Upgrade to Pro
— share decks privately, control downloads, hide ads and more …
Speaker Deck
Features
Speaker Deck
PRO
Sign in
Sign up for free
Search
Search
Visualization Grammar
Search
Eitan Lees
March 03, 2020
Programming
9
930
Visualization Grammar
A brief tour of the Vega/Vega-Lite visualization grammar used in Altair
Eitan Lees
March 03, 2020
Tweet
Share
More Decks by Eitan Lees
See All by Eitan Lees
Visualization
eitanlees
150
17k
Matplotlib
eitanlees
8
1.1k
Altair Tutorial
eitanlees
4
1k
Scientific Visualization
eitanlees
6
800
Other Decks in Programming
See All in Programming
QAフローを最適化し、品質水準を満たしながらリリースまでの期間を最短化する #RSGT2026
shibayu36
2
4.3k
CSC307 Lecture 08
javiergs
PRO
0
670
AIエージェントのキホンから学ぶ「エージェンティックコーディング」実践入門
masahiro_nishimi
5
330
AI Agent の開発と運用を支える Durable Execution #AgentsInProd
izumin5210
7
2.3k
[KNOTS 2026登壇資料]AIで拡張‧交差する プロダクト開発のプロセス および携わるメンバーの役割
hisatake
0
250
Vibe Coding - AI 驅動的軟體開發
mickyp100
0
170
Basic Architectures
denyspoltorak
0
660
dchart: charts from deck markup
ajstarks
3
990
KIKI_MBSD Cybersecurity Challenges 2025
ikema
0
1.3k
CSC307 Lecture 01
javiergs
PRO
0
690
今こそ知るべき耐量子計算機暗号(PQC)入門 / PQC: What You Need to Know Now
mackey0225
3
370
なるべく楽してバックエンドに型をつけたい!(楽とは言ってない)
hibiki_cube
0
140
Featured
See All Featured
[Rails World 2023 - Day 1 Closing Keynote] - The Magic of Rails
eileencodes
38
2.7k
Documentation Writing (for coders)
carmenintech
77
5.2k
The SEO Collaboration Effect
kristinabergwall1
0
350
Art, The Web, and Tiny UX
lynnandtonic
304
21k
"I'm Feeling Lucky" - Building Great Search Experiences for Today's Users (#IAC19)
danielanewman
231
22k
The Web Performance Landscape in 2024 [PerfNow 2024]
tammyeverts
12
1k
Future Trends and Review - Lecture 12 - Web Technologies (1019888BNR)
signer
PRO
0
3.2k
The SEO identity crisis: Don't let AI make you average
varn
0
64
A better future with KSS
kneath
240
18k
Believing is Seeing
oripsolob
1
53
Stewardship and Sustainability of Urban and Community Forests
pwiseman
0
110
The Success of Rails: Ensuring Growth for the Next 100 Years
eileencodes
47
7.9k
Transcript
Data Mark Encoding Transform Scale Guide Visualization Grammar
Data Mark Encoding Transform Scale Guide A B C &
Variables Observations Tabular Data A B C
Data Mark Encoding Transform Scale Guide A,B,C,D,E 4,6,4,4,3 4,4,8,4,3 7,5,5,0,1
5,9,3,0,5 0,1,2,4,2 [ { "A":4, "B":6, "C":4, "D":4, "E":3 }, { "A":4, "B":4, "C":8, "D":4, "E":3 }, { "A":7, "B":5, "C":5, "D":0, "E":1 }, { "A":5, "B":9, "C":3, "D":0, "E":5 }, { "A":0, "B":1, "C":2, "D":4, "E":2 } ] https://eitanlees.com/ABC.csv
Data Mark Encoding Transform Scale Guide B A A A
C C C B B and many more ... Text Circle Bar Line
Data Mark Encoding Transform Scale Guide X Position Y Position
Size Color ⠇ Channel A B C D ⠇ Variable
Data Mark Encoding Transform Scale Guide Calculate Fold Filter Aggregate
and many more ...
Data Mark Encoding Transform Scale Guide f(domain) → range
Data Mark Encoding Transform Scale Guide A B C Legend
Data Mark Encoding Transform Scale Guide Let’s make a chart
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() sepalLength sepalWidth PetalLength PetalWidth species 5.1 3.5 1.4 0.2 setosa 4.9 3.0 1.4 0.2 setosa 4.7 3.2 1.3 0.2 setosa 4.6 3.1 1.5 0.2 setosa ⠇
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_circle()
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_circle() Without an encoding our chart is not very interesting
Data Mark Encoding Transform Scale Guide import altair as alt
from vega_datasets import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth') )
Data Mark Encoding Transform import altair as alt from vega_datasets
import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth'), alt.Color('species') ) Scale Guide
Data Mark Encoding Transform import altair as alt from vega_datasets
import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth'), alt.Color('species') ) Scale Guide Note that the guides and scales are automatically generated for us
Data Mark Encoding Transform import altair as alt from vega_datasets
import data iris = data.iris() alt.Chart(iris).mark_circle().encode( alt.X('petalLength'), alt.Y('petalWidth'), alt.Color('species') ).transform_filter( alt.datum.sepalWidth < 3 ) Scale Guide