Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to scale large database
Search
Sponsored
·
Ship Features Fearlessly
Turn features on and off without deploys. Used by thousands of Ruby developers.
→
duongkai
May 23, 2013
Programming
3
200
How to scale large database
Bài nói về các kĩ thuật để mở rộng một database lớn.
duongkai
May 23, 2013
Tweet
Share
More Decks by duongkai
See All by duongkai
Common crypto flaws in finance mobile apps
duongkai
0
84
Tetcon-2015 Using TLS correctly
duongkai
2
370
How to use SSL/TLS correctly
duongkai
1
180
5S - Xây dựng và thực hiện
duongkai
0
160
Why Random Matters
duongkai
0
77
Crypto-101 @hackerspace 26/07/2013
duongkai
1
110
Trao đổi email
duongkai
0
160
+TetCon.2013_Hacking.Oracle.2012.pdf
duongkai
0
150
Other Decks in Programming
See All in Programming
Patterns of Patterns
denyspoltorak
0
1.4k
AIによるイベントストーミング図からのコード生成 / AI-powered code generation from Event Storming diagrams
nrslib
2
1.9k
Honoを使ったリモートMCPサーバでAIツールとの連携を加速させる!
tosuri13
1
180
0→1 フロントエンド開発 Tips🚀 #レバテックMeetup
bengo4com
0
560
それ、本当に安全? ファイルアップロードで見落としがちなセキュリティリスクと対策
penpeen
7
3.9k
CSC307 Lecture 06
javiergs
PRO
0
680
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.3k
OCaml 5でモダンな並列プログラミングを Enjoyしよう!
haochenx
0
140
Apache Iceberg V3 and migration to V3
tomtanaka
0
160
なぜSQLはAIぽく見えるのか/why does SQL look AI like
florets1
0
460
AWS re:Invent 2025参加 直前 Seattle-Tacoma Airport(SEA)におけるハードウェア紛失インシデントLT
tetutetu214
2
110
そのAIレビュー、レビューしてますか? / Are you reviewing those AI reviews?
rkaga
6
4.6k
Featured
See All Featured
Have SEOs Ruined the Internet? - User Awareness of SEO in 2025
akashhashmi
0
270
BBQ
matthewcrist
89
10k
brightonSEO & MeasureFest 2025 - Christian Goodrich - Winning strategies for Black Friday CRO & PPC
cargoodrich
3
99
XXLCSS - How to scale CSS and keep your sanity
sugarenia
249
1.3M
Exploring the Power of Turbo Streams & Action Cable | RailsConf2023
kevinliebholz
37
6.3k
Claude Code のすすめ
schroneko
67
210k
The Limits of Empathy - UXLibs8
cassininazir
1
210
KATA
mclloyd
PRO
34
15k
Intergalactic Javascript Robots from Outer Space
tanoku
273
27k
How To Stay Up To Date on Web Technology
chriscoyier
791
250k
Lightning talk: Run Django tests with GitHub Actions
sabderemane
0
110
The Psychology of Web Performance [Beyond Tellerrand 2023]
tammyeverts
49
3.3k
Transcript
How To Scale Large Database Phạm Tùng Dương – CIO03
Course: Advanced Database
Overview • First glance about Large Database • Typical techniques
to scale • Database sharding • Database sharding in MySQL
First glance about Large Database
When You Talk about Large Database
Example Tumblr @2012
Example • 400 million active users • 5 billion pieces
of content per week • 3 billion photos uploaded per month Facebook@2010
Example • 1 billion tweets per week • 140 million
tweets sent per day • 456 tweets per second @MJ death • 6939 tweets per second on NY day Twitter@2011
What is The Large Database • Large working data sets
• I/O write intensive
Typical approaches
What is The Bottleneck? I/O, I/O and I/O
We have a job which is called Performance Tuning
Scale up • Adding more RAM, more CPU • High
I/O HDD
Scale topo Replication (Master – Slave) Master Slave Client Read/Write
Read Only Master Master Storage Client Cluster (shared storage)
Caching • Memcached • Redis
Finally, Everything in RAM is a Dream!
But, No Silver Bullet!
Database Sharding
What is Database Sharding • Horizontal Partitioning • Data is
stored in small chunks and distributed across many computers • Often use with Replication
Database sharding topo Primary DB Shard1 Shard2
Shard3 Slave1 Slave2 Slave3
3 types • Range sharding • List sharding (Lookup table)
• Hash sharding
Range sharding • Distributed by the range of Primary Key
• Example – Primary Key: user_id (1..1000) user_shard1 (1..500) user_shard2 (501..1000)
List sharding • Distributed data by the attribute of the
data • Example: database of people in VN – Sharded by the city_name (Ha_Noi, Hai_Phong, Da_Nang,…)
Hash sharding (modulus) • Distributed data by using a hash
function on primary key. • Example: primary_key mod N
Pros of Database Sharding • Easy to scale (data, write
I/O) • Using commodity hardware • Minimum effect when system failed
Cons of Database sharding • You MUST implement by yourselves
• Operation is harder • Handle join operation is very difficult • Data denormalization – > Don’t do it because it’s COOL!
Database Sharding in MySQL
Sharding Solutions • Application layer • Storage layer • Heavy
middleware • Lightweight middleware
Application layer • Hibernate Shards • HiveDB
Storage layer • MySQL Spider – Requires to change storage engine
of MySQL
Heavy Middleware • Twitter Gizzard • dbShards – Each db
has an agent
Lightweight Middleware • Acts like a proxy • Route the
request • Spock, CUBRID
You Will Do It Because You Have To … not
because it’s Cool!
Q&A