$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to scale large database
Search
duongkai
May 23, 2013
Programming
3
200
How to scale large database
Bài nói về các kĩ thuật để mở rộng một database lớn.
duongkai
May 23, 2013
Tweet
Share
More Decks by duongkai
See All by duongkai
Common crypto flaws in finance mobile apps
duongkai
0
84
Tetcon-2015 Using TLS correctly
duongkai
2
360
How to use SSL/TLS correctly
duongkai
1
180
5S - Xây dựng và thực hiện
duongkai
0
160
Why Random Matters
duongkai
0
77
Crypto-101 @hackerspace 26/07/2013
duongkai
1
110
Trao đổi email
duongkai
0
160
+TetCon.2013_Hacking.Oracle.2012.pdf
duongkai
0
150
Other Decks in Programming
See All in Programming
sbt 2
xuwei_k
0
300
Go コードベースの構成と AI コンテキスト定義
andpad
0
130
Developing static sites with Ruby
okuramasafumi
0
310
著者と進める!『AIと個人開発したくなったらまずCursorで要件定義だ!』
yasunacoffee
0
150
Navigating Dependency Injection with Metro
l2hyunwoo
1
130
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
190
エディターってAIで操作できるんだぜ
kis9a
0
740
公共交通オープンデータ × モバイルUX 複雑な運行情報を 『直感』に変換する技術
tinykitten
PRO
0
130
リリース時」テストから「デイリー実行」へ!開発マネージャが取り組んだ、レガシー自動テストのモダン化戦略
goataka
0
130
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
140
複数人でのCLI/Infrastructure as Codeの暮らしを良くする
shmokmt
5
2.3k
令和最新版Android Studioで化石デバイス向けアプリを作る
arkw
0
410
Featured
See All Featured
Navigating Team Friction
lara
191
16k
The Art of Delivering Value - GDevCon NA Keynote
reverentgeek
16
1.8k
Breaking role norms: Why Content Design is so much more than writing copy - Taylor Woolridge
uxyall
0
110
The MySQL Ecosystem @ GitHub 2015
samlambert
251
13k
Collaborative Software Design: How to facilitate domain modelling decisions
baasie
0
93
Accessibility Awareness
sabderemane
0
15
Technical Leadership for Architectural Decision Making
baasie
0
180
What Being in a Rock Band Can Teach Us About Real World SEO
427marketing
0
140
Optimizing for Happiness
mojombo
379
70k
Fireside Chat
paigeccino
41
3.7k
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.2k
Bioeconomy Workshop: Dr. Julius Ecuru, Opportunities for a Bioeconomy in West Africa
akademiya2063
PRO
0
25
Transcript
How To Scale Large Database Phạm Tùng Dương – CIO03
Course: Advanced Database
Overview • First glance about Large Database • Typical techniques
to scale • Database sharding • Database sharding in MySQL
First glance about Large Database
When You Talk about Large Database
Example Tumblr @2012
Example • 400 million active users • 5 billion pieces
of content per week • 3 billion photos uploaded per month Facebook@2010
Example • 1 billion tweets per week • 140 million
tweets sent per day • 456 tweets per second @MJ death • 6939 tweets per second on NY day Twitter@2011
What is The Large Database • Large working data sets
• I/O write intensive
Typical approaches
What is The Bottleneck? I/O, I/O and I/O
We have a job which is called Performance Tuning
Scale up • Adding more RAM, more CPU • High
I/O HDD
Scale topo Replication (Master – Slave) Master Slave Client Read/Write
Read Only Master Master Storage Client Cluster (shared storage)
Caching • Memcached • Redis
Finally, Everything in RAM is a Dream!
But, No Silver Bullet!
Database Sharding
What is Database Sharding • Horizontal Partitioning • Data is
stored in small chunks and distributed across many computers • Often use with Replication
Database sharding topo Primary DB Shard1 Shard2
Shard3 Slave1 Slave2 Slave3
3 types • Range sharding • List sharding (Lookup table)
• Hash sharding
Range sharding • Distributed by the range of Primary Key
• Example – Primary Key: user_id (1..1000) user_shard1 (1..500) user_shard2 (501..1000)
List sharding • Distributed data by the attribute of the
data • Example: database of people in VN – Sharded by the city_name (Ha_Noi, Hai_Phong, Da_Nang,…)
Hash sharding (modulus) • Distributed data by using a hash
function on primary key. • Example: primary_key mod N
Pros of Database Sharding • Easy to scale (data, write
I/O) • Using commodity hardware • Minimum effect when system failed
Cons of Database sharding • You MUST implement by yourselves
• Operation is harder • Handle join operation is very difficult • Data denormalization – > Don’t do it because it’s COOL!
Database Sharding in MySQL
Sharding Solutions • Application layer • Storage layer • Heavy
middleware • Lightweight middleware
Application layer • Hibernate Shards • HiveDB
Storage layer • MySQL Spider – Requires to change storage engine
of MySQL
Heavy Middleware • Twitter Gizzard • dbShards – Each db
has an agent
Lightweight Middleware • Acts like a proxy • Route the
request • Spock, CUBRID
You Will Do It Because You Have To … not
because it’s Cool!
Q&A