Upgrade to Pro — share decks privately, control downloads, hide ads and more …

Elix, CBI, 招待講演, ElixにおけるAI創薬と最新動向, 2021-10-26

Elix
October 28, 2021

Elix, CBI, 招待講演, ElixにおけるAI創薬と最新動向, 2021-10-26

Elix

October 28, 2021
Tweet

More Decks by Elix

Other Decks in Science

Transcript

  1. $PQZSJHIU˜&MJY *OD"MMSJHIUTSFTFSWFE
    $#*ֶձট଴ߨԋ
    &MJYʹ͓͚Δ"*૑ༀͱ࠷৽ಈ޲
    גࣜձࣾ&MJY
    $&0݁৓৳࠸
    2021/10/26
    1

    View Slide

  2. $PQZSJHIU˜&MJY *OD"MMSJHIUTSFTFSWFE
    ૑ༀʹ͓͚Δ՝୊
    2
    Scannell et al. (2012)
    • 10೥Ҏ্ͷظؒɺ1000ԯԁҎ্
    ͷίετɺ੒ޭ཰ͷ௿͞

    • ૑ༀίετ͸ࢦ਺ؔ਺తʹ૿େ

    • 2010೥Ҏ߱͸͜ͷ૿Ճ͕ࢭ·ͬͨ
    ͱ͢Δݚڀ΋͋Δ΋ͷͷґવͱ͠
    ͯߴ͍
    Eroom's Law

    View Slide

  3. $PQZSJHIU˜&MJY *OD"MMSJHIUTSFTFSWFE 3
    3FUIJOLJOH%SVH%JTDPWFSZ
    ૑ༀΛ࠶ߟ͢Δ

    View Slide

  4. "*ؔ࿈ຽؒ౤ࢿֹ೥WT೥
    4
    https://aiindex.stanford.edu/report/
    2020೥Ͱ࠷΋େ͖͔ͬͨͷ͸૑ༀɻ͍ͭʹࣗಈӡసΑΓ΋େ͖ͳ౤ࢿֹʹɻ

    View Slide

  5. $PQZSJHIU˜&MJY *OD"MMSJHIUTSFTFSWFE
    "*ελʔτΞοϓͱ੡ༀձࣾͷఏܞ਺
    5
    https://www.biopharmatrend.com/m/free-reports/ai/
    ߹ܭఏܞ਺͸ॱௐʹ૿Ճ

    View Slide

  6. "*ར༻༻్ͷ಺༁
    6
    Schuhmancher et al. (2020)
    ௿෼ࢠ͕Ұ൪ଟ͍
    ※ ੈքͷ੡ༀձࣾτοϓ21͕ࣾ2014ʙ2019
    ʹ͔͚ͯऔΓ૊ΜͰ͍ͨAIϓϩδΣΫτ

    View Slide

  7. 3FTUSJDUFE˜&MJY *OD
    ෼ࢠઃܭ
    7
    Image Source: Sanchez-Lengeling et al. (2018)
    Drug-likeͳ෼ࢠ͸ʙ1060ݸ
    ࣮ݧ/γϛϡϨʔγϣϯ ༧ଌϞσϧ ੜ੒Ϟσϧ

    View Slide

  8. $PQZSJHIU˜&MJY *OD"MMSJHIUTSFTFSWFE
    &MJY%JTDPWFSZ5. "*%SVH%JTDPWFSZ1MBUGPSN

    8
    Elix͕ഓ͖ٕͬͯͨज़Λ݁ूͨ͠AI૑ༀϓϥοτϑΥʔϜ
    ᶃڞಉݚڀɹᶄϥΠηϯεఏڙ
    w ׆ੑ͋Γ
    w ׆ੑͳ͠
    w O.
    w ʜ

    View Slide

  9. $PQZSJHIU˜&MJY *OD"MMSJHIUTSFTFSWFE
    &MJY%JTDPWFSZ5. "*%SVH%JTDPWFSZ1MBUGPSN

    9
    ࣗࣾݚڀΛؚΉ࠷৽ͷݚڀ੒ՌΛϓϥοτϑΥʔϜʹ࣮૷ɻࣗࣾݚڀͷྫΛަ͑ͭͭ঺հɻ
    ͜ͷޙͷεϙϯαʔηογϣϯͰ΋ϓϥοτϑΥʔϜΛ঺հ →
    ← CBIͰ΋5ͭޱ಄ൃද
    w ׆ੑ͋Γ
    w ׆ੑͳ͠
    w O.
    w ʜ

