowledge Bases × メタデータ活用で実現する検証可能な RAG 設計
tomoaki25
6
2.4k
20251222_サンフランシスコサバイバル術
ponponmikankan
2
140
Entity Framework Core におけるIN句クエリ最適化について
htkym
0
130
AI との良い付き合い方を僕らは誰も知らない
asei
0
270
アプリにAIを正しく組み込むための アーキテクチャ── 国産LLMの現実と実践
kohju
0
230
アラフォーおじさん、はじめてre:Inventに行く / A 40-Something Guy’s First re:Invent Adventure
kaminashi
0
160
Claude Skillsの テスト業務での活用事例
moritamasami
1
110
AI駆動開発ライフサイクル(AI-DLC)の始め方
ryansbcho79
0
200
Featured
See All Featured
Test your architecture with Archunit
thirion
1
2.1k
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
74
Code Review Best Practice
trishagee
74
19k
Put a Button on it: Removing Barriers to Going Fast.
kastner
60
4.1k
The Art of Programming - Codeland 2020
erikaheidi
56
14k
Max Prin - Stacking Signals: How International SEO Comes Together (And Falls Apart)
techseoconnect
PRO
0
51
Agile that works and the tools we love
rasmusluckow
331
21k
Imperfection Machines: The Place of Print at Facebook
scottboms
269
13k
JavaScript: Past, Present, and Future - NDC Porto 2020
reverentgeek
52
5.8k
The Language of Interfaces
destraynor
162
25k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Marketing to machines
jonoalderson
1
4.4k
Transcript
News classification with Gensim Devashish Deshpande Undergraduate student RaRe Technologies
Incubator Program Github: dsquareindia Blogs: https://rare-technologies.com/blog/
Gensim: Topic modeling in python
Problem of News (mis)classification
Screenshots from play newsstand
Topic-word coloring with LDA Image taken from LDA paper by
David Blei
What is a good LDA model? • Come up with
good topics • Infer topic distribution (United topic): mourinho, red_devils, old_trafford, bad_team... (Arsenal topic): wenger, henry, invincibles,.... (City topic): aguero, etihad, england, premier_league (Chelsea topic): blues, football, roman, bridge,... Football LDA model
Evaluating topic models • Manually – Look at the topics.
See if they are interpretable. – Comparing different topic models Qualititative
None
Topic Coherence • Quantitave
Topic Coherence • Assign a number to the human interpretability!
Comparing topic models becomes much easier
Topic Coherence • Better LDA -> Better topics -> Better
classification Topics from topic modeling tutorial on Lee corpus
Join the community! • Pick up issues from: https://github.com/RaRe-Technologies/gensim •
Come for the sprint!