Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fixstars高速化コンテスト2024準優勝解法
Search
eijirou
January 07, 2025
Programming
0
310
Fixstars高速化コンテスト2024準優勝解法
eijirou
January 07, 2025
Tweet
Share
More Decks by eijirou
See All by eijirou
AHC051解法紹介
eijirou
0
800
Other Decks in Programming
See All in Programming
PC-6001でPSG曲を鳴らすまでを全部NetBSD上の Makefile に押し込んでみた / osc2025hiroshima
tsutsui
0
210
20251212 AI 時代的 Legacy Code 營救術 2025 WebConf
mouson
0
250
LLM Observabilityによる 対話型音声AIアプリケーションの安定運用
gekko0114
2
370
Grafana:建立系統全知視角的捷徑
blueswen
0
290
Implementation Patterns
denyspoltorak
0
200
PostgreSQLで手軽にDuckDBを使う!DuckDB&pg_duckdb入門/osc25hi-duckdb
takahashiikki
0
250
SQL Server 2025 LT
odashinsuke
0
170
Deno Tunnel を使ってみた話
kamekyame
0
330
[AtCoder Conference 2025] LLMを使った業務AHCの上⼿な解き⽅
terryu16
6
1.1k
余白を設計しフロントエンド開発を 加速させる
tsukuha
6
1.5k
AgentCoreとHuman in the Loop
har1101
5
180
大規模Cloud Native環境におけるFalcoの運用
owlinux1000
0
250
Featured
See All Featured
Agile that works and the tools we love
rasmusluckow
331
21k
Color Theory Basics | Prateek | Gurzu
gurzu
0
180
Making the Leap to Tech Lead
cromwellryan
135
9.7k
svc-hook: hooking system calls on ARM64 by binary rewriting
retrage
1
69
Noah Learner - AI + Me: how we built a GSC Bulk Export data pipeline
techseoconnect
PRO
0
87
Facilitating Awesome Meetings
lara
57
6.7k
Conquering PDFs: document understanding beyond plain text
inesmontani
PRO
4
2.2k
Statistics for Hackers
jakevdp
799
230k
The Invisible Side of Design
smashingmag
302
51k
Building Adaptive Systems
keathley
44
2.9k
Lightning Talk: Beautiful Slides for Beginners
inesmontani
PRO
1
420
Designing Dashboards & Data Visualisations in Web Apps
destraynor
231
54k
Transcript
Fixstars 高速化コンテスト 2024 準優勝の解法紹介 eijirou
問題 https://fixstars-contest.com/contests/cpu2024/problem • 長さが 𝑁 の配列 𝑎, 𝑏 が与えられる •
各要素(宝石)は 𝐾 未満の非負整数 • 𝑎 をいくつか巡回シフトし 𝑏 と一致する要素を最大化せよ • 一致する要素の最大値とそのときのシフト数(1つでよい)を求める コンテストサイト https://fixstars-contest.com/contests/cpu2024/problem 2
問題の言い換え • 長さが 𝑁 の配列 𝑎, 𝑏 が与えられる • 各要素(宝石)は
