Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Fixstars高速化コンテスト2024準優勝解法
Search
eijirou
January 07, 2025
Programming
0
250
Fixstars高速化コンテスト2024準優勝解法
eijirou
January 07, 2025
Tweet
Share
Other Decks in Programming
See All in Programming
脱Riverpod?fqueryで考える、TanStack Queryライクなアーキテクチャの可能性
ostk0069
0
500
ご注文の差分はこちらですか? 〜 AWS CDK のいろいろな差分検出と安全なデプロイ
konokenj
3
580
MDN Web Docs に日本語翻訳でコントリビュートしたくなる
ohmori_yusuke
1
130
dbt民主化とLLMによる開発ブースト ~ AI Readyな分析サイクルを目指して ~
yoshyum
3
1.1k
AIと”コードの評価関数”を共有する / Share the "code evaluation function" with AI
euglena1215
1
180
猫と暮らす Google Nest Cam生活🐈 / WebRTC with Google Nest Cam
yutailang0119
0
170
スタートアップの急成長を支えるプラットフォームエンジニアリングと組織戦略
sutochin26
1
7.3k
Flutterで備える!Accessibility Nutrition Labels完全ガイド
yuukiw00w
0
170
ニーリーにおけるプロダクトエンジニア
nealle
0
950
PHP 8.4の新機能「プロパティフック」から学ぶオブジェクト指向設計とリスコフの置換原則
kentaroutakeda
2
1k
AI コーディングエージェントの時代へ:JetBrains が描く開発の未来
masaruhr
1
200
코딩 에이전트 체크리스트: Claude Code ver.
nacyot
0
930
Featured
See All Featured
Let's Do A Bunch of Simple Stuff to Make Websites Faster
chriscoyier
507
140k
Rails Girls Zürich Keynote
gr2m
95
14k
Unsuck your backbone
ammeep
671
58k
The Art of Programming - Codeland 2020
erikaheidi
54
13k
StorybookのUI Testing Handbookを読んだ
zakiyama
30
5.9k
Designing for humans not robots
tammielis
253
25k
How to Think Like a Performance Engineer
csswizardry
25
1.7k
Performance Is Good for Brains [We Love Speed 2024]
tammyeverts
10
970
Into the Great Unknown - MozCon
thekraken
40
1.9k
Intergalactic Javascript Robots from Outer Space
tanoku
271
27k
The Pragmatic Product Professional
lauravandoore
35
6.7k
Learning to Love Humans: Emotional Interface Design
aarron
273
40k
Transcript
Fixstars 高速化コンテスト 2024 準優勝の解法紹介 eijirou
問題 https://fixstars-contest.com/contests/cpu2024/problem • 長さが 𝑁 の配列 𝑎, 𝑏 が与えられる •
各要素(宝石)は 𝐾 未満の非負整数 • 𝑎 をいくつか巡回シフトし 𝑏 と一致する要素を最大化せよ • 一致する要素の最大値とそのときのシフト数(1つでよい)を求める コンテストサイト https://fixstars-contest.com/contests/cpu2024/problem 2
問題の言い換え • 長さが 𝑁 の配列 𝑎, 𝑏 が与えられる • 各要素(宝石)は
𝐾 未満の非負整数 • 𝑎 をいくつか巡回シフトし 𝑏 と一致する要素を最大化せよ • 一致する要素の最大値とそのときのシフト数(1つでよい)を求める • 以下の値を求めよ max 𝑘∈[𝑁] # 𝑎𝑖 = 𝑏𝑗 𝑖 + 𝑗 mod 𝑁 = 𝑘 3 𝑎 を逆順にして問題を言い換える
