Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to scale large database
Search
duongkai
May 23, 2013
Programming
3
200
How to scale large database
Bài nói về các kĩ thuật để mở rộng một database lớn.
duongkai
May 23, 2013
Tweet
Share
More Decks by duongkai
See All by duongkai
Common crypto flaws in finance mobile apps
duongkai
0
83
Tetcon-2015 Using TLS correctly
duongkai
2
360
How to use SSL/TLS correctly
duongkai
1
170
5S - Xây dựng và thực hiện
duongkai
0
160
Why Random Matters
duongkai
0
74
Crypto-101 @hackerspace 26/07/2013
duongkai
1
110
Trao đổi email
duongkai
0
160
+TetCon.2013_Hacking.Oracle.2012.pdf
duongkai
0
140
Other Decks in Programming
See All in Programming
為你自己學 Python - 冷知識篇
eddie
1
350
HTMLの品質ってなんだっけ? “HTMLクライテリア”の設計と実践
unachang113
4
2.9k
Swift Updates - Learn Languages 2025
koher
2
480
Android 16 × Jetpack Composeで縦書きテキストエディタを作ろう / Vertical Text Editor with Compose on Android 16
cc4966
2
240
「待たせ上手」なスケルトンスクリーン、 そのUXの裏側
teamlab
PRO
0
530
チームのテスト力を鍛える
goyoki
3
310
概念モデル→論理モデルで気をつけていること
sunnyone
2
270
ぬるぬる動かせ! Riveでアニメーション実装🐾
kno3a87
1
220
Testing Trophyは叫ばない
toms74209200
0
880
AIを活用し、今後に備えるための技術知識 / Basic Knowledge to Utilize AI
kishida
22
5.8k
もうちょっといいRubyプロファイラを作りたい (2025)
osyoyu
1
440
Putting The Genie in the Bottle - A Crash Course on running LLMs on Android
iurysza
0
140
Featured
See All Featured
Visualizing Your Data: Incorporating Mongo into Loggly Infrastructure
mongodb
48
9.7k
The Cult of Friendly URLs
andyhume
79
6.6k
Why Our Code Smells
bkeepers
PRO
339
57k
Site-Speed That Sticks
csswizardry
10
820
Helping Users Find Their Own Way: Creating Modern Search Experiences
danielanewman
29
2.9k
What's in a price? How to price your products and services
michaelherold
246
12k
CoffeeScript is Beautiful & I Never Want to Write Plain JavaScript Again
sstephenson
162
15k
The World Runs on Bad Software
bkeepers
PRO
70
11k
Templates, Plugins, & Blocks: Oh My! Creating the theme that thinks of everything
marktimemedia
31
2.5k
Fireside Chat
paigeccino
39
3.6k
Building Applications with DynamoDB
mza
96
6.6k
実際に使うSQLの書き方 徹底解説 / pgcon21j-tutorial
soudai
PRO
188
55k
Transcript
How To Scale Large Database Phạm Tùng Dương – CIO03
Course: Advanced Database
Overview • First glance about Large Database • Typical techniques
to scale • Database sharding • Database sharding in MySQL
First glance about Large Database
When You Talk about Large Database
Example Tumblr @2012
Example • 400 million active users • 5 billion pieces
of content per week • 3 billion photos uploaded per month Facebook@2010
Example • 1 billion tweets per week • 140 million
tweets sent per day • 456 tweets per second @MJ death • 6939 tweets per second on NY day Twitter@2011
What is The Large Database • Large working data sets
• I/O write intensive
Typical approaches
What is The Bottleneck? I/O, I/O and I/O
We have a job which is called Performance Tuning
Scale up • Adding more RAM, more CPU • High
I/O HDD
Scale topo Replication (Master – Slave) Master Slave Client Read/Write
Read Only Master Master Storage Client Cluster (shared storage)
Caching • Memcached • Redis
Finally, Everything in RAM is a Dream!
But, No Silver Bullet!
Database Sharding
What is Database Sharding • Horizontal Partitioning • Data is
stored in small chunks and distributed across many computers • Often use with Replication
Database sharding topo Primary DB Shard1 Shard2
Shard3 Slave1 Slave2 Slave3
3 types • Range sharding • List sharding (Lookup table)
• Hash sharding
Range sharding • Distributed by the range of Primary Key
• Example – Primary Key: user_id (1..1000) user_shard1 (1..500) user_shard2 (501..1000)
List sharding • Distributed data by the attribute of the
data • Example: database of people in VN – Sharded by the city_name (Ha_Noi, Hai_Phong, Da_Nang,…)
Hash sharding (modulus) • Distributed data by using a hash
function on primary key. • Example: primary_key mod N
Pros of Database Sharding • Easy to scale (data, write
I/O) • Using commodity hardware • Minimum effect when system failed
Cons of Database sharding • You MUST implement by yourselves
• Operation is harder • Handle join operation is very difficult • Data denormalization – > Don’t do it because it’s COOL!
Database Sharding in MySQL
Sharding Solutions • Application layer • Storage layer • Heavy
middleware • Lightweight middleware
Application layer • Hibernate Shards • HiveDB
Storage layer • MySQL Spider – Requires to change storage engine
of MySQL
Heavy Middleware • Twitter Gizzard • dbShards – Each db
has an agent
Lightweight Middleware • Acts like a proxy • Route the
request • Spock, CUBRID
You Will Do It Because You Have To … not
because it’s Cool!
Q&A