$30 off During Our Annual Pro Sale. View Details »
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
How to scale large database
Search
duongkai
May 23, 2013
Programming
3
200
How to scale large database
Bài nói về các kĩ thuật để mở rộng một database lớn.
duongkai
May 23, 2013
Tweet
Share
More Decks by duongkai
See All by duongkai
Common crypto flaws in finance mobile apps
duongkai
0
84
Tetcon-2015 Using TLS correctly
duongkai
2
360
How to use SSL/TLS correctly
duongkai
1
170
5S - Xây dựng và thực hiện
duongkai
0
160
Why Random Matters
duongkai
0
76
Crypto-101 @hackerspace 26/07/2013
duongkai
1
110
Trao đổi email
duongkai
0
160
+TetCon.2013_Hacking.Oracle.2012.pdf
duongkai
0
150
Other Decks in Programming
See All in Programming
AIコーディングエージェント(NotebookLM)
kondai24
0
180
AIエージェントを活かすPM術 AI駆動開発の現場から
gyuta
0
400
堅牢なフロントエンドテスト基盤を構築するために行った取り組み
shogo4131
8
2.3k
Github Copilotのチャット履歴ビューワーを作りました~WPF、dotnet10もあるよ~ #clrh111
katsuyuzu
0
100
まだ間に合う!Claude Code元年をふりかえる
nogu66
5
810
Tinkerbellから学ぶ、Podで DHCPをリッスンする手法
tomokon
0
130
手が足りない!兼業データエンジニアに必要だったアーキテクチャと立ち回り
zinkosuke
0
650
Socio-Technical Evolution: Growing an Architecture and Its Organization for Fast Flow
cer
PRO
0
330
Building AI Agents with TypeScript #TSKaigiHokuriku
izumin5210
6
1.3k
DSPy Meetup Tokyo #1 - はじめてのDSPy
masahiro_nishimi
1
160
20251127_ぼっちのための懇親会対策会議
kokamoto01_metaps
2
430
AWS CDKの推しポイントN選
akihisaikeda
1
240
Featured
See All Featured
Context Engineering - Making Every Token Count
addyosmani
9
500
GraphQLの誤解/rethinking-graphql
sonatard
73
11k
jQuery: Nuts, Bolts and Bling
dougneiner
65
8.2k
What's in a price? How to price your products and services
michaelherold
246
13k
Improving Core Web Vitals using Speculation Rules API
sergeychernyshev
21
1.3k
Practical Tips for Bootstrapping Information Extraction Pipelines
honnibal
25
1.6k
Visualization
eitanlees
150
16k
A Tale of Four Properties
chriscoyier
162
23k
Being A Developer After 40
akosma
91
590k
10 Git Anti Patterns You Should be Aware of
lemiorhan
PRO
659
61k
Building a Modern Day E-commerce SEO Strategy
aleyda
45
8.3k
Testing 201, or: Great Expectations
jmmastey
46
7.8k
Transcript
How To Scale Large Database Phạm Tùng Dương – CIO03
Course: Advanced Database
Overview • First glance about Large Database • Typical techniques
to scale • Database sharding • Database sharding in MySQL
First glance about Large Database
When You Talk about Large Database
Example Tumblr @2012
Example • 400 million active users • 5 billion pieces
of content per week • 3 billion photos uploaded per month Facebook@2010
Example • 1 billion tweets per week • 140 million
tweets sent per day • 456 tweets per second @MJ death • 6939 tweets per second on NY day Twitter@2011
What is The Large Database • Large working data sets
• I/O write intensive
Typical approaches
What is The Bottleneck? I/O, I/O and I/O
We have a job which is called Performance Tuning
Scale up • Adding more RAM, more CPU • High
I/O HDD
Scale topo Replication (Master – Slave) Master Slave Client Read/Write
Read Only Master Master Storage Client Cluster (shared storage)
Caching • Memcached • Redis
Finally, Everything in RAM is a Dream!
But, No Silver Bullet!
Database Sharding
What is Database Sharding • Horizontal Partitioning • Data is
stored in small chunks and distributed across many computers • Often use with Replication
Database sharding topo Primary DB Shard1 Shard2
Shard3 Slave1 Slave2 Slave3
3 types • Range sharding • List sharding (Lookup table)
• Hash sharding
Range sharding • Distributed by the range of Primary Key
• Example – Primary Key: user_id (1..1000) user_shard1 (1..500) user_shard2 (501..1000)
List sharding • Distributed data by the attribute of the
data • Example: database of people in VN – Sharded by the city_name (Ha_Noi, Hai_Phong, Da_Nang,…)
Hash sharding (modulus) • Distributed data by using a hash
function on primary key. • Example: primary_key mod N
Pros of Database Sharding • Easy to scale (data, write
I/O) • Using commodity hardware • Minimum effect when system failed
Cons of Database sharding • You MUST implement by yourselves
• Operation is harder • Handle join operation is very difficult • Data denormalization – > Don’t do it because it’s COOL!
Database Sharding in MySQL
Sharding Solutions • Application layer • Storage layer • Heavy
middleware • Lightweight middleware
Application layer • Hibernate Shards • HiveDB
Storage layer • MySQL Spider – Requires to change storage engine
of MySQL
Heavy Middleware • Twitter Gizzard • dbShards – Each db
has an agent
Lightweight Middleware • Acts like a proxy • Route the
request • Spock, CUBRID
You Will Do It Because You Have To … not
because it’s Cool!
Q&A