方針 1. 要素(宝石)ごとに各シフトへの寄与を求める • 𝑔𝑎,𝑥 ≔ 𝑖 ∣ 𝑎𝑖 =
𝑥 とすると、要素 𝑥 のシフト 𝑘 への寄与は # 𝑖, 𝑗 𝑖 ∈ 𝑔𝑎,𝑥 , 𝑗 ∈ 𝑔𝑏,𝑥 , 𝑖 + 𝑗 mod 𝑁 = 𝑘 2. 各シフトへの寄与を加算し、最大値を求める 2種類の解法を紹介する 4
インクリメント解法 • 𝑔𝑎,𝑥 ≔ 𝑖 ∣ 𝑎𝑖 = 𝑥 と
𝑔𝑏,𝑥 ≔ 𝑖 𝑏𝑖 = 𝑥 を求め、二重ループを 回す • 時間計算量は要素1つにつき 𝑂 𝑔𝑎,𝑥 ⋅ 𝑔𝑏,𝑥 • 各要素の出現回数が等しければ 𝑂 𝑁2 𝐾2 、全体で 𝑂 𝑁2 𝐾 5
インクリメント解法: キャッシュ効率 • キャッシュヒット率が悪い • 書き込み先の配列(ret)がL1キャッシュに収まらない 書き込み先の配列をL1キャッシュサイズで切る 6 このままだと遅いが、 尺取り法を使うと
𝑗 ∈ 𝑙 − 𝑖, 𝑟 − 𝑖 を効率よく列挙できる
インクリメント解法: 並列化 • 書き込み先を決めるループを並列化する • 書き込み先のメモリをスレッド毎に独立にできる • 実際には配列の長さを 𝑁 にした
7 ここをスレッド並列化
インクリメント解法: 命令数の削減 • ga[x] のループをunrollすると gb[x] の読み込み回数が減る • コンテスト後に @e869120
さん に教えていただきました 279ms 253ms 8
NTT解法 畳み込みに変形し、NTTを使う 𝑓𝑎,𝑝,𝑖 ≔ ቊ 0 (𝑎𝑖 ≠ 𝑝) 1
(𝑎𝑖 = 𝑝) • 𝑓𝑎,𝑝 (𝑥) ≔ 𝑓𝑎,𝑝,0 𝑥0 + 𝑓𝑎,𝑝,1 𝑥1 + ⋯ + 𝑓𝑎,𝑝,𝑛 −1 𝑥𝑛−1 • σ𝑝=0 𝐾−1 𝑓𝑎,𝑝 𝑥 ⋅ 𝑓𝑏,𝑝 𝑥 を求めればよい • 畳み込みを 𝑂 𝑁 log 𝑁 で計算できるため、全体で 𝑂 𝐾𝑁 log 𝑁 9
NTT解法: Nyaan’s Library を使う https://nyaannyaan.github.io/library/ntt/ntt-avx2.hpp • Nyaan’s Library で行われていた高速化 •
非再帰 • in-place • 4基底 • モンゴメリ乗算による除算の除去 • SIMD • data alignment • × 1 の省略, etc. Nyaan’s Library ntt/ntt-avx2 https://nyaannyaan.github.io/library/ntt/ntt-avx2.hpp 10
NTT解法: INTTをまとめる INTTは1回でよい 𝑝=0 𝐾−1 𝑓𝑎,𝑝 𝑥 ⋅ 𝑓𝑏,𝑝
𝑥 = 𝑝=0 𝐾−1 intt ntt 𝑓𝑎,𝑝 𝑥 ⋅ ntt 𝑓𝑏,𝑝 𝑥 = intt 𝑝=0 𝐾−1 ntt 𝑓𝑎,𝑝 𝑥 ⋅ ntt 𝑓𝑏,𝑝 𝑥 11 多項式の積 要素ごとの積 要素ごとの積 mod 上の加算
NTT解法: INTTをまとめる intt 𝐴 + intt 𝐵 = intt(𝐴 +
𝐵) の正当性 12 𝐴 𝑥 = σ𝐴𝑖 𝑥𝑖 𝐵 𝑥 = σ𝐵𝑖 𝑥𝑖 𝐴 𝑟0 , ⋯ , 𝐴 𝑟𝑁−1 𝐵 𝑟0 , ⋯ , 𝐵 𝑟𝑁−1 𝐶 𝑟0 , ⋯ , 𝐶 𝑟𝑁−1 = 𝐴 𝑟0 𝐵 𝑟0 , ⋯ , 𝐴 𝑟𝑁−1 𝐵 𝑟𝑁−1 𝐶 𝑥 = 𝐴 𝑥 ⋅ 𝐵(𝑥) NTT INTT FFT/NTT で畳み込みを計算する流れ
NTT解法: INTTをまとめる intt 𝐴 + intt 𝐵 = intt(𝐴 +
𝐵) の正当性 13 𝐴 𝑥 = σ𝐴𝑖 𝑥𝑖 𝐵 𝑥 = σ𝐵𝑖 𝑥𝑖 𝐴 𝑟0 , ⋯ , 𝐴 𝑟𝑁−1 𝐵 𝑟0 , ⋯ , 𝐵 𝑟𝑁−1 𝐶 𝑟0 , ⋯ , 𝐶 𝑟𝑁−1 = 𝐴 𝑟0 + 𝐵 𝑟0 , ⋯ , 𝐴 𝑟𝑁−1 + 𝐵 𝑟𝑁−1 𝐶 𝑥 = 𝐴 𝑥 + 𝐵(𝑥) NTT INTT 加算でも成り立つ 離散フーリエ変換は行列積なので 線形性が成り立つという説明も可能
NTT解法: その他の高速化 • 最初は要素が0と1しかないため、積を省略できる • 場合によっては2周目も積を省略する • できるだけキャッシュサイズで切る • 速くならないかも
14 1 2 3 4 7 10 13 5 6 8 9 11 12 14 15 キャッシュサイズ 番号は計算順序 配列のインデックス
まとめ • インクリメント解法 • 各要素の出現回数が等しければ 𝑂 𝑁2 𝐾 • 𝐾
が大きいときに使う • NTT解法 • 𝑂(𝐾𝑁 log 𝑁) • 𝐾 が小さいときに使う • 並列化 • 定数倍高速化 • 実行命令数の削減 • キャッシュヒット率の改善 15