Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
DAILY PREDICTION OF PARTICULATE MATTERS USING N...
Search
Diego Triana
December 20, 2019
Science
0
52
DAILY PREDICTION OF PARTICULATE MATTERS USING NEURAL NETWORKS AND ENSEMBLING METHODS
Final results of the investigation project.
Diego Triana
December 20, 2019
Tweet
Share
More Decks by Diego Triana
See All by Diego Triana
Preliminary project plan
dtrianab
0
110
Other Decks in Science
See All in Science
Text-to-SQLの既存の評価指標を問い直す
gotalab555
1
170
KH Coderチュートリアル(スライド版)
koichih
1
58k
Hakonwa-Quaternion
hiranabe
1
170
データマイニング - グラフ埋め込み入門
trycycle
PRO
1
160
AI(人工知能)の過去・現在・未来 —AIは人間を超えるのか—
tagtag
PRO
0
140
ド文系だった私が、 KaggleのNCAAコンペでソロ金取れるまで
wakamatsu_takumu
2
1.9k
データマイニング - グラフ構造の諸指標
trycycle
PRO
0
260
LayerXにおける業務の完全自動運転化に向けたAI技術活用事例 / layerx-ai-jsai2025
shimacos
6
21k
Optimization of the Tournament Format for the Nationwide High School Kyudo Competition in Japan
konakalab
0
150
蔵本モデルが解き明かす同期と相転移の秘密 〜拍手のリズムはなぜ揃うのか?〜
syotasasaki593876
1
210
PPIのみを用いたAIによる薬剤–遺伝子–疾患 相互作用の同定
tagtag
PRO
0
160
【論文紹介】Is CLIP ideal? No. Can we fix it?Yes! 第65回 コンピュータビジョン勉強会@関東
shun6211
5
2.3k
Featured
See All Featured
Reflections from 52 weeks, 52 projects
jeffersonlam
356
21k
The World Runs on Bad Software
bkeepers
PRO
72
12k
Distributed Sagas: A Protocol for Coordinating Microservices
caitiem20
333
22k
Sharpening the Axe: The Primacy of Toolmaking
bcantrill
46
2.7k
Statistics for Hackers
jakevdp
799
230k
Paper Plane (Part 1)
katiecoart
PRO
0
4.3k
The Curse of the Amulet
leimatthew05
1
8.7k
So, you think you're a good person
axbom
PRO
2
1.9k
ラッコキーワード サービス紹介資料
rakko
1
2.3M
Digital Ethics as a Driver of Design Innovation
axbom
PRO
1
190
How Software Deployment tools have changed in the past 20 years
geshan
0
32k
Embracing the Ebb and Flow
colly
88
5k
Transcript
DAILY PREDICTION OF PARTICULATE MATTERS USING NEURAL NETWORKS AND ENSEMBLING
METHODS By Diego Triana Supervisor: prof. dr hab. inż. Stanisław Osowski 1
PROBLEM DESCRIPTION Measurements of PM in a given place Raw
Data Model 1 MLP Model 2 RBF Model 3 SVM Training Testing FORECAST Can we improve the forecast performance by combining the models? Performance 2
METHODOLOGY • PM2.5 Chinese • PM10 Polish • Data Analysis
▪ Statistical Analysis ▪ Processing input variables • Generation of Diagnostic Features • Feature Selection • PCA • Stepwise • Design of Predictors ▪ MLP ❖ Levenberg-Marquardt back- propagation algorithm ▪ RBF ❖ Levenberg-Marquardt algorithm ▪ SVM ❖ Bayesian optimization (C , σ and ε) ▪ RF ❖ LSBoost • Measure of Performance • Comparison of Results • Ensemble Methods ▪ Dynamic Integration ▪ Bagging ▪ Adaboost • Optimization of Ensembles ▪ Number of Predictors ▪ Loss Function 3
DATASETS (RAW DATA) 4
5
6
DIAGNOSTIC FEATURES 7
8
Daily Chinese Dataset 9
Daily Polish Dataset 10
11
12
PERFORMANCE OF SINGLE PREDICTORS PM2.5 Chinese Data PM10 Polish Data
13
REPEATABILITY OF SINGLE PREDICTORS PM10 (Poland) PM2.5 (China) 14
BAGGING • Bags of 80% from whole training dataset •
150 Predictors 15
ADABOOST Slopes: PM10 |PL | MLP | γ =3.5 PM10
|PL | RF | γ =2.0 PM2.5 |CH| MLP | γ =4.5 PM2.5 |CH| RF | γ =2.5 T=150 Predictors 16
MAE (AVERAGE 20 TIMES RUNS) 17
MAPE (AVERAGE 20 TIMES RUNS) 18
RMSD (AVERAGE 20 TIMES RUNS) 19
Q&A • THANK YOU 20 Instytut Elektrotechniki Teoretycznej i Systemów
Informacyjno-Pomiarowych Zakład Elektrotechniki Teoretycznej i Informatyki Stosowanej