𝐾 未満の非負整数 • 𝑎 をいくつか巡回シフトし 𝑏 と一致する要素を最大化せよ • 一致する要素の最大値とそのときのシフト数(1つでよい)を求める • 以下の値を求めよ max 𝑘∈[𝑁] # 𝑎𝑖 = 𝑏𝑗 𝑖 + 𝑗 mod 𝑁 = 𝑘 3 𝑎 を逆順にして問題を言い換える
方針 1. 要素(宝石)ごとに各シフトへの寄与を求める • 𝑔𝑎,𝑥 ≔ 𝑖 ∣ 𝑎𝑖 =
𝑥 とすると、要素 𝑥 のシフト 𝑘 への寄与は # 𝑖, 𝑗 𝑖 ∈ 𝑔𝑎,𝑥 , 𝑗 ∈ 𝑔𝑏,𝑥 , 𝑖 + 𝑗 mod 𝑁 = 𝑘 2. 各シフトへの寄与を加算し、最大値を求める 2種類の解法を紹介する 4
インクリメント解法 • 𝑔𝑎,𝑥 ≔ 𝑖 ∣ 𝑎𝑖 = 𝑥 と
𝑔𝑏,𝑥 ≔ 𝑖 𝑏𝑖 = 𝑥 を求め、二重ループを 回す • 時間計算量は要素1つにつき 𝑂 𝑔𝑎,𝑥 ⋅ 𝑔𝑏,𝑥 • 各要素の出現回数が等しければ 𝑂 𝑁2 𝐾2 、全体で 𝑂 𝑁2 𝐾 5
インクリメント解法: キャッシュ効率 • キャッシュヒット率が悪い • 書き込み先の配列(ret)がL1キャッシュに収まらない 書き込み先の配列をL1キャッシュサイズで切る 6 このままだと遅いが、 尺取り法を使うと
𝑗 ∈ 𝑙 − 𝑖, 𝑟 − 𝑖 を効率よく列挙できる
インクリメント解法: 並列化 • 書き込み先を決めるループを並列化する • 書き込み先のメモリをスレッド毎に独立にできる • 実際には配列の長さを 𝑁 にした
7 ここをスレッド並列化
インクリメント解法: 命令数の削減 • ga[x] のループをunrollすると gb[x] の読み込み回数が減る • コンテスト後に @e869120
さん に教えていただきました 279ms 253ms 8
NTT解法 畳み込みに変形し、NTTを使う 𝑓𝑎,𝑝,𝑖 ≔ ቊ 0 (𝑎𝑖 ≠ 𝑝) 1
(𝑎𝑖 = 𝑝) • 𝑓𝑎,𝑝 (𝑥) ≔ 𝑓𝑎,𝑝,0 𝑥0 + 𝑓𝑎,𝑝,1 𝑥1 + ⋯ + 𝑓𝑎,𝑝,𝑛 −1 𝑥𝑛−1 • σ𝑝=0 𝐾−1 𝑓𝑎,𝑝 𝑥 ⋅ 𝑓𝑏,𝑝 𝑥 を求めればよい • 畳み込みを 𝑂 𝑁 log 𝑁 で計算できるため、全体で 𝑂 𝐾𝑁 log 𝑁 9
NTT解法: Nyaan’s Library を使う https://nyaannyaan.github.io/library/ntt/ntt-avx2.hpp • Nyaan’s Library で行われていた高速化 •
非再帰 • in-place • 4基底 • モンゴメリ乗算による除算の除去 • SIMD • data alignment • × 1 の省略, etc. Nyaan’s Library ntt/ntt-avx2 https://nyaannyaan.github.io/library/ntt/ntt-avx2.hpp 10
NTT解法: INTTをまとめる INTTは1回でよい 𝑝=0 𝐾−1 𝑓𝑎,𝑝 𝑥 ⋅ 𝑓𝑏,𝑝
𝑥 = 𝑝=0 𝐾−1 intt ntt 𝑓𝑎,𝑝 𝑥 ⋅ ntt 𝑓𝑏,𝑝 𝑥 = intt 𝑝=0 𝐾−1 ntt 𝑓𝑎,𝑝 𝑥 ⋅ ntt 𝑓𝑏,𝑝 𝑥 11 多項式の積 要素ごとの積 要素ごとの積 mod 上の加算
NTT解法: INTTをまとめる intt 𝐴 + intt 𝐵 = intt(𝐴 +
𝐵) の正当性 12 𝐴 𝑥 = σ𝐴𝑖 𝑥𝑖 𝐵 𝑥 = σ𝐵𝑖 𝑥𝑖 𝐴 𝑟0 , ⋯ , 𝐴 𝑟𝑁−1 𝐵 𝑟0 , ⋯ , 𝐵 𝑟𝑁−1 𝐶 𝑟0 , ⋯ , 𝐶 𝑟𝑁−1 = 𝐴 𝑟0 𝐵 𝑟0 , ⋯ , 𝐴 𝑟𝑁−1 𝐵 𝑟𝑁−1 𝐶 𝑥 = 𝐴 𝑥 ⋅ 𝐵(𝑥) NTT INTT FFT/NTT で畳み込みを計算する流れ
NTT解法: INTTをまとめる intt 𝐴 + intt 𝐵 = intt(𝐴 +
𝐵) の正当性 13 𝐴 𝑥 = σ𝐴𝑖 𝑥𝑖 𝐵 𝑥 = σ𝐵𝑖 𝑥𝑖 𝐴 𝑟0 , ⋯ , 𝐴 𝑟𝑁−1 𝐵 𝑟0 , ⋯ , 𝐵 𝑟𝑁−1 𝐶 𝑟0 , ⋯ , 𝐶 𝑟𝑁−1 = 𝐴 𝑟0 + 𝐵 𝑟0 , ⋯ , 𝐴 𝑟𝑁−1 + 𝐵 𝑟𝑁−1 𝐶 𝑥 = 𝐴 𝑥 + 𝐵(𝑥) NTT INTT 加算でも成り立つ 離散フーリエ変換は行列積なので 線形性が成り立つという説明も可能
NTT解法: その他の高速化 • 最初は要素が0と1しかないため、積を省略できる • 場合によっては2周目も積を省略する • できるだけキャッシュサイズで切る • 速くならないかも
14 1 2 3 4 7 10 13 5 6 8 9 11 12 14 15 キャッシュサイズ 番号は計算順序 配列のインデックス
まとめ • インクリメント解法 • 各要素の出現回数が等しければ 𝑂 𝑁2 𝐾 • 𝐾
が大きいときに使う • NTT解法 • 𝑂(𝐾𝑁 log 𝑁) • 𝐾 が小さいときに使う • 並列化 • 定数倍高速化 • 実行命令数の削減 • キャッシュヒット率の改善 15