Lock in $30 Savings on PRO—Offer Ends Soon! ⏳
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
pycon_delhi_lightening
Search
Devashish Deshpande
September 24, 2016
Technology
0
1.5k
pycon_delhi_lightening
Lightening talk delivered at PyCon India 2016
Devashish Deshpande
September 24, 2016
Tweet
Share
Other Decks in Technology
See All in Technology
マルチドライブアーキテクチャ: 複数の駆動力でプロダクトを前進させる
knih
0
12k
Introduction to Sansan for Engineers / エンジニア向け会社紹介
sansan33
PRO
5
45k
確実に伝えるHealth通知 〜半自動システムでほどよく漏れなく / JAWS-UG 神戸 #9 神戸へようこそ!LT会
genda
0
160
段階的に進める、 挫折しない自宅サーバ入門
yu_kod
4
1.5k
【ASW21-02】STAMP/CAST分析における生成AIの支援 ~羽田空港航空機衝突事故を題材として (Support of Generative AI in STAMP/CAST Analysis - A Case Study Based on the Haneda Airport Aircraft Accident -)
hianraku9498
1
270
AI時代のインシデント対応 〜時代を切り抜ける、組織アーキテクチャ〜
jacopen
4
170
一億総業務改善を支える社内AIエージェント基盤の要諦
yukukotani
4
1.9k
pmconf 2025 大阪「生成AI時代に未来を切り開くためのプロダクト戦略:圧倒的生産性を実現するためのプロダクトサイクロン」 / The Product Cyclone for Outstanding Productivity
yamamuteki
3
2.9k
Contract One Engineering Unit 紹介資料
sansan33
PRO
0
9.7k
AS59105におけるFreeBSD EtherIPの運用と課題
x86taka
0
310
命名から始めるSpec Driven
kuruwic
1
630
今すぐGoogle Antigravityを触りましょう
rfdnxbro
0
230
Featured
See All Featured
Six Lessons from altMBA
skipperchong
29
4.1k
GitHub's CSS Performance
jonrohan
1032
470k
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.2k
Thoughts on Productivity
jonyablonski
73
4.9k
Why You Should Never Use an ORM
jnunemaker
PRO
60
9.6k
A better future with KSS
kneath
239
18k
StorybookのUI Testing Handbookを読んだ
zakiyama
31
6.4k
Become a Pro
speakerdeck
PRO
30
5.6k
Stop Working from a Prison Cell
hatefulcrawdad
273
21k
Documentation Writing (for coders)
carmenintech
76
5.1k
Understanding Cognitive Biases in Performance Measurement
bluesmoon
31
2.7k
Faster Mobile Websites
deanohume
310
31k
Transcript
News classification with Gensim Devashish Deshpande Undergraduate student RaRe Technologies
Incubator Program Github: dsquareindia Blogs: https://rare-technologies.com/blog/
Gensim: Topic modeling in python
Problem of News (mis)classification
Screenshots from play newsstand
Topic-word coloring with LDA Image taken from LDA paper by
David Blei
What is a good LDA model? • Come up with
good topics • Infer topic distribution (United topic): mourinho, red_devils, old_trafford, bad_team... (Arsenal topic): wenger, henry, invincibles,.... (City topic): aguero, etihad, england, premier_league (Chelsea topic): blues, football, roman, bridge,... Football LDA model
Evaluating topic models • Manually – Look at the topics.
See if they are interpretable. – Comparing different topic models Qualititative
None
Topic Coherence • Quantitave
Topic Coherence • Assign a number to the human interpretability!
Comparing topic models becomes much easier
Topic Coherence • Better LDA -> Better topics -> Better
classification Topics from topic modeling tutorial on Lee corpus
Join the community! • Pick up issues from: https://github.com/RaRe-Technologies/gensim •
Come for the sprint!