Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to scale large database
Search
duongkai
May 23, 2013
Programming
3
200
How to scale large database
Bài nói về các kĩ thuật để mở rộng một database lớn.
duongkai
May 23, 2013
Tweet
Share
More Decks by duongkai
See All by duongkai
Common crypto flaws in finance mobile apps
duongkai
0
83
Tetcon-2015 Using TLS correctly
duongkai
2
360
How to use SSL/TLS correctly
duongkai
1
170
5S - Xây dựng và thực hiện
duongkai
0
160
Why Random Matters
duongkai
0
74
Crypto-101 @hackerspace 26/07/2013
duongkai
1
110
Trao đổi email
duongkai
0
160
+TetCon.2013_Hacking.Oracle.2012.pdf
duongkai
0
130
Other Decks in Programming
See All in Programming
PostgreSQLのRow Level SecurityをPHPのORMで扱う Eloquent vs Doctrine #phpcon #track2
77web
2
410
Node-RED を(HTTP で)つなげる MCP サーバーを作ってみた
highu
0
110
アンドパッドの Go 勉強会「 gopher 会」とその内容の紹介
andpad
0
280
git worktree × Claude Code × MCP ~生成AI時代の並列開発フロー~
hisuzuya
1
510
第9回 情シス転職ミートアップ 株式会社IVRy(アイブリー)の紹介
ivry_presentationmaterials
1
250
What Spring Developers Should Know About Jakarta EE
ivargrimstad
0
330
AWS CDKの推しポイント 〜CloudFormationと比較してみた〜
akihisaikeda
3
320
20250628_非エンジニアがバイブコーディングしてみた
ponponmikankan
0
530
Bytecode Manipulation 으로 생산성 높이기
bigstark
2
390
GitHub Copilot and GitHub Codespaces Hands-on
ymd65536
1
130
deno-redisの紹介とJSRパッケージの運用について (toranoana.deno #21)
uki00a
0
160
Cursor AI Agentと伴走する アプリケーションの高速リプレイス
daisuketakeda
1
130
Featured
See All Featured
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.4k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Build The Right Thing And Hit Your Dates
maggiecrowley
36
2.8k
Fashionably flexible responsive web design (full day workshop)
malarkey
407
66k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.8k
Scaling GitHub
holman
459
140k
Fight the Zombie Pattern Library - RWD Summit 2016
marcelosomers
233
17k
The Cost Of JavaScript in 2023
addyosmani
51
8.5k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
161
15k
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
53k
Bootstrapping a Software Product
garrettdimon
PRO
307
110k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
34
5.9k
Transcript
How To Scale Large Database Phạm Tùng Dương – CIO03
Course: Advanced Database
Overview • First glance about Large Database • Typical techniques
to scale • Database sharding • Database sharding in MySQL
First glance about Large Database
When You Talk about Large Database
Example Tumblr @2012
Example • 400 million active users • 5 billion pieces
of content per week • 3 billion photos uploaded per month Facebook@2010
Example • 1 billion tweets per week • 140 million
tweets sent per day • 456 tweets per second @MJ death • 6939 tweets per second on NY day Twitter@2011
What is The Large Database • Large working data sets
• I/O write intensive
Typical approaches
What is The Bottleneck? I/O, I/O and I/O
We have a job which is called Performance Tuning
Scale up • Adding more RAM, more CPU • High
I/O HDD
Scale topo Replication (Master – Slave) Master Slave Client Read/Write
Read Only Master Master Storage Client Cluster (shared storage)
Caching • Memcached • Redis
Finally, Everything in RAM is a Dream!
But, No Silver Bullet!
Database Sharding
What is Database Sharding • Horizontal Partitioning • Data is
stored in small chunks and distributed across many computers • Often use with Replication
Database sharding topo Primary DB Shard1 Shard2
Shard3 Slave1 Slave2 Slave3
3 types • Range sharding • List sharding (Lookup table)
• Hash sharding
Range sharding • Distributed by the range of Primary Key
• Example – Primary Key: user_id (1..1000) user_shard1 (1..500) user_shard2 (501..1000)
List sharding • Distributed data by the attribute of the
data • Example: database of people in VN – Sharded by the city_name (Ha_Noi, Hai_Phong, Da_Nang,…)
Hash sharding (modulus) • Distributed data by using a hash
function on primary key. • Example: primary_key mod N
Pros of Database Sharding • Easy to scale (data, write
I/O) • Using commodity hardware • Minimum effect when system failed
Cons of Database sharding • You MUST implement by yourselves
• Operation is harder • Handle join operation is very difficult • Data denormalization – > Don’t do it because it’s COOL!
Database Sharding in MySQL
Sharding Solutions • Application layer • Storage layer • Heavy
middleware • Lightweight middleware
Application layer • Hibernate Shards • HiveDB
Storage layer • MySQL Spider – Requires to change storage engine
of MySQL
Heavy Middleware • Twitter Gizzard • dbShards – Each db
has an agent
Lightweight Middleware • Acts like a proxy • Route the
request • Spock, CUBRID
You Will Do It Because You Have To … not
because it’s Cool!
Q&A