    View Slide

  10. $PQZSJHIU˜&MJY *OD"MMSJHIUTSFTFSWFE
    &MJY1SFEJDUʢ༧ଌʣ
    10
    Properties
    Model
    • ׆ੑɺ෺ੑɺADMETͳͲΛ༧ଌ͢ΔϞδϡʔϧ


    • ैདྷϞσϧ͔Β࠷৽ͷάϥϑܥͷϞσϧ·Ͱ


    • ࣗಈͰϋΠύʔύϥϝʔλௐ੔Λͯ͠ϕετͳϞσϧΛબ୒
    Case Studyɿ

    Ξϯυϩήϯड༰ମʹର͢ΔόʔνϟϧεΫϦʔχϯά
    • ༧ଌ஋͚ͩͰͳ͘ɺCon
    fi
    denceείΞΛߟྀ͢Δ͜ͱͰ
    ΑΓ·ͱ΋ͳԽ߹෺Λબ୒


    • ߜΓࠐΜͩ53ݸͷ͏ͪ34ݸ͕ಛڐऔಘࡁΈͷ΋ͷͩͬͨ

    ʢ༧ଌϞσϧͷੑೳΛࣔ͢͜ͱ͕໨తͷ࣮ݧʣ
    Con
    fi
    denceείΞ͋Γ
    Con
    fi
    denceείΞͳ͠
    10/27 ޱ಄ൃද
    O4-3 Romeo Cozac

    “Graph Convolutional Networks for Ligand-based
    Virtual Screening against the Androgen Receptor”

    View Slide

  11. $PQZSJHIU˜&MJY *OD"MMSJHIUTSFTFSWFE
    &MJY$SFBUFʢ෼ࢠੜ੒ʣ
    11
    Model
    • ੜ੒ϞσϧʹΑΓߏ଄ൃੜΛߦ͏Ϟδϡʔϧ


    • Elix Predictͱ૊Έ߹Θͤͯॴ๬ͷ׆ੑɾ෺ੑΛ࣋ͭ෼ࢠΛੜ੒


    • άϥϑϕʔεɺSMILESϕʔεɺϑϥάϝϯτϕʔεͳͲಠࣗϞσϧΛ
    ؚΉ༷ʑͳϞσϧΛαϙʔτ


    • ࢦఆͨ͠෦෼ߏ଄Λར༻͢Δ͜ͱ΋Մೳ
    eGEGLɿElixͷಠࣗϞσϧʢWüthrich et al. 2021ʣ


    • χϡʔϥϧωοτϫʔΫͱҨ఻తΞϧΰϦζϜΛ
    ߹ΘͤͨϞσϧ͕SOTAͱ͍͏എܠ


    • Ҩ఻తΞϧΰϦζϜ෦෼ʹυϝΠϯ஌ࣝΛೖΕΔ
    ͜ͱΛۃྗഉআͨ͠ΑΓҰൠԽͨ͠Ϟσϧ


    • ϕϯνϚʔΫͰಉ౳Ҏ্
    Wüthrich et al. (2021)
    10/27 ޱ಄ൃද
    O4-3 Pierre Wüthrich

    “Using Attribution-based Explainability to Guide
    Deep Molecular Optimization”

    View Slide

  12. $PQZSJHIU˜&MJY *OD"MMSJHIUTSFTFSWFE
    3FUSPTZOUIFTJTʢٯ߹੒ղੳʣ
    12
    Model
    • ٯ߹੒ղੳΛߦ͏Ϟδϡʔϧ


