Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to scale large database
Search
Sponsored
·
Your Podcast. Everywhere. Effortlessly.
Share. Educate. Inspire. Entertain. You do you. We'll handle the rest.
→
duongkai
May 23, 2013
Programming
3
200
How to scale large database
Bài nói về các kĩ thuật để mở rộng một database lớn.
duongkai
May 23, 2013
Tweet
Share
More Decks by duongkai
See All by duongkai
Common crypto flaws in finance mobile apps
duongkai
0
84
Tetcon-2015 Using TLS correctly
duongkai
2
370
How to use SSL/TLS correctly
duongkai
1
180
5S - Xây dựng và thực hiện
duongkai
0
160
Why Random Matters
duongkai
0
77
Crypto-101 @hackerspace 26/07/2013
duongkai
1
110
Trao đổi email
duongkai
0
160
+TetCon.2013_Hacking.Oracle.2012.pdf
duongkai
0
150
Other Decks in Programming
See All in Programming
Spinner 軸ズレ現象を調べたらレンダリング深淵に飲まれた #レバテックMeetup
bengo4com
1
230
例外処理とどう使い分ける?Result型を使ったエラー設計 #burikaigi
kajitack
16
6k
16年目のピクシブ百科事典を支える最新の技術基盤 / The Modern Tech Stack Powering Pixiv Encyclopedia in its 16th Year
ahuglajbclajep
5
1k
Rust 製のコードエディタ “Zed” を使ってみた
nearme_tech
PRO
0
160
The Past, Present, and Future of Enterprise Java
ivargrimstad
0
550
AtCoder Conference 2025
shindannin
0
1.1k
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
360° Signals in Angular: Signal Forms with SignalStore & Resources @ngLondon 01/2026
manfredsteyer
PRO
0
120
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
560
humanlayerのブログから学ぶ、良いCLAUDE.mdの書き方
tsukamoto1783
0
190
組織で育むオブザーバビリティ
ryota_hnk
0
170
Featured
See All Featured
Agile Actions for Facilitating Distributed Teams - ADO2019
mkilby
0
110
Are puppies a ranking factor?
jonoalderson
1
2.7k
The Limits of Empathy - UXLibs8
cassininazir
1
210
ReactJS: Keep Simple. Everything can be a component!
pedronauck
666
130k
A Modern Web Designer's Workflow
chriscoyier
698
190k
First, design no harm
axbom
PRO
2
1.1k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.3k
Build The Right Thing And Hit Your Dates
maggiecrowley
38
3k
Building AI with AI
inesmontani
PRO
1
690
技術選定の審美眼(2025年版) / Understanding the Spiral of Technologies 2025 edition
twada
PRO
117
110k
Easily Structure & Communicate Ideas using Wireframe
afnizarnur
194
17k
The Mindset for Success: Future Career Progression
greggifford
PRO
0
240
Transcript
How To Scale Large Database Phạm Tùng Dương – CIO03
Course: Advanced Database
Overview • First glance about Large Database • Typical techniques
to scale • Database sharding • Database sharding in MySQL
First glance about Large Database
When You Talk about Large Database
Example Tumblr @2012
Example • 400 million active users • 5 billion pieces
of content per week • 3 billion photos uploaded per month Facebook@2010
Example • 1 billion tweets per week • 140 million
tweets sent per day • 456 tweets per second @MJ death • 6939 tweets per second on NY day Twitter@2011
What is The Large Database • Large working data sets
• I/O write intensive
Typical approaches
What is The Bottleneck? I/O, I/O and I/O
We have a job which is called Performance Tuning
Scale up • Adding more RAM, more CPU • High
I/O HDD
Scale topo Replication (Master – Slave) Master Slave Client Read/Write
Read Only Master Master Storage Client Cluster (shared storage)
Caching • Memcached • Redis
Finally, Everything in RAM is a Dream!
But, No Silver Bullet!
Database Sharding
What is Database Sharding • Horizontal Partitioning • Data is
stored in small chunks and distributed across many computers • Often use with Replication
Database sharding topo Primary DB Shard1 Shard2
Shard3 Slave1 Slave2 Slave3
3 types • Range sharding • List sharding (Lookup table)
• Hash sharding
Range sharding • Distributed by the range of Primary Key
• Example – Primary Key: user_id (1..1000) user_shard1 (1..500) user_shard2 (501..1000)
List sharding • Distributed data by the attribute of the
data • Example: database of people in VN – Sharded by the city_name (Ha_Noi, Hai_Phong, Da_Nang,…)
Hash sharding (modulus) • Distributed data by using a hash
function on primary key. • Example: primary_key mod N
Pros of Database Sharding • Easy to scale (data, write
I/O) • Using commodity hardware • Minimum effect when system failed
Cons of Database sharding • You MUST implement by yourselves
• Operation is harder • Handle join operation is very difficult • Data denormalization – > Don’t do it because it’s COOL!
Database Sharding in MySQL
Sharding Solutions • Application layer • Storage layer • Heavy
middleware • Lightweight middleware
Application layer • Hibernate Shards • HiveDB
Storage layer • MySQL Spider – Requires to change storage engine
of MySQL
Heavy Middleware • Twitter Gizzard • dbShards – Each db
has an agent
Lightweight Middleware • Acts like a proxy • Route the
request • Spock, CUBRID
You Will Do It Because You Have To … not
because it’s Cool!
Q&A