Granger in close collaboration with the UW Interactive Data Lab - Much of this tutorial is from Jake Vanderplas’ PyCon 2018 tutorial - Special thanks to the Altair Community on GitHub.
4. Encoding - mapping from fields to mark properties 5. Scale - functions that map data to visual scales 6. Guides - visualizations of scales (axes, legends, etc.)
rendering backends - Can reproduce just about any plot (with a bit of effort) - Well-tested, standard tool for over a decade Weaknesses: - API is imperative & often overly verbose - Poor support for web/interactive graphics - Often slow for large & complicated data
should be done. - Specification & Execution intertwined. - “Put a red circle here and a blue circle here” Declarative - Specify What should be done. - Separates Specification from Execution - “Map <x> to a position, and <y> to a color” Declarative visualizations lets you think about the data and relationships, rather than incidental details
should be done. - Specification & Execution intertwined. - “Put a red circle here and a blue circle here” Declarative - Specify What should be done. - Separates Specification from Execution - “Map <x> to a position, and <y> to a color” Declarative visualizations lets you think about the data and relationships, rather than incidental details