    • େྔͷԽ߹෺Λ·ͱΊͯॲཧ΋Մೳ


    • Elix CreateͰੜ੒͞ΕͨԽ߹෺ͷ߹੒༰қੑͷݕ౼ʹ΋


    • ڞ௨͢ΔதؒମΛܦ༝͢Δϧʔτͷఏࣔ


    • Ձ֨ɺར༻Մೳͳࢼༀɺऩ཰౳Λߟྀͨ͠ϧʔτͷఏࣔ
    • ౦ژ޻ۀେֶͱͷڞಉݚڀ


    • ٯ߹੒ղੳπʔϧ܈


    • Φʔϓϯιʔεͱͯ͠ެ։༧ఆ
    Elix Synthesize
    10/27 ޱ಄ൃද
    O4-2 Haris Hasic


    “RetroSynthWAVE: An Open-
    Source Software Platform for
    E
    ffi
    cient Chemical Synthesis
    Research”

    View Slide

  13. $PQZSJHIU˜&MJY *OD"MMSJHIUTSFTFSWFE
    σʔλ͕গͳ͍໰୊΁ͷରԠ
    13
    ࿈߹ֶशʢkMoL, Elix Milaʣ • ࿈߹ֶशɿσʔλΛ֎෦ʹग़͢͜ͱͳ͘ɺෳ਺اۀͷσʔλΛ׆
    ༻ֶͯ͠श͢Δ͜ͱΛՄೳʹ͢Δٕज़


    • kMoL: ࿈߹ֶशͱ༧ଌϞσϧͰߏ੒͞ΕΔϥΠϒϥϦ


    • ژ౎େֶͱڞಉ։ൃ


    • ࿈߹ֶशϞδϡʔϧElix MilaΛϕʔεʹ։ൃ


    • Φʔϓϯιʔεͱͯ͠ϦϦʔεࡁΈ (https://github.com/elix-tech/kmol)
    ࣗݾڭࢣ͋ΓֶशʢSelf-Supervised Learningʣ
    • ࣮ݧ஋͕ଘࡏ͠ͳ͍Խ߹෺σʔλ΋׆༻


    • ༧ଌਫ਼౓Λ޲্ͤ͞ΔΞϓϩʔν


    • σʔλ͕গͳ͍৔໘Ͱಛʹ༗༻
    10/27 ޱ಄ൃද
    O4-6 Laurent Dillard

    “Improving Molecular Property Prediction using
    Self-supervised Learning”

    View Slide

  14. $PQZSJHIU˜&MJY *OD"MMSJHIUTSFTFSWFE
    ௿෼ࢠҎ֎ͷϞμϦςΟ
    14
    ௿෼ࢠ͕ϝΠϯͰ͋Δ΋ͷͷɺͦΕҎ֎ͷϞμϦςΟ΋ѻ͍ͬͯΔ
    ߅ମ H3ϧʔϓͷ3࣍ݩߏ଄༧ଌ
    • λϯύΫ࣭഑ྻσʔλʹΑΔڭࢣͳֶ͠शΛ׆༻


    • ͜ͷಛ௃நग़ʹΑΓH3ϧʔϓߏ଄༧ଌͷਫ਼౓Λ޲্
    10/27 ޱ಄ൃද
    O4-4 David Jimenez

    “Leveraging Self-Supervised Contextual Language
    Models for DNN Antibody CDR-H3 Loop Predictions”

    View Slide

  15. $PQZSJHIU˜&MJY *OD"MMSJHIUTSFTFSWFE
    ϝϯόʔ
    15
    🌏 ੈքத͔Β༏लͳϝϯόʔΛ࠾༻


    • AIݚڀऀɺAIΤϯδχΞ


    • έϛετɺόΠΦϩδετ


    • ത࢜߸औಘऀଟ਺


    • ӳޠެ༻ޠ
    🇯🇵 🇭🇺 🇫🇷
    🇦🇺
    🇲🇾
    🇰🇬 🇺🇸
    🇳🇬 🇨🇭 🇧🇦 🇨🇴
    🏢 ૑ۀऀ
    ݁৓৳࠸ɺPh.D

    ڞಉ૑ۀऀɾCEO
    େٱอୡ໼


    ڞಉ૑ۀऀɾCOO
    ౦ژʹू·ͬͯ࢓ࣄ
    Λ͍ͯ͠·͢
    📍

    View Slide

  16. Thank you!
    Contact us: [email protected]

    View Slide